diff --git a/Minkowski_sum_3/doc_tex/Minkowski_sum_3/PkgDescription.tex b/Minkowski_sum_3/doc_tex/Minkowski_sum_3/PkgDescription.tex index 5d14976b0cc..7af9be54ae6 100644 --- a/Minkowski_sum_3/doc_tex/Minkowski_sum_3/PkgDescription.tex +++ b/Minkowski_sum_3/doc_tex/Minkowski_sum_3/PkgDescription.tex @@ -5,7 +5,7 @@ This package provides a function, which computes the Minkowski sum of two point sets in $\mathbb{R}^3$. These point sets may consist of isolated vertices, isolated edges, surfaces with convex facets without holes, and open and closed solids. Thus, it is possible to compute -configuration space of translational robots (even in tight passage +the configuration space of translational robots (even in tight passage scenarios) as well as several graphics operations, like for instance the glide operation, which computes the point set swept by a polyhedron that moves along a polygonal line. diff --git a/Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.tex b/Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.tex index 0cc7b48e133..9dd0524bbae 100644 --- a/Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.tex +++ b/Minkowski_sum_3/doc_tex/Minkowski_sum_3/main.tex @@ -79,18 +79,12 @@ $-P$ on $Q$, such that $-r$ is on the boundary of $Q$. Finally, move $-P$ along the complete boundary of $Q$. The union of $Q$ and the points swept by $-P$ is the Minkowski sum of $P$ and $Q$. -Implementing the Minkowski sum, the reference point needs not be -chosen. It is implicitly given as the origin of the coordinate +Implementing the Minkowski sum, the reference point does not need to +be chosen. It is implicitly given as the origin of the coordinate system. Choosing a different reference point is equivalent to translating the coordinate system. Such a translation does not change -the shape of the Minkowski sum; it only translates Minkowski sum by -the same vector. - -Note, that the described method is helpful for illustrating the -operation and for constructing a drawing of a Minkowski sum, but its -not always accurate. It only works if the reference point is part of -$P$, while the origin of the coordinate system needs not to be within -$P$. +the shape of the Minkowski sum; it only translates the Minkowski sum +by the same vector. This package provides a function \ccc{minkowski_sum_3} that computes the Minkowski sum of two Nef polyhedra. We do not support arbitrary @@ -193,8 +187,7 @@ polyhedron and therefore selected, but in case of the open unit cube $[0,1)^3$ they are unselected. Each item has its own selection mark, which allows the correct representation of Nef polyhedra, which are closed under Boolean and topological operations. Details can be found -in the chapter on 3D Boolean operations on Nef polyhedra for more -details~\ref{chapterNef3}. +in the chapter on 3D Boolean operations on Nef polyhedra~\ref{chapterNef3}. The use of \ccc{Nef_polyhedron_3} allows many scenarios beyond the Minkowski sum of two solids. First, they can model the input and the @@ -242,7 +235,7 @@ selection mark without spoiling the correctness of the Minkowski sum. The function \ccc{minkowski_sum_3} should be used with the \ccc{Extact_predicates_exact_constructions_kernel}, which often is -the most efficient choice and allows the floating-point input. Consult +the most efficient choice and allows floating-point input. Consult Section~\label{sectionNef_3IO} for more details. The following example code illustrates the usage of the function diff --git a/Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/minkowski_sum_3.tex b/Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/minkowski_sum_3.tex index 1ed1c2a353b..d4a4a3ffb21 100644 --- a/Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/minkowski_sum_3.tex +++ b/Minkowski_sum_3/doc_tex/Minkowski_sum_3_ref/minkowski_sum_3.tex @@ -23,7 +23,7 @@ $m$ are the complexities of the two input polyhedra (the complexity of a \ccc{Nef_polyhedron_3} is the sum of its \ccc{Vertices}, \ccc{Halfedges} and \ccc{SHalfedges}). -\ccGlobalFunction{Nef_polyhedron_3 minowski_sum_3(Nef_polyhedron_3 N0, Nef_polyhedron_3 N1);} +\ccGlobalFunction{Nef_polyhedron_3 minkowski_sum_3(Nef_polyhedron_3 N0, Nef_polyhedron_3 N1);} \ccPrecond