From 8287d55a9812c8c8316ab9f936b31e0965f89fa6 Mon Sep 17 00:00:00 2001 From: Iordan Iordanov Date: Wed, 8 Aug 2018 21:26:18 +0200 Subject: [PATCH] renamed predicate 'Is_hyperbolic' to 'Is_Delaunay_hyperbolic' --- .../CGAL/Hyperbolic_Delaunay_triangulation_2.h | 16 ++++++++-------- ...perbolic_Delaunay_triangulation_CK_traits_2.h | 12 ++++++------ .../Hyperbolic_Delaunay_triangulation_traits_2.h | 12 ++++++------ 3 files changed, 20 insertions(+), 20 deletions(-) diff --git a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h index df339578876..fa1307325be 100644 --- a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h +++ b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h @@ -86,7 +86,7 @@ public: typedef typename Geom_traits::Side_of_hyperbolic_triangle_2 Side_of_hyperbolic_triangle; - typedef typename Geom_traits::Is_hyperbolic Is_hyperbolic; + typedef typename Geom_traits::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic; Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits()) : Delaunay_triangulation_2(gt) {} @@ -389,7 +389,7 @@ private: bool operator ()(const Face_handle& f) const { - typedef typename Gt::Is_hyperbolic Is_hyperbolic; + typedef typename Gt::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic; if(_tr.has_infinite_vertex(f)) { return false; @@ -400,8 +400,8 @@ private: Point p2 = f->vertex(2)->point(); int ind = 0; - Is_hyperbolic is_hyperbolic = _tr.geom_traits().is_hyperbolic_object(); - if(is_hyperbolic(p0, p1, p2, ind) == false) { + Is_Delaunay_hyperbolic is_Delaunay_hyperbolic = _tr.geom_traits().is_Delaunay_hyperbolic_object(); + if(is_Delaunay_hyperbolic(p0, p1, p2, ind) == false) { f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?) f->set_non_hyperbolic_edge(ind); return true; @@ -674,7 +674,7 @@ public: Point p = fh->vertex(0)->point(); Point q = fh->vertex(1)->point(); Point r = fh->vertex(2)->point(); - if (Is_hyperbolic()(p, q, r)) { + if (Is_Delaunay_hyperbolic()(p, q, r)) { Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li); if (side == ON_BOUNDARY) { lt = EDGE; @@ -692,7 +692,7 @@ public: p = fh->vertex(ccw(li))->point(); q = fh->mirror_vertex(li)->point(); r = fh->vertex(cw(li))->point(); - if (Is_hyperbolic()(p, q, r)) { + if (Is_Delaunay_hyperbolic()(p, q, r)) { Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li); if (side == ON_BOUNDARY) { lt = EDGE; @@ -714,7 +714,7 @@ public: Point p = fh->vertex(0)->point(); Point q = fh->vertex(1)->point(); Point r = fh->vertex(2)->point(); - if (!Is_hyperbolic()(p, q, r)) { + if (!Is_Delaunay_hyperbolic()(p, q, r)) { lt = OUTSIDE_CONVEX_HULL; return Face_handle(); } @@ -731,7 +731,7 @@ public: // Here, the point lies in a face that is a neighbor to fh for (int i = 0; i < 3; i++) { Face_handle nfh = fh->neighbor(i); - if (Is_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) { + if (Is_Delaunay_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) { Bounded_side nside = Side_of_hyperbolic_triangle()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, li); if (nside == ON_BOUNDED_SIDE) { lt = FACE; diff --git a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_CK_traits_2.h b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_CK_traits_2.h index 21941afec14..dbf6f580c2c 100644 --- a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_CK_traits_2.h +++ b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_CK_traits_2.h @@ -378,7 +378,7 @@ public: Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const { // The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level - CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r)); + CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r)); // Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face. li = -1; @@ -461,7 +461,7 @@ public: // For details see the JoCG paper (5:56-85, 2014) - class Is_hyperbolic + class Is_Delaunay_hyperbolic { public: typedef typename R::Vector_3 Vector_3; @@ -528,11 +528,11 @@ public: return 1; } - }; // end Is_hyperbolic + }; // end Is_Delaunay_hyperbolic - Is_hyperbolic - is_hyperbolic_object() const - { return Is_hyperbolic(); } + Is_Delaunay_hyperbolic + is_Delaunay_hyperbolic_object() const + { return Is_Delaunay_hyperbolic(); } // do not document // constructs the Euclidean circle or line supporting the hyperbolic diff --git a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_traits_2.h b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_traits_2.h index 789bd357da9..5ec7dcb0fc3 100644 --- a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_traits_2.h +++ b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_traits_2.h @@ -408,7 +408,7 @@ public: { return Construct_Euclidean_bisector_2(); } // For details see the JoCG paper (5:56-85, 2014) - class Is_hyperbolic + class Is_Delaunay_hyperbolic { public: typedef typename Kernel::Vector_3 Vector_3; @@ -475,11 +475,11 @@ public: return 1; } - }; // end Is_hyperbolic + }; // end Is_Delaunay_hyperbolic - Is_hyperbolic - is_hyperbolic_object() const - { return Is_hyperbolic(); } + Is_Delaunay_hyperbolic + is_Delaunay_hyperbolic_object() const + { return Is_Delaunay_hyperbolic(); } // do not document // constructs the Euclidean circle or line supporting the hyperbolic @@ -669,7 +669,7 @@ public: Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const { // The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level - CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r)); + CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r)); // Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face. li = -1;