mirror of https://github.com/CGAL/cgal
accidentally delete Triangular_expansion. add it back
This commit is contained in:
parent
72c75d58b4
commit
8a024117b8
|
|
@ -0,0 +1,571 @@
|
|||
// Copyright (c) 2013 Technical University Braunschweig (Germany).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
// You can redistribute it and/or modify it under the terms of the GNU
|
||||
// General Public License as published by the Free Software Foundation,
|
||||
// either version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
//
|
||||
// Author(s): Michael Hemmer <michael.hemmer@cgal.org>
|
||||
//
|
||||
|
||||
#ifndef CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H
|
||||
#define CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H
|
||||
|
||||
#include <CGAL/Arrangement_2.h>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
template<class Arrangement_2 ,class RegularizationTag>
|
||||
class Triangular_expansion_visibility_2 {
|
||||
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
|
||||
typedef typename Geometry_traits_2::Kernel K;
|
||||
public:
|
||||
// Currently only consider with same type for both
|
||||
typedef Arrangement_2 Input_arrangement_2;
|
||||
typedef Arrangement_2 Output_arrangement_2;
|
||||
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
|
||||
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
|
||||
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
|
||||
Ccb_halfedge_const_circulator;
|
||||
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
|
||||
typedef typename Arrangement_2::Face_handle Face_handle;
|
||||
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
|
||||
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
|
||||
|
||||
typedef typename K::Point_2 Point_2;
|
||||
typedef typename Geometry_traits_2::Ray_2 Ray_2;
|
||||
typedef typename Geometry_traits_2::Segment_2 Segment_2;
|
||||
typedef typename Geometry_traits_2::Line_2 Line_2;
|
||||
typedef typename Geometry_traits_2::Vector_2 Vector_2;
|
||||
typedef typename Geometry_traits_2::Direction_2 Direction_2;
|
||||
typedef typename Geometry_traits_2::FT Number_type;
|
||||
typedef typename Geometry_traits_2::Object_2 Object_2;
|
||||
|
||||
// TODO
|
||||
typedef RegularizationTag Regularization_tag;
|
||||
|
||||
typedef CGAL::Tag_true Supports_general_polygon_tag;
|
||||
typedef CGAL::Tag_true Supports_simple_polygon_tag;
|
||||
|
||||
private:
|
||||
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
|
||||
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
|
||||
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
|
||||
typedef CGAL::No_intersection_tag Itag;
|
||||
typedef CGAL::Constrained_Delaunay_triangulation_2<K, TDS, Itag> CDT;
|
||||
|
||||
|
||||
private:
|
||||
const Input_arrangement_2* p_arr;
|
||||
boost::shared_ptr<CDT> p_cdt;
|
||||
std::vector<Segment_2> needles;
|
||||
|
||||
public:
|
||||
Triangular_expansion_visibility_2() : p_arr(NULL){}
|
||||
|
||||
/*! Constructor given an arrangement and the Regularization tag. */
|
||||
Triangular_expansion_visibility_2 (Input_arrangement_2& arr)
|
||||
: p_arr(&arr){
|
||||
//std::cout << "Triangular_expansion_visibility_2" << std::endl;
|
||||
init_cdt();
|
||||
}
|
||||
|
||||
bool is_attached() {
|
||||
//std::cout << "is_attached" << std::endl;
|
||||
return (p_arr != NULL);
|
||||
}
|
||||
|
||||
void attach(Input_arrangement_2& arr) {
|
||||
//std::cout << "attach" << std::endl;
|
||||
// todo observe changes in arr;
|
||||
p_arr = &arr;
|
||||
init_cdt();
|
||||
//std::cout << "attach done" << std::endl;
|
||||
}
|
||||
|
||||
void detach() {
|
||||
//std::cout << "detach" << std::endl;
|
||||
p_arr = NULL;
|
||||
p_cdt = boost::shared_ptr<CDT>();
|
||||
}
|
||||
|
||||
const Input_arrangement_2& arr() {
|
||||
return *p_arr;
|
||||
}
|
||||
|
||||
typename CDT::Edge get_edge(typename CDT::Face_handle fh, int i){
|
||||
return std::make_pair(fh,i);
|
||||
}
|
||||
|
||||
Point_2 ray_seg_intersection(
|
||||
const Point_2& q, const Point_2& b, // the ray
|
||||
const Point_2& s, const Point_2& t) // the segment
|
||||
{
|
||||
Ray_2 ray(q,b);
|
||||
Segment_2 seg(s,t);
|
||||
assert(typename K::Do_intersect_2()(ray,seg));
|
||||
CGAL::Object obj = typename K::Intersect_2()(ray,seg);
|
||||
Point_2 result = object_cast<Point_2>(obj);
|
||||
return result;
|
||||
}
|
||||
|
||||
void collect_needle(
|
||||
const Point_2& q,
|
||||
const typename CDT::Vertex_handle vh,
|
||||
const typename CDT::Face_handle fh,
|
||||
int index){
|
||||
|
||||
|
||||
// the expanded edge should not be constrained
|
||||
assert(!p_cdt->is_constrained(get_edge(fh,index)));
|
||||
assert(!p_cdt->is_infinite(fh));
|
||||
// go into the new face
|
||||
const typename CDT::Face_handle nfh(fh->neighbor(index));
|
||||
assert(!p_cdt->is_infinite(nfh));
|
||||
|
||||
// get indices of neighbors
|
||||
int nindex = nfh->index(fh); // index of new vertex and old face
|
||||
int rindex = p_cdt->ccw(nindex); // index of face behind right edge
|
||||
int lindex = p_cdt-> cw(nindex); // index of face behind left edge
|
||||
|
||||
// get vertices seen from entering edge
|
||||
const typename CDT::Vertex_handle nvh(nfh->vertex(nindex));
|
||||
const typename CDT::Vertex_handle rvh(nfh->vertex(p_cdt->cw (nindex)));
|
||||
const typename CDT::Vertex_handle lvh(nfh->vertex(p_cdt->ccw(nindex)));
|
||||
assert(!p_cdt->is_infinite(nvh));
|
||||
assert(!p_cdt->is_infinite(lvh));
|
||||
assert(!p_cdt->is_infinite(rvh));
|
||||
|
||||
// get edges seen from entering edge
|
||||
typename CDT::Edge re = get_edge(nfh,p_cdt->ccw(nindex));
|
||||
typename CDT::Edge le = get_edge(nfh,p_cdt-> cw(nindex));
|
||||
|
||||
// do orientation computation once for new vertex
|
||||
typename K::Orientation_2 orientation =
|
||||
p_cdt->geom_traits().orientation_2_object();
|
||||
CGAL::Orientation orient = orientation(q,vh->point(),nvh->point());
|
||||
|
||||
|
||||
//std::cout << "\n collect_needle" <<std::endl;
|
||||
//std::cout << "q "<< q << std::endl ;
|
||||
//std::cout << "vh->point() "<< vh->point() << std::endl;
|
||||
//std::cout << "lvh->point() "<< lvh->point() << std::endl ;
|
||||
//std::cout << "nvh->point() "<< nvh->point() << std::endl ;
|
||||
//std::cout << "rvh->point() "<< rvh->point() << std::endl<< std::endl;
|
||||
|
||||
|
||||
|
||||
switch ( orient ) {
|
||||
case CGAL::COUNTERCLOCKWISE:
|
||||
// looking on to the right edge
|
||||
if(p_cdt->is_constrained(re)){
|
||||
if(vh!=rvh){
|
||||
Point_2 p = ray_seg_intersection(q,vh->point(),nvh->point(),rvh->point());
|
||||
//std::cout << vh->point() <<" -1- "<< p <<std::endl;
|
||||
needles.push_back(Segment_2(vh->point(),p));
|
||||
}
|
||||
}else{
|
||||
collect_needle(q,vh,nfh,rindex);
|
||||
}
|
||||
break;
|
||||
case CGAL::CLOCKWISE:
|
||||
// looking on to the left edge
|
||||
if(p_cdt->is_constrained(le)){
|
||||
if(vh!=lvh){
|
||||
Point_2 p = ray_seg_intersection(q,vh->point(),nvh->point(),lvh->point());
|
||||
//std::cout << vh->point() <<" -2- "<< p <<std::endl;
|
||||
needles.push_back(Segment_2(vh->point(),p));
|
||||
}
|
||||
}else{
|
||||
collect_needle(q,vh,nfh,lindex);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(orient == CGAL::COLLINEAR);
|
||||
// looking on nvh, so it must be reported
|
||||
// if it wasn't already (triangles rotate around vh)
|
||||
if(vh != nvh){
|
||||
//std::cout << vh->point() <<" -3- "<< nvh->point() <<std::endl;
|
||||
needles.push_back(Segment_2(vh->point(),nvh->point()));
|
||||
}
|
||||
// but we may also contiue looking along the vertex
|
||||
if(!p_cdt->is_constrained(re)){
|
||||
collect_needle(q,nvh,nfh,rindex);
|
||||
}
|
||||
if(!p_cdt->is_constrained(le)){
|
||||
