mirror of https://github.com/CGAL/cgal
Merge pull request #3311 from sloriot/Doc-Pkg_link_name
Update the name of package names reference links
This commit is contained in:
commit
821f9c015e
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBGeomTraits` defines the requirements for the first template parameter of the class `CGAL::AABB_traits<AABBGeomTraits, AABBPrimitive>`. It provides predicates and constructors to detect and compute intersections between query objects and the primitives stored in the AABB tree. In addition, it contains predicates and constructors to compute distances between a point query and the primitives stored in the AABB tree.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBPrimitive` describes the requirements for the primitives stored in the AABB tree data structure. The concept encapsulates a type for the input datum (a geometric object) and an identifier (id) type through which those primitives are referred to. The concept `AABBPrimitive` also refines the concepts DefaultConstructible and Assignable.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBPrimitiveWithSharedData` describes the requirements for the primitives
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBRayIntersectionGeomTraits` is a refinement of the
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBRayIntersectionTraits` is a refinement of the concept
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAABB_treeConcepts
|
||||
\ingroup PkgAABBTreeConcepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AABBTraits` provides the geometric primitive types and methods for the class `CGAL::AABB_tree<AABBTraits>`.
|
||||
|
|
|
|||
|
|
@ -1,16 +1,16 @@
|
|||
/// \defgroup PkgAABB_tree AABB Tree Reference
|
||||
/// \defgroup PkgAABBTreeRef AABB Tree Reference
|
||||
|
||||
/// \defgroup PkgAABB_treeConcepts Concepts
|
||||
/// \ingroup PkgAABB_tree
|
||||
/// \defgroup PkgAABBTreeConcepts Concepts
|
||||
/// \ingroup PkgAABBTreeRef
|
||||
|
||||
/*!
|
||||
\addtogroup PkgAABB_tree
|
||||
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABB_treeSummary}
|
||||
\addtogroup PkgAABBTreeRef
|
||||
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABBTree}
|
||||
\cgalPkgPicture{aabb-teaser-thumb.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Pierre Alliez, Stéphane Tayeb, Camille Wormser}
|
||||
\cgalPkgDesc{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
|
||||
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABB_tree}
|
||||
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABBTreeRef}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{3.5}
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
* \ingroup PkgAABB_tree
|
||||
* \ingroup PkgAABBTreeRef
|
||||
* Primitive type for a facet of a polyhedral surface.
|
||||
* It wraps a handle to a facet of a polyhedron to a 3D triangle.
|
||||
* The polyhedron from which the primitive is built should not be deleted
|
||||
|
|
|
|||
|
|
@ -42,7 +42,7 @@ namespace CGAL {
|
|||
|
||||
|
||||
/*!
|
||||
* \ingroup PkgAABB_tree
|
||||
* \ingroup PkgAABBTreeRef
|
||||
* Primitive type for a edge of a polyhedral surface.
|
||||
* It wraps an `edge_descriptor` into a 3D segment.
|
||||
* The class model of `HalfedgeGraph` from which the primitive is built should not be deleted
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@
|
|||
|
||||
namespace CGAL {
|
||||
|
||||
/// \addtogroup PkgAABB_tree
|
||||
/// \addtogroup PkgAABBTreeRef
|
||||
/// @{
|
||||
/// \deprecated This class is deprecated since \cgal 4.3, the class
|
||||
/// `AABB_halfedge_graph_segment_primitive` should be used instead.
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@
|
|||
#include <boost/type_traits/is_same.hpp>
|
||||
|
||||
namespace CGAL {
|
||||
/// \ingroup PkgAABB_tree
|
||||
/// \ingroup PkgAABBTreeRef
|
||||
/// \deprecated This class is deprecated since \cgal 4.3, the class
|
||||
/// `AABB_face_graph_triangle_primitive` should be used instead.
|
||||
///
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@ public:
|
|||
|
||||
#ifdef DOXYGEN_RUNNING
|
||||
/*!
|
||||
* \ingroup PkgAABB_tree
|
||||
* \ingroup PkgAABBTreeRef
|
||||
* Generic primitive type.
|
||||
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
|
||||
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ namespace internal {
|
|||
|
||||
|
||||
/*!
|
||||
* \ingroup PkgAABB_tree
|
||||
* \ingroup PkgAABBTreeRef
|
||||
* Primitive type that uses as identifier an iterator with a 3D segment as `value_type`.
|
||||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
|
|
|
|||
|
|
@ -173,7 +173,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
|
|||
|
||||
} } //end of namespace internal::AABB_tree
|
||||
|
||||
/// \addtogroup PkgAABB_tree
|
||||
/// \addtogroup PkgAABBTreeRef
|
||||
/// @{
|
||||
|
||||
/// This traits class handles any type of 3D geometric
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@
|
|||
|
||||
namespace CGAL {
|
||||
|
||||
/// \addtogroup PkgAABB_tree
|
||||
/// \addtogroup PkgAABBTreeRef
|
||||
/// @{
|
||||
|
||||
/**
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ namespace internal {
|
|||
|
||||
|
||||
/*!
|
||||
* \ingroup PkgAABB_tree
|
||||
* \ingroup PkgAABBTreeRef
|
||||
* Primitive type that uses as identifier an iterator with a 3D triangle as `value_type`.
|
||||
* The iterator from which the primitive is built should not be invalided
|
||||
* while the AABB tree holding the primitive is in use.
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@
|
|||
#include <boost/type_traits/is_same.hpp>
|
||||
|
||||
namespace CGAL {
|
||||
// \ingroup PkgAABB_tree
|
||||
// \ingroup PkgAABBTreeRef
|
||||
// Primitive type that wraps a facet handle of a CGAL::Triangulation_3,
|
||||
// which is used as id, and allows the construction of the datum on
|
||||
// the fly. Since only the facet handle is stored in this primitive,
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
/// \defgroup PkgAdvancingFrontSurfaceReconstruction Advancing Front Surface Reconstruction Reference
|
||||
/// \defgroup PkgAdvancingFrontSurfaceReconstructionRef Advancing Front Surface Reconstruction Reference
|
||||
|
||||
/*!
|
||||
\addtogroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\addtogroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstructionSummary}
|
||||
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
|
||||
\cgalPkgPicture{afsr-detail.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Tran Kai Frank Da, David Cohen-Steiner}
|
||||
|
|
@ -12,11 +12,11 @@ unorganized point set. Starting from a seed facet, a piecewise linear
|
|||
surface is grown by adding Delaunay triangles one by one. The most
|
||||
plausible triangles are added first, in a way that avoids the appearance
|
||||
of topological singularities. }
|
||||
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
|
||||
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstructionRef}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{4.7}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation3Summary}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation3}
|
||||
\cgalPkgBib{cgal:dc-afsr}
|
||||
\cgalPkgLicense{\ref licensesGPL "GPL"}
|
||||
\cgalPkgShortInfoEnd
|
||||
|
|
|
|||
|
|
@ -175,7 +175,7 @@ namespace CGAL {
|
|||
|
||||
|
||||
/*!
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
The class `Advancing_front_surface_reconstruction` enables advanced users to provide the unstructured
|
||||
point cloud in a 3D Delaunay triangulation. The reconstruction algorithm then marks vertices and faces
|
||||
|
|
@ -2480,7 +2480,7 @@ namespace CGAL {
|
|||
}
|
||||
|
||||
/*!
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
For a sequence of points computes a sequence of index triples
|
||||
describing the faces of the reconstructed surface.
|
||||
|
|
@ -2532,7 +2532,7 @@ namespace CGAL {
|
|||
}
|
||||
|
||||
/*!
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
For a sequence of points computes a sequence of index triples
|
||||
describing the faces of the reconstructed surface.
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
The class `Advancing_front_surface_reconstruction_cell_base_3` is the default
|
||||
cell type for the class `Advancing_front_surface_reconstruction`.
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ namespace CGAL {
|
|||
template <class B, class C> class Advancing_front_surface_reconstruction;
|
||||
|
||||
/*!
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
||||
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
|
||||
|
||||
The class `Advancing_front_surface_reconstruction_vertex_base_3` is the default
|
||||
vertex type for the class `Advancing_front_surface_reconstruction`.
|
||||
|
|
|
|||
|
|
@ -81,7 +81,7 @@ compatibility all functionality is also
|
|||
accessible through global functions defined within namespace `CGAL`,
|
||||
e.g., \link sqrt `CGAL::sqrt(x)` \endlink. This is realized via function templates using
|
||||
the according functor of the traits class. For an overview see
|
||||
Section \ref PkgAlgebraicFoundations in the reference manual.
|
||||
Section \ref PkgAlgebraicFoundationsRef in the reference manual.
|
||||
|
||||
\subsection Algebraic_foundationsTagsinAlgebraicStructure Tags in Algebraic Structure Traits
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
|
|
@ -17,7 +17,7 @@ class Algebraic_structure_traits {
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the
|
||||
`EuclideanRing` concept.
|
||||
|
|
@ -34,7 +34,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
|
|||
}; /* end Euclidean_ring_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `Field` concept.
|
||||
|
||||
|
|
@ -50,7 +50,7 @@ struct Field_tag : public Integral_domain_tag {
|
|||
}; /* end Field_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
|
||||
|
||||
|
|
@ -66,7 +66,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
|
|||
}; /* end Field_with_kth_root_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
|
||||
|
||||
|
|
@ -82,7 +82,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
|
|||
}; /* end Field_with_root_of_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
|
||||
|
||||
|
|
@ -98,7 +98,7 @@ struct Field_with_sqrt_tag : public Field_tag {
|
|||
}; /* end Field_with_sqrt_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `IntegralDomain` concept.
|
||||
|
||||
|
|
@ -114,7 +114,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
|
|||
}; /* end Integral_domain_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
|
||||
|
||||
|
|
@ -129,7 +129,7 @@ struct Integral_domain_without_division_tag {
|
|||
}; /* end Integral_domain_without_division_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An instance of `Coercion_traits` reflects the type coercion of the types
|
||||
<span class="textsc">A</span> and <span class="textsc">B</span>, it is symmetric in the two template arguments.
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An instance of `Fraction_traits` is a model of `FractionTraits`,
|
||||
where `T` is the associated type.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `abs()` returns the absolute value of a number.
|
||||
|
||||
|
|
@ -19,7 +19,7 @@ template <class NT> NT abs(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `compare()` compares the first argument with respect to
|
||||
the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
|
||||
|
|
@ -43,7 +43,7 @@ result_type compare(const NT &x, const NT &y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `div()` computes the integral quotient of division
|
||||
with remainder.
|
||||
|
|
@ -74,7 +74,7 @@ div(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
computes the quotient \f$ q\f$ and remainder \f$ r\f$, such that \f$ x = q*y + r\f$
|
||||
and \f$ r\f$ minimal with respect to the Euclidean Norm of the
|
||||
|
|
@ -109,7 +109,7 @@ div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `gcd()` computes the greatest common divisor of two values.
|
||||
|
||||
|
|
@ -136,7 +136,7 @@ gcd(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `integral_division()` (a.k.a.\ exact division or division without remainder)
|
||||
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
|
||||
|
|
@ -167,7 +167,7 @@ integral_division(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `inverse()` returns the inverse element with respect to multiplication.
|
||||
|
||||
|
|
@ -187,7 +187,7 @@ template <class NT> NT inverse(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `is_negative()` determines if a value is negative or not.
|
||||
The function is defined if the argument type
|
||||
|
|
@ -206,7 +206,7 @@ result_type is_negative(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `is_one()` determines if a value is equal to 1 or not.
|
||||
|
||||
|
|
@ -226,7 +226,7 @@ template <class NT> result_type is_one(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `is_positive()` determines if a value is positive or not.
|
||||
The function is defined if the argument type
|
||||
|
|
@ -245,7 +245,7 @@ result_type is_positive(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
|
||||
\f$ y\f$ such
|
||||
|
|
@ -264,7 +264,7 @@ The `result_type` is convertible to `bool`.
|
|||
template <class NT> result_type is_square(const NT& x);
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
|
||||
\f$ y\f$ such
|
||||
|
|
@ -287,7 +287,7 @@ template <class NT> result_type is_square(const NT& x, NT& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `is_zero()` determines if a value is equal to 0 or not.
|
||||
|
||||
|
|
@ -309,7 +309,7 @@ template <class NT> result_type is_zero(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `kth_root()` returns the k-th root of a value.
|
||||
|
||||
|
|
@ -327,7 +327,7 @@ template <class NT> NT kth_root(int k, const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `mod()` computes the remainder of division with remainder.
|
||||
|
||||
|
|
@ -357,7 +357,7 @@ mod(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
returns the k-th real root of the univariate polynomial, which is
|
||||
defined by the iterator range, where begin refers to the constant
|
||||
|
|
@ -383,7 +383,7 @@ root_of(int k, InputIterator begin, InputIterator end);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `sign()` returns the sign of its argument.
|
||||
|
||||
|
|
@ -403,7 +403,7 @@ template <class NT> result_type sign(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `simplify()` may simplify a given object.
|
||||
|
||||
|
|
@ -421,7 +421,7 @@ template <class NT> void simplify(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `sqrt()` returns the square root of a value.
|
||||
|
||||
|
|
@ -439,7 +439,7 @@ template <class NT> NT sqrt(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `square()` returns the square of a number.
|
||||
|
||||
|
|
@ -457,7 +457,7 @@ template <class NT> NT square(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `to_double()` returns a double approximation of a number.
|
||||
Note that in general, the value returned is not guaranteed to be the same
|
||||
|
|
@ -482,7 +482,7 @@ template <class NT> double to_double(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The template function `to_interval()` computes for a given real embeddable
|
||||
number \f$ x\f$ a double interval containing \f$ x\f$.
|
||||
|
|
@ -502,7 +502,7 @@ std::pair<double,double> to_interval(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
The function `unit_part()` computes the unit part of a given ring
|
||||
element.
|
||||
|
|
|
|||
|
|
@ -1,18 +1,18 @@
|
|||
/// \defgroup PkgAlgebraicFoundations Algebraic Foundations Reference
|
||||
/// \defgroup PkgAlgebraicFoundationsRef Algebraic Foundations Reference
|
||||
|
||||
/// \defgroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts Concepts
|
||||
/// \ingroup PkgAlgebraicFoundations
|
||||
/// \ingroup PkgAlgebraicFoundationsRef
|
||||
|
||||
/*!
|
||||
\addtogroup PkgAlgebraicFoundations
|
||||
\addtogroup PkgAlgebraicFoundationsRef
|
||||
\todo check generated documentation
|
||||
|
||||
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundationsSummary}
|
||||
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundations}
|
||||
\cgalPkgPicture{Algebraic_foundations2.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthor{Michael Hemmer}
|
||||
\cgalPkgDesc{This package defines what algebra means for \cgal, in terms of concepts, classes and functions. The main features are: (i) explicit concepts for interoperability of types (ii) separation between algebraic types (not necessarily embeddable into the reals), and number types (embeddable into the reals).}
|
||||
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundations}
|
||||
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundationsRef}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{3.3}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldModels
|
||||
\ingroup PkgAlgebraicKernelDModels
|
||||
|
||||
The class represents an algebraic real root by a square free polynomial and an
|
||||
isolating interval that uniquely defines the root.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldModels
|
||||
\ingroup PkgAlgebraicKernelDModels
|
||||
|
||||
This class gathers necessary tools for solving and handling bivariate
|
||||
polynomial systems of general degree \f$ d\f$.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldModels
|
||||
\ingroup PkgAlgebraicKernelDModels
|
||||
|
||||
\anchor Algebraic_kernel_rs_gmpq_d_1
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldModels
|
||||
\ingroup PkgAlgebraicKernelDModels
|
||||
|
||||
\anchor Algebraic_kernel_rs_gmpz_d_1
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_1::ApproximateAbsolute_1` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_1::ApproximateRelative_1` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes a number of type
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Compares `AlgebraicKernel_d_1::Algebraic_real_1` values.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes a square free univariate polynomial \f$ p\f$, such that the given
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Constructs `AlgebraicKernel_d_1::Algebraic_real_1`.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime,
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes whether the given univariate polynomial is square free.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes whether an `AlgebraicKernel_d_1::Polynomial_1`
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1`
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes for a given pair of univariate polynomials \f$ p_1\f$, \f$ p_2\f$ their
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Returns a square free part of a univariate polynomial.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes the number of real solutions of the given univariate polynomial.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes the sign of a univariate polynomial
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes the real roots of a univariate polynomial.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
Computes a square free factorization of an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsUni
|
||||
\ingroup PkgAlgebraicKernelDConceptsUni
|
||||
\cgalConcept
|
||||
|
||||
A model of the `AlgebraicKernel_d_1` concept is meant to provide the
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_2::ApproximateAbsoluteX_2` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_2::ApproximateRelativeX_2` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
A model of `AlgebraicKernel_d_2::ApproximateRelativeY_2` is an `AdaptableBinaryFunction` that computes an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes a number of type
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes a number of type
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Compares `AlgebraicKernel_d_2::Algebraic_real_2`s lexicographically.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Compares the first coordinates of `AlgebraicKernel_d_2::Algebraic_real_2`s.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Compares the second coordinated of `AlgebraicKernel_d_2::Algebraic_real_2`s.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes a univariate square free polynomial \f$ p\f$, such that the first coordinate of
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes a univariate square free polynomial \f$ p\f$, such that the second coordinate of
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes the first coordinate of an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes the second coordinate of an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Constructs an `AlgebraicKernel_d_2::Algebraic_real_2`.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes whether a given pair of bivariate polynomials is coprime.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes whether the given bivariate polynomial is square free.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes whether an `AlgebraicKernel_d_2::Polynomial_2`
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes an isolating interval for the first coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes an isolating interval for the second coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes an isolating box for a given `AlgebraicKernel_d_2::Algebraic_real_2`.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes for a given pair of bivariate polynomials \f$ p_1\f$, \f$ p_2\f$ their
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Returns a square free part of a bivariate polynomial.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes the number of real solutions of the given bivariate polynomial system.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes the sign of a bivariate polynomial
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes the real zero-dimensional solutions of a bivariate polynomial system.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
Computes a square free factorization of an
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicKerneldConceptsBi
|
||||
\ingroup PkgAlgebraicKernelDConceptsBi
|
||||
\cgalConcept
|
||||
|
||||
A model of the `AlgebraicKernel_d_2` concept gathers necessary tools
|
||||
|
|
|
|||
|
|
@ -1,28 +1,28 @@
|
|||
/// \defgroup PkgAlgebraicKerneld Algebraic Kernel Reference
|
||||
/// \defgroup PkgAlgebraicKernelDRef Algebraic Kernel Reference
|
||||
|
||||
/// \defgroup PkgAlgebraicKerneldConcepts Concepts
|
||||
/// \ingroup PkgAlgebraicKerneld
|
||||
/// \defgroup PkgAlgebraicKernelDConcepts Concepts
|
||||
/// \ingroup PkgAlgebraicKernelDRef
|
||||
|
||||
/// \defgroup PkgAlgebraicKerneldConceptsUni Univariate Algebraic Kernel
|
||||
/// \ingroup PkgAlgebraicKerneldConcepts
|
||||
/// \defgroup PkgAlgebraicKernelDConceptsUni Univariate Algebraic Kernel
|
||||
/// \ingroup PkgAlgebraicKernelDConcepts
|
||||
|
||||
/// \defgroup PkgAlgebraicKerneldConceptsBi Bivariate Algebraic Kernel
|
||||
/// \ingroup PkgAlgebraicKerneldConcepts
|
||||
/// \defgroup PkgAlgebraicKernelDConceptsBi Bivariate Algebraic Kernel
|
||||
/// \ingroup PkgAlgebraicKernelDConcepts
|
||||
|
||||
|
||||
/// \defgroup PkgAlgebraicKerneldModels Models
|
||||
/// \ingroup PkgAlgebraicKerneld
|
||||
/// \defgroup PkgAlgebraicKernelDModels Models
|
||||
/// \ingroup PkgAlgebraicKernelDRef
|
||||
|
||||
|
||||
/*!
