mirror of https://github.com/CGAL/cgal
Cleaned up
This commit is contained in:
parent
5df526f70c
commit
8e11587719
|
|
@ -37,60 +37,55 @@
|
|||
|
||||
namespace CGAL {
|
||||
|
||||
namespace draw_function_for_arrangement_2
|
||||
{
|
||||
template<typename Arr, typename GSOptions>
|
||||
class Draw_arr_tool
|
||||
{
|
||||
public:
|
||||
using Halfedge_const_handle=typename Arr::Halfedge_const_handle;
|
||||
using Vertex_const_handle=typename Arr::Vertex_const_handle;
|
||||
using Face_const_handle=typename Arr::Face_const_handle;
|
||||
using Ccb_halfedge_const_circulator=typename Arr::Ccb_halfedge_const_circulator;
|
||||
using Inner_ccb_const_iterator=typename Arr::Inner_ccb_const_iterator;
|
||||
using Outer_ccb_const_iterator=typename Arr::Outer_ccb_const_iterator;
|
||||
using Gt=typename Arr::Geometry_traits_2;
|
||||
using Point=typename Arr::Point_2;
|
||||
using X_monotone_curve = typename Arr::X_monotone_curve_2;
|
||||
namespace draw_aos {
|
||||
|
||||
Draw_arr_tool(Arr& a_aos, CGAL::Graphics_scene& a_gs, const GSOptions& a_gso):
|
||||
m_aos(a_aos), m_gs(a_gs), m_gso(a_gso)
|
||||
{}
|
||||
template<typename Arr, typename GSOptions>
|
||||
class Draw_arr_tool {
|
||||
public:
|
||||
using Halfedge_const_handle=typename Arr::Halfedge_const_handle;
|
||||
using Vertex_const_handle=typename Arr::Vertex_const_handle;
|
||||
using Face_const_handle=typename Arr::Face_const_handle;
|
||||
using Ccb_halfedge_const_circulator=typename Arr::Ccb_halfedge_const_circulator;
|
||||
using Inner_ccb_const_iterator=typename Arr::Inner_ccb_const_iterator;
|
||||
using Outer_ccb_const_iterator=typename Arr::Outer_ccb_const_iterator;
|
||||
using Gt=typename Arr::Geometry_traits_2;
|
||||
using Point=typename Arr::Point_2;
|
||||
using X_monotone_curve = typename Arr::X_monotone_curve_2;
|
||||
|
||||
/// Add a face.
|
||||
void add_face(Face_const_handle face)
|
||||
{
|
||||
// std::cout << "add_face()\n";
|
||||
for (Inner_ccb_const_iterator it = face->inner_ccbs_begin();
|
||||
it != face->inner_ccbs_end(); ++it)
|
||||
{ add_ccb(*it); }
|
||||
Draw_arr_tool(Arr& a_aos, CGAL::Graphics_scene& a_gs, const GSOptions& a_gso):
|
||||
m_aos(a_aos), m_gs(a_gs), m_gso(a_gso)
|
||||
{}
|
||||
|
||||
if (! face->is_unbounded()) {
|
||||
for (Outer_ccb_const_iterator it = face->outer_ccbs_begin();
|
||||
it != face->outer_ccbs_end(); ++it)
|
||||
{
|
||||
add_ccb(*it);
|
||||
draw_region(*it);
|
||||
}
|
||||
//! adds a face.
|
||||
void add_face(Face_const_handle face) {
|
||||
// std::cout << "add_face()\n";
|
||||
for (Inner_ccb_const_iterator it = face->inner_ccbs_begin();
|
||||
it != face->inner_ccbs_end(); ++it)
|
||||
add_ccb(*it);
|
||||
|
||||
if (! face->is_unbounded()) {
|
||||
for (Outer_ccb_const_iterator it = face->outer_ccbs_begin();
|
||||
it != face->outer_ccbs_end(); ++it) {
|
||||
add_ccb(*it);
|
||||
draw_region(*it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a Connected Component of the Boundary.
|
||||
void add_ccb(Ccb_halfedge_const_circulator circ)
|
||||
{
|
||||
// std::cout << "add_ccb()\n";
|
||||
auto curr = circ;
|
||||
do {
|
||||
auto new_face = curr->twin()->face();
|
||||
if (m_visited.find(new_face) != m_visited.end()) continue;
|
||||
m_visited[new_face] = true;
|
||||
add_face(new_face);
|
||||
} while (++curr != circ);
|
||||
}
|
||||
//! adds a Connected Component of the Boundary.
|
||||
void add_ccb(Ccb_halfedge_const_circulator circ) {
|
||||
// std::cout << "add_ccb()\n";
|
||||
auto curr = circ;
|
||||
do {
|
||||
auto new_face = curr->twin()->face();
|
||||
if (m_visited.find(new_face) != m_visited.end()) continue;
|
||||
m_visited[new_face] = true;
|
||||
add_face(new_face);
|
||||
} while (++curr != circ);
|
||||
}
|
||||
|
||||
///! Draw a region.
|
||||
void draw_region(Ccb_halfedge_const_circulator circ)
|
||||
{
|
||||
//! draws a region.
|
||||
void draw_region(Ccb_halfedge_const_circulator circ) {
|
||||
// std::cout << "draw_region()\n";
|
||||
/* Check whether the traits has a member function called
|
||||
* approximate_2_object() and if so check whether the return type, namely
|
||||
|
|
@ -107,318 +102,300 @@ namespace draw_function_for_arrangement_2
|
|||
*
|
||||
* For now we use C++14 features.
|
||||
*/
|
||||
if(m_gso.colored_face(m_aos, circ->face()))
|
||||
{ m_gs.face_begin(m_gso.face_color(m_aos, circ->face())); }
|
||||
else
|
||||
{ m_gs.face_begin(); }
|
||||
if (m_gso.colored_face(m_aos, circ->face()))
|
||||
m_gs.face_begin(m_gso.face_color(m_aos, circ->face()));
|
||||
else
|
||||
m_gs.face_begin();
|
||||
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto ext = find_smallest(circ, *traits);
|
||||
auto curr = ext;
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto ext = find_smallest(circ, *traits);
|
||||
auto curr = ext;
|
||||
|
||||
do {
|
||||
// Skip halfedges that are "antenas":
|
||||
while (curr->face() == curr->twin()->face()) curr = curr->twin()->next();
|
||||
draw_region_impl1(curr, *traits, 0);
|
||||
curr = curr->next();
|
||||
} while (curr != ext);
|
||||
do {
|
||||
// Skip halfedges that are "antenas":
|
||||
while (curr->face() == curr->twin()->face()) curr = curr->twin()->next();
|
||||
draw_region_impl1(curr, *traits, 0);
|
||||
curr = curr->next();
|
||||
} while (curr != ext);
|
||||
|
||||
m_gs.face_end();
|
||||
}
|
||||
m_gs.face_end();
|
||||
}
|
||||
|
||||
/// Compile time dispatching
|
||||
//! Compile time dispatching
|
||||
#if 0
|
||||
template <typename T, typename I = void>
|
||||
void draw_region_impl2(Halfedge_const_handle curr, T const&, long)
|
||||
{ draw_exact_region(curr); }
|
||||
template <typename T, typename I = void>
|
||||
void draw_region_impl2(Halfedge_const_handle curr, T const&, long)
|
||||
{ draw_exact_region(curr); }
|
||||
|
||||
template <typename T, typename I>
|
||||
auto draw_region_impl2(Halfedge_const_handle curr, T const& approx, int) ->
|
||||
decltype(approx.template operator()<I>(X_monotone_curve{}, double{}, I{},
|
||||
bool{}), void())
|
||||
{ draw_approximate_region(curr, approx); }
|
||||
template <typename T, typename I>
|
||||
auto draw_region_impl2(Halfedge_const_handle curr, T const& approx, int) ->
|
||||
decltype(approx.template operator()<I>(X_monotone_curve{}, double{}, I{},
|
||||
bool{}), void())
|
||||
{ draw_approximate_region(curr, approx); }
|
||||
|
||||
template <typename T>
|
||||
void draw_region_impl1(Halfedge_const_handle curr, T const&, long)
|
||||
{ draw_exact_region(curr); }