collect_needle(q,nvh,nfh,lindex);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
template<class OIT>
|
||||
OIT expand_edge(
|
||||
const Point_2& q,
|
||||
const Point_2& left,
|
||||
const Point_2& right,
|
||||
typename CDT::Face_handle fh,
|
||||
int index,
|
||||
OIT oit){
|
||||
|
||||
// the expanded edge should not be constrained
|
||||
assert(!p_cdt->is_constrained(get_edge(fh,index)));
|
||||
assert(!p_cdt->is_infinite(fh));
|
||||
|
||||
// go into the new face
|
||||
const typename CDT::Face_handle nfh(fh->neighbor(index));
|
||||
assert(!p_cdt->is_infinite(nfh));
|
||||
|
||||
// get indices of neighbors
|
||||
int nindex = nfh->index(fh); // index of new vertex and old face
|
||||
int rindex = p_cdt->ccw(nindex); // index of face behind right edge
|
||||
int lindex = p_cdt-> cw(nindex); // index of face behind left edge
|
||||
|
||||
// get vertices seen from entering edge
|
||||
const typename CDT::Vertex_handle nvh(nfh->vertex(nindex));
|
||||
const typename CDT::Vertex_handle rvh(nfh->vertex(p_cdt->cw (nindex)));
|
||||
const typename CDT::Vertex_handle lvh(nfh->vertex(p_cdt->ccw(nindex)));
|
||||
assert(!p_cdt->is_infinite(nvh));
|
||||
assert(!p_cdt->is_infinite(lvh));
|
||||
assert(!p_cdt->is_infinite(rvh));
|
||||
|
||||
// get edges seen from entering edge
|
||||
typename CDT::Edge re = get_edge(nfh,p_cdt->ccw(nindex));
|
||||
typename CDT::Edge le = get_edge(nfh,p_cdt-> cw(nindex));
|
||||
|
||||
// do orientation computation once for new vertex
|
||||
typename K::Orientation_2 orientation =
|
||||
p_cdt->geom_traits().orientation_2_object();
|
||||
CGAL::Orientation ro = orientation(q,right,nvh->point());
|
||||
CGAL::Orientation lo = orientation(q,left ,nvh->point());
|
||||
|
||||
assert(typename K::Orientation_2()(q,left ,lvh->point()) != CGAL::CLOCKWISE);
|
||||
assert(typename K::Orientation_2()(q,right,rvh->point()) != CGAL::COUNTERCLOCKWISE);
|
||||
|
||||
//std::cout << (ro == CGAL::COUNTERCLOCKWISE) << " " << (lo == CGAL::CLOCKWISE) << std::endl;
|
||||
|
||||
|
||||
|
||||
//right edge is seen if new vertex is counter clockwise of right boarder
|
||||
if(ro == CGAL::COUNTERCLOCKWISE){
|
||||
if(p_cdt->is_constrained(re)){
|
||||
// the edge is constrained
|
||||
// report intersection with right boarder ray
|
||||
// if it is not already the right vertex (already reported)
|
||||
if(right != rvh->point()){
|
||||
*oit++ = ray_seg_intersection(q,right,nvh->point(),rvh->point());
|
||||
}
|
||||
|
||||
// then report intersection with left boarder if it exists
|
||||
if(lo == CGAL::COUNTERCLOCKWISE){
|
||||
*oit++ = ray_seg_intersection(q,left,nvh->point(),rvh->point());
|
||||
}
|
||||
}else{
|
||||
// the edge is not a constrained
|
||||
if(lo == CGAL::COUNTERCLOCKWISE){
|
||||
// no split needed and return
|
||||
//std::cout<< "h1"<< std::endl;
|
||||
oit = expand_edge(q,left,right,nfh,rindex,oit);
|
||||
//std::cout<< "h1 done"<< std::endl;
|
||||
return oit;
|
||||
}else{
|
||||
// spliting at new vertex
|
||||
//std::cout<< "h2"<< std::endl;
|
||||
*oit++ = expand_edge(q,nvh->point(),right,nfh,rindex,oit);
|
||||
//std::cout<< "h2 done"<< std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//std::cout << "q "<< q << std::endl ;
|
||||
//std::cout << "lvh->point() "<< lvh->point() << std::endl;
|
||||
//std::cout << "left "<< left << std::endl ;
|
||||
//std::cout << "nvh->point() "<< nvh->point() << std::endl ;
|
||||
//std::cout << "right "<< right << std::endl ;
|
||||
//std::cout << "rvh->point() "<< rvh->point() << std::endl<< std::endl;
|
||||
|
||||
|
||||
// determin whether new vertex needs to be reported
|
||||
if(ro != CGAL::CLOCKWISE && lo != CGAL::COUNTERCLOCKWISE){
|
||||
*oit++ = nvh->point();
|
||||
}
|
||||
if(!Regularization_tag::value){
|
||||
assert(!(ro == CGAL::COLLINEAR && lo == CGAL::COLLINEAR));
|
||||
// we have to check whether a needle starts here.
