move note outside the brief

This commit is contained in:
Sébastien Loriot 2019-01-14 17:53:40 +01:00
parent 3979b415ec
commit 829c412b10
6 changed files with 12 additions and 12 deletions

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of
type `PolynomialTraits_d::Polynomial_d` with respect to outermost variable. type `PolynomialTraits_d::Polynomial_d` with respect to outermost variable.
Let Let
@ -23,6 +21,8 @@ The result is written in an output range, starting with the \f$ 0\f$-th subresul
\f$ \mathrm{Sres}_0(p,q)\f$ \f$ \mathrm{Sres}_0(p,q)\f$
(aka as the resultant of \f$ p\f$ and \f$ q\f$). (aka as the resultant of \f$ p\f$ and \f$ q\f$).
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of degree Computes the polynomial subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of degree
\f$ n\f$ and \f$ m\f$, respectively, \f$ n\f$ and \f$ m\f$, respectively,
as defined in the documentation of `PolynomialTraits_d::PolynomialSubresultants`. as defined in the documentation of `PolynomialTraits_d::PolynomialSubresultants`.
@ -16,6 +14,8 @@ the <I>cofactors</I> of \f$ \mathrm{Sres}_i(p,q)\f$.
The result is written in three output ranges, each of length \f$ \min\{n,m\}+1\f$, The result is written in three output ranges, each of length \f$ \min\{n,m\}+1\f$,
starting with the \f$ 0\f$-th subresultant and the corresponding cofactors. starting with the \f$ 0\f$-th subresultant and the corresponding cofactors.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the principal leading coefficients of the Sturm-Habicht sequence Computes the principal leading coefficients of the Sturm-Habicht sequence
of a polynomials \f$ f\f$ of type `PolynomialTraits_d::Polynomial_d` of a polynomials \f$ f\f$ of type `PolynomialTraits_d::Polynomial_d`
with respect a certain variable \f$ x_i\f$. with respect a certain variable \f$ x_i\f$.
@ -19,6 +17,8 @@ In case that `PolynomialTraits_d::Coefficient_type` is `RealEmbeddable`, the fun
on the resulting sequence to count the number of distinct real roots of on the resulting sequence to count the number of distinct real roots of
the polynomial \f$ f\f$. the polynomial \f$ f\f$.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the principal subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of Computes the principal subresultant of two polynomials \f$ p\f$ and \f$ q\f$ of
type `PolynomialTraits_d::Coefficient_type` type `PolynomialTraits_d::Coefficient_type`
with respect to the outermost variable. with respect to the outermost variable.
@ -19,6 +17,8 @@ principal subresultant \f$ \mathrm{sres}_0(p,q)\f$
,aka as the resultant of \f$ p\f$ and \f$ q\f$. ,aka as the resultant of \f$ p\f$ and \f$ q\f$.
(Note that \f$ \mathrm{sres}_0(p,q)=\mathrm{Sres}_0(p,q)\f$ by definition) (Note that \f$ \mathrm{sres}_0(p,q)=\mathrm{Sres}_0(p,q)\f$ by definition)
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the Sturm-Habicht sequence Computes the Sturm-Habicht sequence
(aka the signed subresultant sequence) (aka the signed subresultant sequence)
of a polynomial \f$ f\f$ of type of a polynomial \f$ f\f$ of type
@ -27,6 +25,8 @@ The result is written in an output range,
starting with the \f$ 0\f$-th Sturm-Habicht polynomial (which is equal to starting with the \f$ 0\f$-th Sturm-Habicht polynomial (which is equal to
the discriminant of \f$ f\f$ up to a multiple of the leading coefficient). the discriminant of \f$ f\f$ up to a multiple of the leading coefficient).
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`

View File

@ -3,8 +3,6 @@
\ingroup PkgPolynomialConcepts \ingroup PkgPolynomialConcepts
\cgalConcept \cgalConcept
<B>Note:</B> This functor is optional!
Computes the Sturm-Habicht polynomials of a polynomial \f$ f\f$ of degree \f$ n\f$, Computes the Sturm-Habicht polynomials of a polynomial \f$ f\f$ of degree \f$ n\f$,
as defined in the documentation of `PolynomialTraits_d::SturmHabichtSequence`. as defined in the documentation of `PolynomialTraits_d::SturmHabichtSequence`.
Moreover, for \f$ \mathrm{Stha}_i(f)\f$, polynomials \f$ u_i\f$ and \f$ v_i\f$ Moreover, for \f$ \mathrm{Stha}_i(f)\f$, polynomials \f$ u_i\f$ and \f$ v_i\f$
@ -16,6 +14,8 @@ The result is written in three output ranges, each of length \f$ \min\{n,m\}+1\f
starting with the \f$ 0\f$-th Sturm-Habicht polynomial \f$ \mathrm{Stha_0(f)}\f$ starting with the \f$ 0\f$-th Sturm-Habicht polynomial \f$ \mathrm{Stha_0(f)}\f$
and the corresponding cofactors. and the corresponding cofactors.
\note This functor is optional.
\cgalRefines `AdaptableBinaryFunction` \cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible` \cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible` \cgalRefines `DefaultConstructible`