|
||||
template <typename T>
|
||||
void draw_region_impl1(Halfedge_const_handle curr, T const&, long)
|
||||
{ draw_exact_region(curr); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_region_impl1(Halfedge_const_handle curr, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_region_impl2<Approximate, int>(curr, traits.approximate_2_object(), 0);
|
||||
}
|
||||
template <typename T>
|
||||
auto draw_region_impl1(Halfedge_const_handle curr, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_region_impl2<Approximate, int>(curr, traits.approximate_2_object(), 0);
|
||||
}
|
||||
#else
|
||||
template <typename T>
|
||||
void draw_region_impl1(Halfedge_const_handle curr, T const& traits, int)
|
||||
{ draw_approximate_region(curr, traits.approximate_2_object()); }
|
||||
template <typename T>
|
||||
void draw_region_impl1(Halfedge_const_handle curr, T const& traits, int)
|
||||
{ draw_approximate_region(curr, traits.approximate_2_object()); }
|
||||
#endif
|
||||
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_region_impl1
|
||||
(Halfedge_const_handle curr,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int)
|
||||
{
|
||||
if(!m_gso.draw_edge(m_aos, curr))
|
||||
{ return; }
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_region_impl1
|
||||
(Halfedge_const_handle curr,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int)
|
||||
{
|
||||
if (! m_gso.draw_edge(m_aos, curr)) return;
|
||||
|
||||
// std::cout << "draw_region_impl1()\n";
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Kernel = Kernel_;
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Ap = typename Traits::Approximate_point_2;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
// std::cout << "draw_region_impl1()\n";
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Kernel = Kernel_;
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Ap = typename Traits::Approximate_point_2;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
|
||||
std::vector<Ap> polyline;
|
||||
double error(0.01);
|
||||
bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT;
|
||||
approx(curr->curve(), error, std::back_inserter(polyline), l2r);
|
||||
if (polyline.empty()) return;
|
||||
auto it = polyline.begin();
|
||||
std::vector<Ap> polyline;
|
||||
double error(0.01);
|
||||
bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT;
|
||||
approx(curr->curve(), error, std::back_inserter(polyline), l2r);
|
||||
if (polyline.empty()) return;
|
||||
auto it = polyline.begin();
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 prev(x/l, y/l, z/l);
|
||||
for (++it; it != polyline.end(); ++it) {
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 prev(x/l, y/l, z/l);
|
||||
for (++it; it != polyline.end(); ++it) {
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 next(x/l, y/l, z/l);
|
||||
Approx_point_3 next(x/l, y/l, z/l);
|
||||
|
||||
if(m_gso.colored_edge(m_aos, curr))
|
||||
{ m_gs.add_segment(prev, next, m_gso.edge_color(m_aos, curr)); }
|
||||
else
|
||||
{ m_gs.add_segment(prev, next); }
|
||||
|
||||
prev = next;
|
||||
// m_gs.add_point_in_face(*prev);
|
||||
}
|
||||
}
|
||||
|
||||
/*! Draw a region using approximate coordinates.
|
||||
* Call this member function only if the geometry traits is equipped with
|
||||
* the coordinate-approximation functionality of a curve.
|
||||
* This function must be inlined (e.g., a template) to enable the
|
||||
* compiled-time dispatching in the function `draw_region()`.