|
||||
if(p_cdt->is_constrained(le) && !p_cdt->is_constrained(re) && ro == CGAL::COLLINEAR)
|
||||
collect_needle(q,nvh,nfh,rindex);
|
||||
if(p_cdt->is_constrained(re) && !p_cdt->is_constrained(le) && lo == CGAL::COLLINEAR)
|
||||
collect_needle(q,nvh,nfh,lindex);
|
||||
}
|
||||
|
||||
//left edge is seen if new vertex is clockwise of left boarder
|
||||
if(lo == CGAL::CLOCKWISE){
|
||||
if(p_cdt->is_constrained(le)){
|
||||
// the edge is constrained
|
||||
// report interesection with right boarder if exists
|
||||
if(ro == CGAL::CLOCKWISE){
|
||||
*oit++ = ray_seg_intersection(q,right,nvh->point(),lvh->point());
|
||||
}
|
||||
// then report intersection with left boarder ray
|
||||
// if it is not already the left vertex (already reported)
|
||||
if(left != lvh->point()){
|
||||
*oit++ = ray_seg_intersection(q,left,nvh->point(),lvh->point());
|
||||
}
|
||||
return oit;
|
||||
}else{
|
||||
// the edge is not a constrained
|
||||
if(ro == CGAL::CLOCKWISE){
|
||||
// no split needed and return
|
||||
//std::cout<< "h3"<< std::endl;
|
||||
oit = expand_edge(q,left,right,nfh,lindex,oit);
|
||||
//std::cout<< "h3 done"<< std::endl;
|
||||
return oit;
|
||||
}else{
|
||||
// spliting at new vertex
|
||||
//std::cout<< "h4"<< std::endl;
|
||||
oit = expand_edge(q,left,nvh->point(),nfh,lindex,oit);
|
||||
//std::cout<< "h4 done"<< std::endl;
|
||||
return oit;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// never reached ;)
|
||||
// assert(false);
|
||||
|
||||
}
|
||||
|
||||
Face_handle compute_visibility(const Point_2& q,
|
||||
const Face_const_handle face,
|
||||
Output_arrangement_2& out_arr
|
||||
){
|
||||
//std::cout << "query in face interior" << std::endl;
|
||||
|
||||
out_arr.clear();
|
||||
needles.clear();
|
||||
assert(!face->is_unbounded());
|
||||
|
||||
|
||||
std::vector<Point_2> raw_output;
|
||||
typename CDT::Face_handle fh = p_cdt->locate(q);
|
||||
|
||||
raw_output.push_back(fh->vertex(1)->point());
|
||||
if(!p_cdt->is_constrained(get_edge(fh,0))){
|
||||
//std::cout<< "edge 0 is not constrained" << std::endl;
|
||||
expand_edge(
|
||||
q,
|
||||
fh->vertex(2)->point(),
|
||||
fh->vertex(1)->point(),
|
||||
fh,0,std::back_inserter(raw_output));
|
||||
}
|
||||
|
||||
raw_output.push_back(fh->vertex(2)->point());
|
||||
if(!p_cdt->is_constrained(get_edge(fh,1))){
|
||||
//std::cout << "edge 1 is not constrained" << std::endl;
|
||||
expand_edge(
|
||||
q,
|
||||
fh->vertex(0)->point(),
|
||||
fh->vertex(2)->point(),
|
||||
fh,1,std::back_inserter(raw_output));
|
||||
}
|
||||
|
||||
raw_output.push_back(fh->vertex(0)->point());
|
||||
if(!p_cdt->is_constrained(get_edge(fh,2))){
|
||||
//std::cout << "edge 2 is not constrained" << std::endl;
|
||||
expand_edge(
|
||||
q,
|
||||
fh->vertex(1)->point(),
|
||||
fh->vertex(0)->point(),
|
||||
fh,2,std::back_inserter(raw_output));
|
||||
}
|
||||
|
||||
|
||||
return output(raw_output,out_arr);
|
||||
}
|
||||
|
||||
Face_handle compute_visibility(const Point_2& q,
|
||||
const Halfedge_const_handle he,
|
||||
Output_arrangement_2& out_arr) {
|
||||
//std::cout << "visibility_region he" << std::endl;
|
||||
|
||||
assert(!he->face()->is_unbounded());
|
||||
out_arr.clear();
|
||||
needles.clear();
|
||||
|
||||
std::vector<Point_2> raw_output;
|
||||
typename CDT::Locate_type location;
|
||||
int index;
|
||||
typename CDT::Face_handle fh = p_cdt->locate(q,location,index);
|
||||
assert(location == CDT::EDGE || location == CDT::VERTEX);
|
||||
// the following code tries to figure out which triangle one should start in.
