mirror of https://github.com/CGAL/cgal
*** empty log message ***
This commit is contained in:
parent
c9448250da
commit
86f1dd500a
|
|
@ -178,6 +178,7 @@ example illustrates distance browsing and the last example illustrates
|
|||
nearest and furthest neighbour searching using a user defined point
|
||||
and distance class.
|
||||
|
||||
\newpage
|
||||
\subsection{Example of Nearest Neighbor Searching}
|
||||
|
||||
The first example illustrates nearest neighbor searching. The random
|
||||
|
|
@ -189,8 +190,9 @@ computes squared distances instead of the Euclidean distance itself.
|
|||
Finally, if the Euclidean distance is reported the square root is
|
||||
taken.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Nearest_neighbor_searching.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Nearest_neighbor_searching.C}
|
||||
|
||||
\newpage
|
||||
\subsection{Example of Selecting a Splitting Rule and Setting the Bucket Size.}
|
||||
|
||||
This example program illustrates selecting a splitting rule and
|
||||
|
|
@ -198,7 +200,7 @@ setting the maximal allowed bucket size. The only differences with
|
|||
the previous example are the declaration of the Fair
|
||||
splitting rule, needed to set the maximal allowed bucket size.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Using_fair_splitting_rule.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Using_fair_splitting_rule.C}
|
||||
|
||||
\subsection{Example of General Neighbor Searching}
|
||||
|
||||
|
|
@ -207,7 +209,7 @@ neighbor searching using 4-dimensional Cartesian coordinates. Five
|
|||
approximate nearest and furthest neighbors of the query rectangle
|
||||
$[0.1,0.2]^4$ are computed.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/General_neighbor_searching.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/General_neighbor_searching.C}
|
||||
|
||||
\subsection{Example of a Range Query}
|
||||
|
||||
|
|
@ -215,7 +217,7 @@ This example program illustrates approximate range querying for
|
|||
4-dimensional fuzzy iso-rectangles and spheres using homogeneous
|
||||
coordinates.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
|
||||
|
||||
\subsection{Example of Incremental Searching}
|
||||
|
|
@ -225,7 +227,7 @@ points with a positive first coordinate using orthogonal priority
|
|||
search.
|
||||
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Distance_browsing.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Distance_browsing.C}
|
||||
|
||||
|
||||
\subsection{Example Illustrating Use of User Defined Point and Distance Class}
|
||||
|
|
@ -236,10 +238,10 @@ implementation of the Euclidean distance.
|
|||
We first have to introduce a point class. We have put the glue layer
|
||||
in this file as well.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Point.h}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Point.h}
|
||||
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
|
||||
\section{Software Design}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
|
||||
\chapter{Spatial Searching}
|
||||
\label{ChapterUserSpatialSearching}
|
||||
\input{Spatial_searching/intro.tex}
|
||||
\input{intro.tex}
|
||||
%% EOF
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ To optimize distance computations squared distances are used.
|
|||
\ccParameters
|
||||
|
||||
Expects for the template argument a model of the concept
|
||||
\ccc{SearchTraits}, for example \ccc{CGAL::Search_traits_2<Kernel>}.
|
||||
\ccc{SearchTraits}, for example \ccc{CGAL::Search_traits_2<CGAL::Cartesian_double> >}.
|
||||
|
||||
\ccIsModel
|
||||
|
||||
|
|
|
|||
|
|
@ -178,6 +178,7 @@ example illustrates distance browsing and the last example illustrates
|
|||
nearest and furthest neighbour searching using a user defined point
|
||||
and distance class.
|
||||
|
||||
\newpage
|
||||
\subsection{Example of Nearest Neighbor Searching}
|
||||
|
||||
The first example illustrates nearest neighbor searching. The random
|
||||
|
|
@ -189,8 +190,9 @@ computes squared distances instead of the Euclidean distance itself.
|
|||
Finally, if the Euclidean distance is reported the square root is
|
||||
taken.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Nearest_neighbor_searching.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Nearest_neighbor_searching.C}
|
||||
|
||||
\newpage
|
||||
\subsection{Example of Selecting a Splitting Rule and Setting the Bucket Size.}
|
||||
|
||||
This example program illustrates selecting a splitting rule and
|
||||
|
|
@ -198,7 +200,7 @@ setting the maximal allowed bucket size. The only differences with
|
|||
the previous example are the declaration of the Fair
|
||||
splitting rule, needed to set the maximal allowed bucket size.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Using_fair_splitting_rule.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Using_fair_splitting_rule.C}
|
||||
|
||||
\subsection{Example of General Neighbor Searching}
|
||||
|
||||
|
|
@ -207,7 +209,7 @@ neighbor searching using 4-dimensional Cartesian coordinates. Five
|
|||
approximate nearest and furthest neighbors of the query rectangle
|
||||
$[0.1,0.2]^4$ are computed.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/General_neighbor_searching.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/General_neighbor_searching.C}
|
||||
|
||||
\subsection{Example of a Range Query}
|
||||
|
||||
|
|
@ -215,7 +217,7 @@ This example program illustrates approximate range querying for
|
|||
4-dimensional fuzzy iso-rectangles and spheres using homogeneous
|
||||
coordinates.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
|
||||
|
||||
\subsection{Example of Incremental Searching}
|
||||
|
|
@ -225,7 +227,7 @@ points with a positive first coordinate using orthogonal priority
|
|||
search.
|
||||
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Distance_browsing.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Distance_browsing.C}
|
||||
|
||||
|
||||
\subsection{Example Illustrating Use of User Defined Point and Distance Class}
|
||||
|
|
@ -236,10 +238,10 @@ implementation of the Euclidean distance.
|
|||
We first have to introduce a point class. We have put the glue layer
|
||||
in this file as well.
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/Point.h}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/Point.h}
|
||||
|
||||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
\ccIncludeExampleCode{../../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
|
||||
\section{Software Design}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
|
||||
\chapter{Spatial Searching}
|
||||
\label{ChapterUserSpatialSearching}
|
||||
\input{Spatial_searching/intro.tex}
|
||||
\input{intro.tex}
|
||||
%% EOF
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ To optimize distance computations squared distances are used.
|
|||
\ccParameters
|
||||
|
||||
Expects for the template argument a model of the concept
|
||||
\ccc{SearchTraits}, for example \ccc{CGAL::Search_traits_2<Kernel>}.
|
||||
\ccc{SearchTraits}, for example \ccc{CGAL::Search_traits_2<CGAL::Cartesian_double> >}.
|
||||
|
||||
\ccIsModel
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue