Merge pull request #3311 from sloriot/Doc-Pkg_link_name

Update the name of package names reference links
This commit is contained in:
Laurent Rineau 2018-10-29 10:27:53 +01:00
commit 821f9c015e
829 changed files with 1994 additions and 1994 deletions

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBGeomTraits` defines the requirements for the first template parameter of the class `CGAL::AABB_traits<AABBGeomTraits, AABBPrimitive>`. It provides predicates and constructors to detect and compute intersections between query objects and the primitives stored in the AABB tree. In addition, it contains predicates and constructors to compute distances between a point query and the primitives stored in the AABB tree.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBPrimitive` describes the requirements for the primitives stored in the AABB tree data structure. The concept encapsulates a type for the input datum (a geometric object) and an identifier (id) type through which those primitives are referred to. The concept `AABBPrimitive` also refines the concepts DefaultConstructible and Assignable.

View File

@ -1,5 +1,5 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBPrimitiveWithSharedData` describes the requirements for the primitives

View File

@ -1,5 +1,5 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBRayIntersectionGeomTraits` is a refinement of the

View File

@ -1,5 +1,5 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBRayIntersectionTraits` is a refinement of the concept

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAABB_treeConcepts
\ingroup PkgAABBTreeConcepts
\cgalConcept
The concept `AABBTraits` provides the geometric primitive types and methods for the class `CGAL::AABB_tree<AABBTraits>`.

View File

@ -1,16 +1,16 @@
/// \defgroup PkgAABB_tree AABB Tree Reference
/// \defgroup PkgAABBTreeRef AABB Tree Reference
/// \defgroup PkgAABB_treeConcepts Concepts
/// \ingroup PkgAABB_tree
/// \defgroup PkgAABBTreeConcepts Concepts
/// \ingroup PkgAABBTreeRef
/*!
\addtogroup PkgAABB_tree
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABB_treeSummary}
\addtogroup PkgAABBTreeRef
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABBTree}
\cgalPkgPicture{aabb-teaser-thumb.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Pierre Alliez, Stéphane Tayeb, Camille Wormser}
\cgalPkgDesc{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABB_tree}
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABBTreeRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.5}

View File

@ -34,7 +34,7 @@
namespace CGAL {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABBTreeRef
* Primitive type for a facet of a polyhedral surface.
* It wraps a handle to a facet of a polyhedron to a 3D triangle.
* The polyhedron from which the primitive is built should not be deleted

View File

@ -42,7 +42,7 @@ namespace CGAL {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABBTreeRef
* Primitive type for a edge of a polyhedral surface.
* It wraps an `edge_descriptor` into a 3D segment.
* The class model of `HalfedgeGraph` from which the primitive is built should not be deleted

View File

@ -40,7 +40,7 @@
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABBTreeRef
/// @{
/// \deprecated This class is deprecated since \cgal 4.3, the class
/// `AABB_halfedge_graph_segment_primitive` should be used instead.

View File

@ -35,7 +35,7 @@
#include <boost/type_traits/is_same.hpp>
namespace CGAL {
/// \ingroup PkgAABB_tree
/// \ingroup PkgAABBTreeRef
/// \deprecated This class is deprecated since \cgal 4.3, the class
/// `AABB_face_graph_triangle_primitive` should be used instead.
///

View File

@ -57,7 +57,7 @@ public:
#ifdef DOXYGEN_RUNNING
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABBTreeRef
* Generic primitive type.
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.

View File

@ -56,7 +56,7 @@ namespace internal {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABBTreeRef
* Primitive type that uses as identifier an iterator with a 3D segment as `value_type`.
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.

View File

@ -173,7 +173,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
} } //end of namespace internal::AABB_tree
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABBTreeRef
/// @{
/// This traits class handles any type of 3D geometric

View File

@ -44,7 +44,7 @@
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABBTreeRef
/// @{
/**

View File

@ -56,7 +56,7 @@ namespace internal {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABBTreeRef
* Primitive type that uses as identifier an iterator with a 3D triangle as `value_type`.
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.