|
||||
|
||||
|
||||
if(location == CDT::EDGE){
|
||||
//std::cout << "query on edge" << std::endl;
|
||||
// this is the easy part, there are only two possible faces
|
||||
// index indicates the edge = vertex on the other side of the edge
|
||||
// the next vertex in cw order should be the target of given edge
|
||||
if(fh->vertex(p_cdt->cw(index))->point() != he->target()->point()){
|
||||
//std::cout << "need to swap face" << std::endl;
|
||||
// take face on the other side if this is not the case
|
||||
typename CDT::Face_handle nfh = fh->neighbor(index);
|
||||
index = nfh->index(fh);
|
||||
fh = nfh;
|
||||
}
|
||||
assert(fh->vertex(p_cdt->cw(index))->point() == he->target()->point());
|
||||
assert(!p_cdt->is_infinite(fh->vertex(index)));
|
||||
|
||||
|
||||
// output the edge the query lies on
|
||||
raw_output.push_back(he->source()->point());
|
||||
raw_output.push_back(he->target()->point());
|
||||
|
||||
if(!p_cdt->is_constrained(get_edge(fh,p_cdt->ccw(index)))){
|
||||
expand_edge(
|
||||
q,
|
||||
fh->vertex(index)->point(), //left
|
||||
he->target()->point() , //right
|
||||
fh,
|
||||
p_cdt->ccw(index),
|
||||
std::back_inserter(raw_output));
|
||||
}
|
||||
raw_output.push_back(fh->vertex(index)->point());
|
||||
|
||||
if(!p_cdt->is_constrained(get_edge(fh,p_cdt->cw(index)))){
|
||||
expand_edge(
|
||||
q,
|
||||
he->source()->point() , //left
|
||||
fh->vertex(index)->point(), //right
|
||||
fh,
|
||||
p_cdt->cw(index),
|
||||
std::back_inserter(raw_output));
|
||||
}
|
||||
}
|
||||
|
||||
if(location == CDT::VERTEX){
|
||||
//std::cout << "query on vertex" << std::endl;
|
||||
|
||||
//bool query_point_on_vertex_is_not_working_yet = false;
|
||||
//assert(query_point_on_vertex_is_not_working_yet);
|
||||
|
||||
assert(q == he->target()->point());
|
||||
assert(fh->vertex(index)->point() == he->target()->point());
|
||||
|
||||
// push points that are seen anyway
|
||||
// raw_output.push_back(he->source()->point()); inserted last
|
||||
raw_output.push_back(he->target()->point());
|
||||
raw_output.push_back(he->next()->target()->point());
|
||||
|
||||
// now start in the triangle that contains he->next()
|
||||
while(
|
||||
p_cdt->is_infinite(fh->vertex(p_cdt->ccw(index))) ||
|
||||
he->next()->target()->point() != fh->vertex(p_cdt->ccw(index))->point()){
|
||||
typename CDT::Face_handle nfh = fh->neighbor(p_cdt->ccw(index));
|
||||
int nindex = nfh->index(fh);
|
||||
index = p_cdt->ccw(nindex);
|
||||
fh = nfh;
|
||||
assert(he->target()->point() == fh->vertex(index)->point());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
assert(he->next()->source()->point() == fh->vertex(index)->point());
|
||||
assert(he->next()->target()->point() == fh->vertex(p_cdt->ccw(index))->point());
|
||||
assert(!p_cdt->is_infinite(fh));
|
||||
assert(p_cdt->is_constrained(get_edge(fh,p_cdt->cw(index))));
|
||||
|
||||
while(he->source()->point() != fh->vertex(p_cdt->ccw(index))->point()){
|
||||
|
||||
if(!p_cdt->is_constrained(get_edge(fh,index))){
|
||||
expand_edge(
|
||||
q,
|
||||