|
||||
\addtogroup PkgAlgebraicKerneld
|
||||
\addtogroup PkgAlgebraicKernelDRef
|
||||
\todo check generated documentation
|
||||
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKerneldSummary}
|
||||
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKernelD}
|
||||
\cgalPkgPicture{Algebraic_kernel_d.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain Lazard, Luis Peñaranda, and Monique Teillaud}
|
||||
\cgalPkgDesc{Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted to provide black-box implementations of state-of-the-art algorithms to determine, compare and approximate real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an *Algebraic %Kernel*. So far the package only provides models for the univariate kernel. Nevertheless, it already defines concepts for the bivariate kernel, since this settles the interface for upcoming implementations.}
|
||||
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKerneld}
|
||||
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKernelDRef}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{3.6}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2
|
||||
\ingroup PkgAlphaShapes2Ref
|
||||
|
||||
The class `Alpha_shape_2` represents the family of
|
||||
\f$ \alpha\f$-shapes of points in a plane for <I>all</I> positive
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2
|
||||
\ingroup PkgAlphaShapes2Ref
|
||||
|
||||
The class `Alpha_shape_face_base_2` is the default model for the concept `AlphaShapeFace_2`.
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2
|
||||
\ingroup PkgAlphaShapes2Ref
|
||||
|
||||
The class `Alpha_shape_vertex_base_2` is the default model for the concept
|
||||
`AlphaShapeVertex_2`.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2
|
||||
\ingroup PkgAlphaShapes2Ref
|
||||
|
||||
\deprecated The class is deprecated since \cgal 4.10, as the weighted point and the function
|
||||
objects for weighted points are part of the concept `Kernel`. The class is kept for backward
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2Concepts
|
||||
\ingroup PkgAlphaShapes2Concepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AlphaShapeFace_2` describes the requirements for the base face of an alpha shape.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2Concepts
|
||||
\ingroup PkgAlphaShapes2Concepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AlphaShapeTraits_2` describes the requirements for the geometric traits
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2Concepts
|
||||
\ingroup PkgAlphaShapes2Concepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `AlphaShapeVertex_2` describes the requirements for the base vertex of an alpha shape.
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgAlphaShape2Concepts
|
||||
\ingroup PkgAlphaShapes2Concepts
|
||||
\cgalConcept
|
||||
|
||||
The concept `WeightedAlphaShapeTraits_2` describes the requirements
|
||||
|
|
|
|||
|
|
@ -1,20 +1,20 @@
|
|||
/// \defgroup PkgAlphaShape2 2D Alpha Shapes Reference
|
||||
/// \defgroup PkgAlphaShape2Concepts Concepts
|
||||
/// \ingroup PkgAlphaShape2
|
||||
/// \defgroup PkgAlphaShapes2Ref 2D Alpha Shapes Reference
|
||||
/// \defgroup PkgAlphaShapes2Concepts Concepts
|
||||
/// \ingroup PkgAlphaShapes2Ref
|
||||
|
||||
/*!
|
||||
\addtogroup PkgAlphaShape2
|
||||
\addtogroup PkgAlphaShapes2Ref
|
||||
|
||||
\cgalPkgDescriptionBegin{2D Alpha Shapes,PkgAlphaShape2Summary}
|
||||
\cgalPkgDescriptionBegin{2D Alpha Shapes,PkgAlphaShapes2}
|
||||
\cgalPkgPicture{alpha-detail.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Tran Kai Frank Da}
|
||||
\cgalPkgDesc{This package offers a data structure encoding the whole family of alpha-complexes related to a given 2D Delaunay or regular triangulation. In particular, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex).}
|
||||
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShape2}
|
||||
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShapes2Ref}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{2.1}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation2Summary}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation2}
|
||||
\cgalPkgBib{cgal:d-as2}
|
||||
\cgalPkgLicense{\ref licensesGPL "GPL"}
|
||||
\cgalPkgDemo{2D Alpha Shapes,alpha_shapes_2.zip}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Alpha_shape_3` represents the family of
|
||||
alpha shapes of points in the 3D space for <I>all</I> real
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Alpha_shape_cell_base_3` is the default model for the concept
|
||||
`AlphaShapeCell_3`.