View File

@ -31,7 +31,7 @@
#include <boost/type_traits/is_same.hpp>
namespace CGAL {
// \ingroup PkgAABB_tree
// \ingroup PkgAABBTreeRef
// Primitive type that wraps a facet handle of a CGAL::Triangulation_3,
// which is used as id, and allows the construction of the datum on
// the fly. Since only the facet handle is stored in this primitive,

View File

@ -1,9 +1,9 @@
/// \defgroup PkgAdvancingFrontSurfaceReconstruction Advancing Front Surface Reconstruction Reference
/// \defgroup PkgAdvancingFrontSurfaceReconstructionRef Advancing Front Surface Reconstruction Reference
/*!
\addtogroup PkgAdvancingFrontSurfaceReconstruction
\addtogroup PkgAdvancingFrontSurfaceReconstructionRef
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstructionSummary}
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
\cgalPkgPicture{afsr-detail.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da, David Cohen-Steiner}
@ -12,11 +12,11 @@ unorganized point set. Starting from a seed facet, a piecewise linear
surface is grown by adding Delaunay triangles one by one. The most
plausible triangles are added first, in a way that avoids the appearance
of topological singularities. }
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstructionRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{4.7}
\cgalPkgDependsOn{\ref PkgTriangulation3Summary}
\cgalPkgDependsOn{\ref PkgTriangulation3}
\cgalPkgBib{cgal:dc-afsr}
\cgalPkgLicense{\ref licensesGPL "GPL"}
\cgalPkgShortInfoEnd

View File

@ -175,7 +175,7 @@ namespace CGAL {
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction` enables advanced users to provide the unstructured
point cloud in a 3D Delaunay triangulation. The reconstruction algorithm then marks vertices and faces
@ -2480,7 +2480,7 @@ namespace CGAL {
}
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
For a sequence of points computes a sequence of index triples
describing the faces of the reconstructed surface.
@ -2532,7 +2532,7 @@ namespace CGAL {
}
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
For a sequence of points computes a sequence of index triples
describing the faces of the reconstructed surface.

View File

@ -28,7 +28,7 @@
namespace CGAL {
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction_cell_base_3` is the default
cell type for the class `Advancing_front_surface_reconstruction`.

View File

@ -38,7 +38,7 @@ namespace CGAL {
template <class B, class C> class Advancing_front_surface_reconstruction;
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction_vertex_base_3` is the default
vertex type for the class `Advancing_front_surface_reconstruction`.

View File

@ -81,7 +81,7 @@ compatibility all functionality is also
accessible through global functions defined within namespace `CGAL`,
e.g., \link sqrt `CGAL::sqrt(x)` \endlink. This is realized via function templates using
the according functor of the traits class. For an overview see
Section \ref PkgAlgebraicFoundations in the reference manual.
Section \ref PkgAlgebraicFoundationsRef in the reference manual.
\subsection Algebraic_foundationsTagsinAlgebraicStructure Tags in Algebraic Structure Traits

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
@ -17,7 +17,7 @@ class Algebraic_structure_traits {
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the
`EuclideanRing` concept.
@ -34,7 +34,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
}; /* end Euclidean_ring_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `Field` concept.
@ -50,7 +50,7 @@ struct Field_tag : public Integral_domain_tag {
}; /* end Field_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
@ -66,7 +66,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
}; /* end Field_with_kth_root_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
@ -82,7 +82,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
}; /* end Field_with_root_of_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
@ -98,7 +98,7 @@ struct Field_with_sqrt_tag : public Field_tag {
}; /* end Field_with_sqrt_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `IntegralDomain` concept.
@ -114,7 +114,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
}; /* end Integral_domain_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
@ -129,7 +129,7 @@ struct Integral_domain_without_division_tag {
}; /* end Integral_domain_without_division_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Coercion_traits` reflects the type coercion of the types
<span class="textsc">A</span> and <span class="textsc">B</span>, it is symmetric in the two template arguments.

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Fraction_traits` is a model of `FractionTraits`,
where `T` is the associated type.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `abs()` returns the absolute value of a number.
@ -19,7 +19,7 @@ template <class NT> NT abs(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `compare()` compares the first argument with respect to
the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
@ -43,7 +43,7 @@ result_type compare(const NT &x, const NT &y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `div()` computes the integral quotient of division
with remainder.
@ -74,7 +74,7 @@ div(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
computes the quotient \f$ q\f$ and remainder \f$ r\f$, such that \f$ x = q*y + r\f$
and \f$ r\f$ minimal with respect to the Euclidean Norm of the
@ -109,7 +109,7 @@ div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `gcd()` computes the greatest common divisor of two values.
@ -136,7 +136,7 @@ gcd(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `integral_division()` (a.k.a.\ exact division or division without remainder)
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
@ -167,7 +167,7 @@ integral_division(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `inverse()` returns the inverse element with respect to multiplication.
@ -187,7 +187,7 @@ template <class NT> NT inverse(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `is_negative()` determines if a value is negative or not.
The function is defined if the argument type
@ -206,7 +206,7 @@ result_type is_negative(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `is_one()` determines if a value is equal to 1 or not.
@ -226,7 +226,7 @@ template <class NT> result_type is_one(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `is_positive()` determines if a value is positive or not.
The function is defined if the argument type
@ -245,7 +245,7 @@ result_type is_positive(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -264,7 +264,7 @@ The `result_type` is convertible to `bool`.
template <class NT> result_type is_square(const NT& x);
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -287,7 +287,7 @@ template <class NT> result_type is_square(const NT& x, NT& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `is_zero()` determines if a value is equal to 0 or not.
@ -309,7 +309,7 @@ template <class NT> result_type is_zero(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `kth_root()` returns the k-th root of a value.
@ -327,7 +327,7 @@ template <class NT> NT kth_root(int k, const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `mod()` computes the remainder of division with remainder.
@ -357,7 +357,7 @@ mod(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
returns the k-th real root of the univariate polynomial, which is
defined by the iterator range, where begin refers to the constant
@ -383,7 +383,7 @@ root_of(int k, InputIterator begin, InputIterator end);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `sign()` returns the sign of its argument.
@ -403,7 +403,7 @@ template <class NT> result_type sign(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `simplify()` may simplify a given object.
@ -421,7 +421,7 @@ template <class NT> void simplify(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `sqrt()` returns the square root of a value.
@ -439,7 +439,7 @@ template <class NT> NT sqrt(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `square()` returns the square of a number.
@ -457,7 +457,7 @@ template <class NT> NT square(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `to_double()` returns a double approximation of a number.
Note that in general, the value returned is not guaranteed to be the same
@ -482,7 +482,7 @@ template <class NT> double to_double(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `to_interval()` computes for a given real embeddable
number \f$ x\f$ a double interval containing \f$ x\f$.
@ -502,7 +502,7 @@ std::pair<double,double> to_interval(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `unit_part()` computes the unit part of a given ring
element.

View File

@ -1,18 +1,18 @@
/// \defgroup PkgAlgebraicFoundations Algebraic Foundations Reference
/// \defgroup PkgAlgebraicFoundationsRef Algebraic Foundations Reference
/// \defgroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts Concepts
/// \ingroup PkgAlgebraicFoundations
/// \ingroup PkgAlgebraicFoundationsRef
/*!
\addtogroup PkgAlgebraicFoundations
\addtogroup PkgAlgebraicFoundationsRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundationsSummary}
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundations}
\cgalPkgPicture{Algebraic_foundations2.png}
\cgalPkgSummaryBegin
\cgalPkgAuthor{Michael Hemmer}
\cgalPkgDesc{This package defines what algebra means for \cgal, in terms of concepts, classes and functions. The main features are: (i) explicit concepts for interoperability of types (ii) separation between algebraic types (not necessarily embeddable into the reals), and number types (embeddable into the reals).}
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundations}
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundationsRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.3}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicKerneldModels
\ingroup PkgAlgebraicKernelDModels
The class represents an algebraic real root by a square free polynomial and an
isolating interval that uniquely defines the root.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicKerneldModels
\ingroup PkgAlgebraicKernelDModels
This class gathers necessary tools for solving and handling bivariate
polynomial systems of general degree \f$ d\f$.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicKerneldModels
\ingroup PkgAlgebraicKernelDModels
\anchor Algebraic_kernel_rs_gmpq_d_1

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicKerneldModels
\ingroup PkgAlgebraicKernelDModels
\anchor Algebraic_kernel_rs_gmpz_d_1

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
A model of `AlgebraicKernel_d_1::ApproximateAbsolute_1` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
A model of `AlgebraicKernel_d_1::ApproximateRelative_1` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes a number of type

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Compares `AlgebraicKernel_d_1::Algebraic_real_1` values.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes a square free univariate polynomial \f$ p\f$, such that the given

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Constructs `AlgebraicKernel_d_1::Algebraic_real_1`.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime,

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes whether the given univariate polynomial is square free.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes whether an `AlgebraicKernel_d_1::Polynomial_1`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes for a given pair of univariate polynomials \f$ p_1\f$, \f$ p_2\f$ their

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Returns a square free part of a univariate polynomial.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes the number of real solutions of the given univariate polynomial.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes the sign of a univariate polynomial

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes the real roots of a univariate polynomial.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
Computes a square free factorization of an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsUni
\ingroup PkgAlgebraicKernelDConceptsUni
\cgalConcept
A model of the `AlgebraicKernel_d_1` concept is meant to provide the

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
A model of `AlgebraicKernel_d_2::ApproximateAbsoluteX_2` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
A model of `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
A model of `AlgebraicKernel_d_2::ApproximateRelativeX_2` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
A model of `AlgebraicKernel_d_2::ApproximateRelativeY_2` is an `AdaptableBinaryFunction` that computes an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes a number of type

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes a number of type

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Compares `AlgebraicKernel_d_2::Algebraic_real_2`s lexicographically.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Compares the first coordinates of `AlgebraicKernel_d_2::Algebraic_real_2`s.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Compares the second coordinated of `AlgebraicKernel_d_2::Algebraic_real_2`s.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes a univariate square free polynomial \f$ p\f$, such that the first coordinate of

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes a univariate square free polynomial \f$ p\f$, such that the second coordinate of

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes the first coordinate of an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes the second coordinate of an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Constructs an `AlgebraicKernel_d_2::Algebraic_real_2`.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes whether a given pair of bivariate polynomials is coprime.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes whether the given bivariate polynomial is square free.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes whether an `AlgebraicKernel_d_2::Polynomial_2`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes an isolating interval for the first coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes an isolating interval for the second coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes an isolating box for a given `AlgebraicKernel_d_2::Algebraic_real_2`.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes for a given pair of bivariate polynomials \f$ p_1\f$, \f$ p_2\f$ their

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Returns a square free part of a bivariate polynomial.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes the number of real solutions of the given bivariate polynomial system.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes the sign of a bivariate polynomial

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes the real zero-dimensional solutions of a bivariate polynomial system.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
Computes a square free factorization of an

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicKerneldConceptsBi
\ingroup PkgAlgebraicKernelDConceptsBi
\cgalConcept
A model of the `AlgebraicKernel_d_2` concept gathers necessary tools

View File

@ -1,28 +1,28 @@
/// \defgroup PkgAlgebraicKerneld Algebraic Kernel Reference
/// \defgroup PkgAlgebraicKernelDRef Algebraic Kernel Reference
/// \defgroup PkgAlgebraicKerneldConcepts Concepts
/// \ingroup PkgAlgebraicKerneld
/// \defgroup PkgAlgebraicKernelDConcepts Concepts
/// \ingroup PkgAlgebraicKernelDRef
/// \defgroup PkgAlgebraicKerneldConceptsUni Univariate Algebraic Kernel
/// \ingroup PkgAlgebraicKerneldConcepts
/// \defgroup PkgAlgebraicKernelDConceptsUni Univariate Algebraic Kernel
/// \ingroup PkgAlgebraicKernelDConcepts
/// \defgroup PkgAlgebraicKerneldConceptsBi Bivariate Algebraic Kernel
/// \ingroup PkgAlgebraicKerneldConcepts
/// \defgroup PkgAlgebraicKernelDConceptsBi Bivariate Algebraic Kernel
/// \ingroup PkgAlgebraicKernelDConcepts
/// \defgroup PkgAlgebraicKerneldModels Models
/// \ingroup PkgAlgebraicKerneld
/// \defgroup PkgAlgebraicKernelDModels Models
/// \ingroup PkgAlgebraicKernelDRef
/*!
\addtogroup PkgAlgebraicKerneld
\addtogroup PkgAlgebraicKernelDRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKerneldSummary}
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKernelD}
\cgalPkgPicture{Algebraic_kernel_d.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain Lazard, Luis Peñaranda, and Monique Teillaud}
\cgalPkgDesc{Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted to provide black-box implementations of state-of-the-art algorithms to determine, compare and approximate real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an *Algebraic %Kernel*. So far the package only provides models for the univariate kernel. Nevertheless, it already defines concepts for the bivariate kernel, since this settles the interface for upcoming implementations.}
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKerneld}
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKernelDRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.6}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShapes2Ref
The class `Alpha_shape_2` represents the family of
\f$ \alpha\f$-shapes of points in a plane for <I>all</I> positive

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShapes2Ref
The class `Alpha_shape_face_base_2` is the default model for the concept `AlphaShapeFace_2`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShapes2Ref
The class `Alpha_shape_vertex_base_2` is the default model for the concept
`AlphaShapeVertex_2`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShapes2Ref
\deprecated The class is deprecated since \cgal 4.10, as the weighted point and the function
objects for weighted points are part of the concept `Kernel`. The class is kept for backward

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlphaShape2Concepts
\ingroup PkgAlphaShapes2Concepts
\cgalConcept
The concept `AlphaShapeFace_2` describes the requirements for the base face of an alpha shape.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlphaShape2Concepts
\ingroup PkgAlphaShapes2Concepts
\cgalConcept
The concept `AlphaShapeTraits_2` describes the requirements for the geometric traits

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlphaShape2Concepts
\ingroup PkgAlphaShapes2Concepts
\cgalConcept
The concept `AlphaShapeVertex_2` describes the requirements for the base vertex of an alpha shape.

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlphaShape2Concepts
\ingroup PkgAlphaShapes2Concepts
\cgalConcept
The concept `WeightedAlphaShapeTraits_2` describes the requirements

View File

@ -1,20 +1,20 @@
/// \defgroup PkgAlphaShape2 2D Alpha Shapes Reference
/// \defgroup PkgAlphaShape2Concepts Concepts
/// \ingroup PkgAlphaShape2
/// \defgroup PkgAlphaShapes2Ref 2D Alpha Shapes Reference
/// \defgroup PkgAlphaShapes2Concepts Concepts
/// \ingroup PkgAlphaShapes2Ref
/*!
\addtogroup PkgAlphaShape2
\addtogroup PkgAlphaShapes2Ref
\cgalPkgDescriptionBegin{2D Alpha Shapes,PkgAlphaShape2Summary}
\cgalPkgDescriptionBegin{2D Alpha Shapes,PkgAlphaShapes2}
\cgalPkgPicture{alpha-detail.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da}
\cgalPkgDesc{This package offers a data structure encoding the whole family of alpha-complexes related to a given 2D Delaunay or regular triangulation. In particular, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex).}
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShape2}
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShapes2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{2.1}
\cgalPkgDependsOn{\ref PkgTriangulation2Summary}
\cgalPkgDependsOn{\ref PkgTriangulation2}
\cgalPkgBib{cgal:d-as2}
\cgalPkgLicense{\ref licensesGPL "GPL"}
\cgalPkgDemo{2D Alpha Shapes,alpha_shapes_2.zip}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_3` represents the family of
alpha shapes of points in the 3D space for <I>all</I> real

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_cell_base_3` is the default model for the concept
`AlphaShapeCell_3`.
@ -37,7 +37,7 @@ public:
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_status` is a small data structure to store
the critical alpha values of faces of an alpha shape.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_vertex_base_3` is the default model for the concept
`AlphaShapeVertex_3`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_3` represents one (fixed)
alpha shape of points in the 3D space for a real

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_cell_base_3` is the default model for the concept
`FixedAlphaShapeCell_3`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_vertex_base_3` is the default model for the concept
`FixedAlphaShapeVertex_3`.

View File

@ -1,18 +1,18 @@
/// \defgroup PkgAlphaShapes3 3D Alpha Shapes Reference
/// \defgroup PkgAlphaShapes3Ref 3D Alpha Shapes Reference
/// \defgroup PkgAlphaShapes3Concepts Concepts
/// \ingroup PkgAlphaShapes3
/// \ingroup PkgAlphaShapes3Ref
/*!
\addtogroup PkgAlphaShapes3
\cgalPkgDescriptionBegin{3D Alpha Shapes,PkgAlphaShapes3Summary}
\addtogroup PkgAlphaShapes3Ref
\cgalPkgDescriptionBegin{3D Alpha Shapes,PkgAlphaShapes3}
\cgalPkgPicture{alpha_shapes_3_small.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da, Sébastien Loriot, and Mariette Yvinec}
\cgalPkgDesc{This package offers a data structure encoding either one alpha-complex or the whole family of alpha-complexes related to a given 3D Delaunay or regular triangulation. In the latter case, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex). }
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3}
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{2.3}
\cgalPkgDependsOn{\ref PkgTriangulation3Summary}
\cgalPkgDependsOn{\ref PkgTriangulation3}
\cgalPkgBib{cgal:dy-as3}
\cgalPkgLicense{\ref licensesGPL "GPL"}
\cgalPkgDemo{3D Alpha Shapes,alpha_shape_3.zip}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_2` represents the
Apollonius graph. It supports insertions and deletions of sites.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_filtered_traits_2` provides a model for the
`ApolloniusGraphTraits_2` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
We provide an alternative to the class
`Apollonius_graph_2<Gt,Agds>` for the dynamic

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_hierarchy_vertex_base_2` provides a model for the
`ApolloniusGraphHierarchyVertexBase_2` concept, which is the

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_traits_2` provides a model for the
`ApolloniusGraphTraits_2` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_vertex_base_2` provides a model for the
`ApolloniusGraphVertexBase_2` concept which is the vertex base

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_site_2` is a model for the concept
`ApolloniusSite_2`. It is parametrized by a template parameter

Some files were not shown because too many files have changed in this diff Show More