fh->vertex(p_cdt-> cw(index))->point(), //left
|
||||
fh->vertex(p_cdt->ccw(index))->point(), //right
|
||||
fh,
|
||||
index,
|
||||
std::back_inserter(raw_output));
|
||||
}
|
||||
// push left end point of edge into output
|
||||
raw_output.push_back(fh->vertex(p_cdt-> cw(index))->point());
|
||||
|
||||
// take the next triangle around q in ccw order
|
||||
typename CDT::Face_handle nfh = fh->neighbor(p_cdt->ccw(index));
|
||||
int nindex = nfh->index(fh);
|
||||
index = p_cdt->ccw(nindex);
|
||||
fh = nfh;
|
||||
assert(fh->vertex(index)->point() == he->target()->point());
|
||||
}
|
||||
}
|
||||
return output(raw_output,out_arr);
|
||||
}
|
||||
|
||||
Face_handle output(std::vector<Point_2>& raw_output, Output_arrangement_2& out_arr){
|
||||
// //std::cout << "\n Output Polygon" << std::endl;
|
||||
// //std::cout << needles.size() << std::endl;
|
||||
// for (int i = 0; i<needles.size();i++){
|
||||
// //std::cout << needles[i].source() << " -- "
|
||||
// << needles[i].target() << std::endl;
|
||||
// }
|
||||
// //std::cout << raw_output.size() << std::endl;
|
||||
std::vector<Segment_2> segments(needles.begin(),needles.end());
|
||||
for(int i = 0; i <raw_output.size();i++){
|
||||
// //std::cout << raw_output[i] << " -- "
|
||||
// << raw_output[(i+1)%raw_output.size()] << std::endl;
|
||||
segments.push_back(Segment_2(raw_output[i],raw_output[(i+1)%raw_output.size()]));
|
||||
}
|
||||
|
||||
// //std::cout << " done 1 " << std::endl ;
|
||||
// use something more clever
|
||||
CGAL::insert_non_intersecting_curves(out_arr,segments.begin(),segments.end());
|
||||
//CGAL::insert(out_arr,segments.begin(),segments.end());
|
||||
|
||||
// //std::cout << " done 2 " << std::endl ;
|
||||
assert(out_arr.number_of_faces()== 2);
|
||||
|
||||
// //std::cout<< "==============" <<std::endl;
|
||||
if(out_arr.faces_begin()->is_unbounded())
|
||||
return ++out_arr.faces_begin();
|
||||
else
|
||||
return out_arr.faces_begin();
|
||||
|
||||
//std::cout<< "==============" <<std::endl;
|
||||
|
||||
}
|
||||
|
||||
void init_cdt(){
|
||||
//std::cout << "init_cdt" << std::endl;
|
||||
//std::cout<< "==============" <<std::endl;
|
||||
//std::cout<< "Input Polygon:" <<std::endl;
|
||||
//todo, avoid copy by using modified iterator
|
||||
std::vector<std::pair<Point_2,Point_2> > constraints;
|
||||
for(typename Input_arrangement_2::Edge_const_iterator eit = p_arr->edges_begin();
|
||||
eit != p_arr->edges_end(); eit++){
|
||||
Point_2 source = eit->source()->point();
|
||||
Point_2 target = eit->target()->point();
|
||||
//std::cout << source << " -- " << target << std::endl;
|
||||
constraints.push_back(std::make_pair(source,target));
|
||||
}
|
||||
//std::cout << "init_cdt new CDT" << std::endl;
|
||||
p_cdt = boost::shared_ptr<CDT>(new CDT(constraints.begin(),constraints.end()));
|
||||
//std::cout << "init_cdt done" << std::endl;
|
||||
//std::cout << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace CGAL
|
||||
|
||||
#endif //CGAL_TRIANGULAR_EXPANSION_VISIBILITY_2__H
|
||||
Loading…
Reference in New Issue