move note outside the brief

This commit is contained in:
Sébastien Loriot 2019-01-14 17:53:40 +01:00
parent 3979b415ec
commit 829c412b10
6 changed files with 12 additions and 12 deletions

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of
type `PolynomialTraits_d::Polynomial_d` with respect to outermost variable.
Let
@ -23,6 +21,8 @@ The result is written in an output range, starting with the \f$ 0\f$-th subresul
\f$ \mathrm{Sres}_0(p,q)\f$
(aka as the resultant of \f$ p\f$ and \f$ q\f$).
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of degree
\f$ n\f$ and \f$ m\f$, respectively,
as defined in the documentation of `PolynomialTraits_d::PolynomialSubresultants`.
@ -16,6 +14,8 @@ the <I>cofactors</I> of \f$ \mathrm{Sres}_i(p,q)\f$.
The result is written in three output ranges, each of length \f$ \min\{n,m\}+1\f$,
starting with the \f$ 0\f$-th subresultant and the corresponding cofactors.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the principal leading coefficients of the Sturm-Habicht sequence
of a polynomials \f$ f\f$ of type `PolynomialTraits_d::Polynomial_d`
with respect a certain variable \f$ x_i\f$.
@ -19,6 +17,8 @@ In case that `PolynomialTraits_d::Coefficient_type` is `RealEmbeddable`, the fun
on the resulting sequence to count the number of distinct real roots of
the polynomial \f$ f\f$.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the principal subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of
type `PolynomialTraits_d::Coefficient_type`
with respect to the outermost variable.
@ -19,6 +17,8 @@ principal subresultant \f$ \mathrm{sres}_0(p,q)\f$
,aka as the resultant of \f$ p\f$ and \f$ q\f$.
(Note that \f$ \mathrm{sres}_0(p,q)=\mathrm{Sres}_0(p,q)\f$ by definition)
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the Sturm-Habicht sequence
(aka the signed subresultant sequence)
of a polynomial \f$ f\f$ of type
@ -27,6 +25,8 @@ The result is written in an output range,
starting with the \f$ 0\f$-th Sturm-Habicht polynomial (which is equal to
the discriminant of \f$ f\f$ up to a multiple of the leading coefficient).
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts
\cgalConcept
<B>Note:</B> This functor is optional!
Computes the Sturm-Habicht polynomials of a polynomial \f$ f\f$ of degree \f$ n\f$,
as defined in the documentation of `PolynomialTraits_d::SturmHabichtSequence`.
Moreover, for \f$ \mathrm{Stha}_i(f)\f$, polynomials \f$ u_i\f$ and \f$ v_i\f$
@ -16,6 +14,8 @@ The result is written in three output ranges, each of length \f$ \min\{n,m\}+1\f
starting with the \f$ 0\f$-th Sturm-Habicht polynomial \f$ \mathrm{Stha_0(f)}\f$
and the corresponding cofactors.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`