|
||||
|
|
@ -37,7 +37,7 @@ public:
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Alpha_status` is a small data structure to store
|
||||
the critical alpha values of faces of an alpha shape.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Alpha_shape_vertex_base_3` is the default model for the concept
|
||||
`AlphaShapeVertex_3`.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Fixed_alpha_shape_3` represents one (fixed)
|
||||
alpha shape of points in the 3D space for a real
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Fixed_alpha_shape_cell_base_3` is the default model for the concept
|
||||
`FixedAlphaShapeCell_3`.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlphaShapes3
|
||||
\ingroup PkgAlphaShapes3Ref
|
||||
|
||||
The class `Fixed_alpha_shape_vertex_base_3` is the default model for the concept
|
||||
`FixedAlphaShapeVertex_3`.
|
||||
|
|
|
|||
|
|
@ -1,18 +1,18 @@
|
|||
/// \defgroup PkgAlphaShapes3 3D Alpha Shapes Reference
|
||||
/// \defgroup PkgAlphaShapes3Ref 3D Alpha Shapes Reference
|
||||
/// \defgroup PkgAlphaShapes3Concepts Concepts
|
||||
/// \ingroup PkgAlphaShapes3
|
||||
/// \ingroup PkgAlphaShapes3Ref
|
||||
/*!
|
||||
\addtogroup PkgAlphaShapes3
|
||||
\cgalPkgDescriptionBegin{3D Alpha Shapes,PkgAlphaShapes3Summary}
|
||||
\addtogroup PkgAlphaShapes3Ref
|
||||
\cgalPkgDescriptionBegin{3D Alpha Shapes,PkgAlphaShapes3}
|
||||
\cgalPkgPicture{alpha_shapes_3_small.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Tran Kai Frank Da, Sébastien Loriot, and Mariette Yvinec}
|
||||
\cgalPkgDesc{This package offers a data structure encoding either one alpha-complex or the whole family of alpha-complexes related to a given 3D Delaunay or regular triangulation. In the latter case, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex). }
|
||||
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3}
|
||||
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3Ref}
|
||||
\cgalPkgSummaryEnd
|
||||
\cgalPkgShortInfoBegin
|
||||
\cgalPkgSince{2.3}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation3Summary}
|
||||
\cgalPkgDependsOn{\ref PkgTriangulation3}
|
||||
\cgalPkgBib{cgal:dy-as3}
|
||||
\cgalPkgLicense{\ref licensesGPL "GPL"}
|
||||
\cgalPkgDemo{3D Alpha Shapes,alpha_shape_3.zip}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_graph_2` represents the
|
||||
Apollonius graph. It supports insertions and deletions of sites.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_graph_filtered_traits_2` provides a model for the
|
||||
`ApolloniusGraphTraits_2` concept.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
We provide an alternative to the class
|
||||
`Apollonius_graph_2<Gt,Agds>` for the dynamic
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_graph_hierarchy_vertex_base_2` provides a model for the
|
||||
`ApolloniusGraphHierarchyVertexBase_2` concept, which is the
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_graph_traits_2` provides a model for the
|
||||
`ApolloniusGraphTraits_2` concept.
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_graph_vertex_base_2` provides a model for the
|
||||
`ApolloniusGraphVertexBase_2` concept which is the vertex base
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgApolloniusGraph2
|
||||
\ingroup PkgApolloniusGraph2Ref
|
||||
|
||||
The class `Apollonius_site_2` is a model for the concept
|
||||
`ApolloniusSite_2`. It is parametrized by a template parameter
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue