Fix for \mbox inside math environment introduced in a recent revision.

This commit is contained in:
Sylvain Pion 2009-01-26 22:17:37 +00:00
parent 1c91006892
commit 829bf3231d
1 changed files with 2 additions and 2 deletions

View File

@ -19,7 +19,7 @@ ellipse that contains all points of $P$. Note that $me(P)$ can be
degenerate\lcTex{\ccIndexSubitem[t]{degeneracies}{\ccFont Min_ellipse_2}},
i.e.~$me(P)=\emptyset$ if
$P=\emptyset$, $me(P)=\{p\}$ if $P=\{p\}$,
and $me(P) = \{ \mbox{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 } \}$ if $P=\{p,q\}$.
and \mbox{$me(P) = \{ (1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1 \}$} if $P=\{p,q\}$.
An inclusion-minimal subset $S$ of $P$ with $me(S)=me(P)$ is called a
\emph{support set}\lcTex{\ccIndexSubitem[t]{support set}{\ccFont Min_ellipse_2}},
@ -114,7 +114,7 @@ reconstructing $me(P)$ from a given support set\lcTex{\ccIndexSubitem[t]{support
initializes \ccVar\ to $me(\{p,q\})$,
\ccTexHtml{\\}{}
the set
$\{ \mbox{(1-\lambda)p + \lambda q \mid 0 \leq \lambda \leq 1} \}$.
\mbox{$\{ (1-\lambda) p + \lambda q \mid 0 \leq \lambda \leq 1 \}$}.
\ccPostcond \ccVar\ccc{.is_degenerate()} = \ccc{true}.}
\ccConstructor{ Min_ellipse_2( const Point& p1,