|
||||
*/
|
||||
template <typename Approximate>
|
||||
void draw_approximate_region(Halfedge_const_handle curr,
|
||||
const Approximate& approx)
|
||||
{
|
||||
// std::cout << "draw_approximate_region()\n";
|
||||
std::vector<typename Gt::Approximate_point_2> polyline;
|
||||
double error(0.01); // TODO? (this->pixel_ratio());
|
||||
bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT;
|
||||
approx(curr->curve(), error, std::back_inserter(polyline), l2r);
|
||||
if (polyline.empty()) return;
|
||||
auto it = polyline.begin();
|
||||
auto prev = it++;
|
||||
for (; it != polyline.end(); prev = it++) {
|
||||
if(m_gso.draw_edge(m_aos, curr))
|
||||
{
|
||||
if(m_gso.colored_edge(m_aos, curr))
|
||||
{ m_gs.add_segment(*prev, *it, m_gso.edge_color(m_aos, curr)); }
|
||||
else
|
||||
{ m_gs.add_segment(*prev, *it); }
|
||||
}
|
||||
m_gs.add_point_in_face(*prev);
|
||||
}
|
||||
}
|
||||
|
||||
/// Draw an exact curve.
|
||||
template <typename XMonotoneCurve>
|
||||
void draw_exact_curve(const XMonotoneCurve& curve)
|
||||
{
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto ctr_min = traits->construct_min_vertex_2_object();
|
||||
auto ctr_max = traits->construct_max_vertex_2_object();
|
||||
m_gs.add_segment(ctr_min(curve), ctr_max(curve));
|
||||
}
|
||||
|
||||
/// Draw an exact region.
|
||||
void draw_exact_region(Halfedge_const_handle curr)
|
||||
{
|
||||
// this->add_point_in_face(curr->source()->point());
|
||||
draw_exact_curve(curr->curve());
|
||||
}
|
||||
|
||||
/// Add all faces.
|
||||
template <typename Traits>
|
||||
void add_faces(const Traits&)
|
||||
{
|
||||
for (auto it=m_aos.unbounded_faces_begin(); it!=m_aos.unbounded_faces_end(); ++it)
|
||||
{ add_face(it); }
|
||||
}
|
||||
|
||||
/// Add all faces.
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void add_faces(Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const&)
|
||||
{ add_face(m_aos.faces_begin()); }
|
||||
|
||||
/// Compile time dispatching
|
||||
#if 0
|
||||
template <typename T>
|
||||
void draw_point_impl2(const Point& p, T const&, long) { m_gs.add_point(p); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_point_impl2(const Point& p, T const& approx, int) ->
|
||||
decltype(approx.operator()(p), void())
|
||||
{ m_gs.add_point(approx(p)); }
|
||||
|
||||
template <typename T>
|
||||
void draw_point_impl1(const Point& p, T const&, long) { m_gs.add_point(p); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_point_impl1(const Point& p, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_point_impl2<Approximate>(p, traits.approximate_2_object(), true);
|
||||
}
|
||||
#else
|
||||
template <typename T>
|
||||
void draw_point_impl1(const Point& p, T const& traits, int,
|
||||
bool colored, const CGAL::IO::Color& color)
|
||||
{
|
||||
if(colored)
|
||||
{ m_gs.add_point(traits.approximate_2_object()(p), color); }
|
||||
if (m_gso.colored_edge(m_aos, curr))
|
||||
m_gs.add_segment(prev, next, m_gso.edge_color(m_aos, curr));
|
||||
else
|
||||
{ m_gs.add_point(traits.approximate_2_object()(p)); }
|
||||
m_gs.add_segment(prev, next);
|
||||
|
||||
prev = next;
|
||||
// m_gs.add_point_in_face(*prev);
|
||||
}
|
||||
}
|
||||
|
||||
/*! draws a region using approximate coordinates.
|
||||
* Call this member function only if the geometry traits is equipped with
|
||||
* the coordinate-approximation functionality of a curve.
|
||||
* This function must be inlined (e.g., a template) to enable the
|
||||
* compiled-time dispatching in the function `draw_region()`.
|
||||
*/
|
||||
template <typename Approximate>
|
||||
void draw_approximate_region(Halfedge_const_handle curr,
|
||||
const Approximate& approx) {
|
||||
// std::cout << "draw_approximate_region()\n";
|
||||
std::vector<typename Gt::Approximate_point_2> polyline;
|
||||
double error(0.01); // TODO? (this->pixel_ratio());
|
||||
bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT;
|
||||
approx(curr->curve(), error, std::back_inserter(polyline), l2r);
|
||||
if (polyline.empty()) return;
|
||||
auto it = polyline.begin();
|
||||
auto prev = it++;
|
||||
for (; it != polyline.end(); prev = it++) {
|
||||
if (m_gso.draw_edge(m_aos, curr)) {
|
||||
if (m_gso.colored_edge(m_aos, curr))
|
||||
m_gs.add_segment(*prev, *it, m_gso.edge_color(m_aos, curr));
|
||||
else
|
||||
m_gs.add_segment(*prev, *it);
|
||||
}
|
||||
m_gs.add_point_in_face(*prev);
|
||||
}
|
||||
}
|
||||
|
||||
//! draws an exact curve.
|
||||
template <typename XMonotoneCurve>
|
||||
void draw_exact_curve(const XMonotoneCurve& curve) {
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto ctr_min = traits->construct_min_vertex_2_object();
|
||||
auto ctr_max = traits->construct_max_vertex_2_object();
|
||||
m_gs.add_segment(ctr_min(curve), ctr_max(curve));
|
||||
}
|
||||
|
||||
//! draws an exact region.
|
||||
void draw_exact_region(Halfedge_const_handle curr) {
|
||||
// this->add_point_in_face(curr->source()->point());
|
||||
draw_exact_curve(curr->curve());
|
||||
}
|
||||
|
||||
//! adds all faces.
|
||||
template <typename Traits>
|
||||
void add_faces(const Traits&) {
|
||||
for (auto it = m_aos.unbounded_faces_begin(); it != m_aos.unbounded_faces_end(); ++it)
|
||||
add_face(it);
|
||||
}
|
||||
|
||||
//! adds all faces.
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void add_faces(Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const&)
|
||||
{ add_face(m_aos.faces_begin()); }
|
||||
|
||||
//! Compile time dispatching
|
||||
#if 0
|
||||
template <typename T>
|
||||
void draw_point_impl2(const Point& p, T const&, long) { m_gs.add_point(p); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_point_impl2(const Point& p, T const& approx, int) ->
|
||||
decltype(approx.operator()(p), void())
|
||||
{ m_gs.add_point(approx(p)); }
|
||||
|
||||
template <typename T>
|
||||
void draw_point_impl1(const Point& p, T const&, long) { m_gs.add_point(p); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_point_impl1(const Point& p, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_point_impl2<Approximate>(p, traits.approximate_2_object(), true);
|
||||
}
|
||||
#else
|
||||
template <typename T>
|
||||
void draw_point_impl1(const Point& p, T const& traits, int,
|
||||
bool colored, const CGAL::IO::Color& color) {
|
||||
if (colored)
|
||||
{ m_gs.add_point(traits.approximate_2_object()(p), color); }
|
||||
else
|
||||
{ m_gs.add_point(traits.approximate_2_object()(p)); }
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_point_impl1
|
||||
(const Point& p,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int,
|
||||
bool colored,
|
||||
const CGAL::IO::Color& color)
|
||||
{
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
auto ap = approx(p);
|
||||
auto x = ap.dx();
|
||||
auto y = ap.dy();
|
||||
auto z = ap.dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 p3(x/l, y/l, z/l);
|
||||
if(colored)
|
||||
{ m_gs.add_point(p3, color); }
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_point_impl1
|
||||
(const Point& p,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int,
|
||||
bool colored,
|
||||
const CGAL::IO::Color& color) {
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
auto ap = approx(p);
|
||||
auto x = ap.dx();
|
||||
auto y = ap.dy();
|
||||
auto z = ap.dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 p3(x/l, y/l, z/l);
|
||||
if (colored) m_gs.add_point(p3, color);
|
||||
else m_gs.add_point(p3);
|
||||
}
|
||||
|
||||
//! draws a point.
|
||||
void draw_point(Vertex_const_handle vh) {
|
||||
const auto* traits = m_aos.geometry_traits();
|
||||
if (m_gso.draw_vertex(m_aos, vh)) {
|
||||
if (m_gso.colored_vertex(m_aos, vh))
|
||||
draw_point_impl1(vh->point(), *traits, 0, true,
|
||||
m_gso.vertex_color(m_aos, vh));
|
||||
else
|
||||
{ m_gs.add_point(p3); }
|
||||
draw_point_impl1(vh->point(), *traits, 0, false, CGAL::IO::Color()); // color will be unused
|
||||
}
|
||||
}
|
||||
|
||||
/// Draw a point.
|
||||
void draw_point(Vertex_const_handle vh)
|
||||
{
|
||||
const auto* traits = m_aos.geometry_traits();
|
||||
if(m_gso.draw_vertex(m_aos, vh))
|
||||
{
|
||||
if(m_gso.colored_vertex(m_aos, vh))
|
||||
{ draw_point_impl1(vh->point(), *traits, 0, true,
|
||||
m_gso.vertex_color(m_aos, vh)); }
|
||||
else
|
||||
{ draw_point_impl1(vh->point(), *traits, 0, false, CGAL::IO::Color()); } // color will be unused
|
||||
template <typename Kernel, int AtanX, int AtanY>
|
||||
Halfedge_const_handle
|
||||
find_smallest(Ccb_halfedge_const_circulator circ,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY> const&)
|
||||
{ return circ; }
|
||||
|
||||
/*! finds the halfedge incident to the lexicographically smallest vertex
|
||||
* along the CCB, such that there is no other halfedge underneath.
|
||||
*/
|
||||
template <typename Traits>
|
||||
Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ,
|
||||
const Traits&) {
|
||||
// std::cout << "find_smallest()\n";
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto cmp_xy = traits->compare_xy_2_object();
|
||||
auto cmp_y = traits->compare_y_at_x_right_2_object();
|
||||
|
||||
// Find the first halfedge directed from left to right
|
||||
auto curr = circ;
|
||||
do if (curr->direction() == CGAL::ARR_LEFT_TO_RIGHT) break;
|
||||
while (++curr != circ);
|
||||
Halfedge_const_handle ext = curr;
|
||||
|
||||
// Find the halfedge incident to the lexicographically smallest vertex,
|
||||
// such that there is no other halfedge underneath.
|
||||
do {
|
||||
// Discard edges not directed from left to right:
|
||||
if (curr->direction() != CGAL::ARR_LEFT_TO_RIGHT) continue;
|
||||
|
||||
auto res = cmp_xy(curr->source()->point(), ext->source()->point());
|
||||
|
||||
// Discard the edges inciden to a point strictly larger than the point
|
||||
// incident to the stored extreme halfedge:
|
||||
if (res == LARGER) continue;
|
||||
|
||||
// Store the edge inciden to a point strictly smaller:
|
||||
if (res == SMALLER) {
|
||||
ext = curr;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Kernel, int AtanX, int AtanY>
|
||||
Halfedge_const_handle
|
||||
find_smallest(Ccb_halfedge_const_circulator circ,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY> const&)
|
||||
{ return circ; }
|
||||
// The incident points are equal; compare the halfedges themselves:
|
||||
if (cmp_y(curr->curve(), ext->curve(), curr->source()->point()) ==
|
||||
SMALLER)
|
||||
ext = curr;
|
||||
} while (++curr != circ);
|
||||
|
||||
/*! Find the halfedge incident to the lexicographically smallest vertex
|
||||
* along the CCB, such that there is no other halfedge underneath.
|
||||
*/
|
||||
template <typename Traits>
|
||||
Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ,
|
||||
const Traits&)
|
||||
{
|
||||
// std::cout << "find_smallest()\n";
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto cmp_xy = traits->compare_xy_2_object();
|
||||
auto cmp_y = traits->compare_y_at_x_right_2_object();
|
||||
return ext;
|
||||
}
|
||||
|
||||
// Find the first halfedge directed from left to right
|
||||
auto curr = circ;
|
||||
do if (curr->direction() == CGAL::ARR_LEFT_TO_RIGHT) break;
|
||||
while (++curr != circ);
|
||||
Halfedge_const_handle ext = curr;
|
||||
|
||||
// Find the halfedge incident to the lexicographically smallest vertex,
|
||||
// such that there is no other halfedge underneath.
|
||||
do {
|
||||
// Discard edges not directed from left to right:
|
||||
if (curr->direction() != CGAL::ARR_LEFT_TO_RIGHT) continue;
|
||||
|
||||
auto res = cmp_xy(curr->source()->point(), ext->source()->point());
|
||||
|
||||
// Discard the edges inciden to a point strictly larger than the point
|
||||
// incident to the stored extreme halfedge:
|
||||
if (res == LARGER) continue;
|
||||
|
||||
// Store the edge inciden to a point strictly smaller:
|
||||
if (res == SMALLER) {
|
||||
ext = curr;
|
||||
continue;
|
||||
}
|
||||
|
||||
// The incident points are equal; compare the halfedges themselves:
|
||||
if (cmp_y(curr->curve(), ext->curve(), curr->source()->point()) ==
|
||||
SMALLER)
|
||||
ext = curr;
|
||||
} while (++curr != circ);
|
||||
|
||||
return ext;
|
||||
}
|
||||
|
||||
/// Add all elements to be drawn.
|
||||
void add_elements()
|
||||
{
|
||||
//! adds all elements to be drawn.
|
||||
void add_elements() {
|
||||
// std::cout << "add_elements()\n";
|
||||
// std::cout << "ratio: " << this->pixel_ratio() << std::endl;
|
||||
m_visited.clear();
|
||||
|
||||
if (m_aos.is_empty()) return;
|
||||
|
||||
if(m_gso.are_faces_enabled())
|
||||
if (m_gso.are_faces_enabled())
|
||||
{ add_faces(*(this->m_aos.geometry_traits())); }
|
||||
|
||||
// Add edges that do not separate faces.
|
||||
if(m_gso.are_edges_enabled())
|
||||
{
|
||||
for (auto it = m_aos.edges_begin(); it != m_aos.edges_end(); ++it)
|
||||
{ if (it->face()==it->twin()->face())
|
||||
{
|
||||
if(m_gso.draw_edge(m_aos, it))
|
||||
{
|
||||
if(m_gso.colored_edge(m_aos, it))
|
||||
{ draw_curve(it->curve(), true, m_gso.edge_color(m_aos, it)); }
|
||||
if (m_gso.are_edges_enabled()) {
|
||||
for (auto it = m_aos.edges_begin(); it != m_aos.edges_end(); ++it) {
|
||||
if (it->face()==it->twin()->face()) {
|
||||
if (m_gso.draw_edge(m_aos, it)) {
|
||||
if (m_gso.colored_edge(m_aos, it))
|
||||
draw_curve(it->curve(), true, m_gso.edge_color(m_aos, it));
|
||||
else
|
||||
{ draw_curve(it->curve(), false, CGAL::IO::Color()); }
|
||||
draw_curve(it->curve(), false, CGAL::IO::Color());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add all points
|
||||
if(m_gso.are_vertices_enabled())
|
||||
{
|
||||
if (m_gso.are_vertices_enabled()) {
|
||||
for (auto it = m_aos.vertices_begin(); it != m_aos.vertices_end(); ++it)
|
||||
{ draw_point(it); }
|
||||
draw_point(it);
|
||||
}
|
||||
|
||||
m_visited.clear();
|
||||
}
|
||||
|
||||
/*! Draw a curve using approximate coordinates.
|
||||
/*! draws a curve using approximate coordinates.
|
||||
* Call this member function only of the geometry traits is equipped with
|
||||
* the coordinate-aproximation functionality of a curve.
|
||||
* This function must be inlined (e.g., a template) to enable the
|
||||
|
|
@ -427,149 +404,138 @@ namespace draw_function_for_arrangement_2
|
|||
template <typename XMonotoneCurve, typename Approximate>
|
||||
void draw_approximate_curve(const XMonotoneCurve& curve,
|
||||
const Approximate& approx,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{
|
||||
bool colored, const CGAL::IO::Color& c) {
|
||||
std::vector<typename Gt::Approximate_point_2> polyline;
|
||||
double error(0.01); // TODO? (this->pixel_ratio());
|
||||
approx(curve, error, std::back_inserter(polyline));
|
||||
if (polyline.empty()) return;
|
||||
auto it = polyline.begin();
|
||||
auto prev = it++;
|
||||
for (; it != polyline.end(); prev = it++)
|
||||
{
|
||||
if(colored)
|
||||
{ m_gs.add_segment(*prev, *it, c); }
|
||||
else
|
||||
{ m_gs.add_segment(*prev, *it); }
|
||||
for (; it != polyline.end(); prev = it++) {
|
||||
if (colored) m_gs.add_segment(*prev, *it, c);
|
||||
else m_gs.add_segment(*prev, *it);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*! Compile time dispatching
|
||||
*/
|
||||
#if 0
|
||||
template <typename T, typename I = void>
|
||||
void draw_curve_impl2(const X_monotone_curve& xcv, T const&, long)
|
||||
{ draw_exact_curve(xcv); }
|
||||
template <typename T, typename I = void>
|
||||
void draw_curve_impl2(const X_monotone_curve& xcv, T const&, long)
|
||||
{ draw_exact_curve(xcv); }
|
||||
|
||||
template <typename T, typename I>
|
||||
auto draw_curve_impl2(const X_monotone_curve& xcv, T const& approx, int) ->
|
||||
decltype(approx.template operator()<I>(X_monotone_curve{}, double{}, I{},
|
||||
bool{}), void())
|
||||
{ draw_approximate_curve(xcv, approx); }
|
||||
template <typename T, typename I>
|
||||
auto draw_curve_impl2(const X_monotone_curve& xcv, T const& approx, int) ->
|
||||
decltype(approx.template operator()<I>(X_monotone_curve{}, double{}, I{},
|
||||
bool{}), void())
|
||||
{ draw_approximate_curve(xcv, approx); }
|
||||
|
||||
template <typename T>
|
||||
void draw_curve_impl1(const X_monotone_curve& xcv, T const&, long)
|
||||
{ draw_exact_curve(xcv); }
|
||||
template <typename T>
|
||||
void draw_curve_impl1(const X_monotone_curve& xcv, T const&, long)
|
||||
{ draw_exact_curve(xcv); }
|
||||
|
||||
template <typename T>
|
||||
auto draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_curve_impl2<Approximate, int>(xcv, traits.approximate_2_object(), 0);
|
||||
}
|
||||
template <typename T>
|
||||
auto draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int) ->
|
||||
decltype(traits.approximate_2_object(), void()) {
|
||||
using Approximate = typename Gt::Approximate_2;
|
||||
draw_curve_impl2<Approximate, int>(xcv, traits.approximate_2_object(), 0);
|
||||
}
|
||||
#else
|
||||
template <typename T>
|
||||
void draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{ draw_approximate_curve(xcv, traits.approximate_2_object(), colored, c); }
|
||||
template <typename T>
|
||||
void draw_curve_impl1(const X_monotone_curve& xcv, T const& traits, int,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{ draw_approximate_curve(xcv, traits.approximate_2_object(), colored, c); }
|
||||
#endif
|
||||
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_curve_impl1
|
||||
(const X_monotone_curve& xcv,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Kernel = Kernel_;
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Ap = typename Traits::Approximate_point_2;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
std::vector<Ap> apoints;
|
||||
double error(0.01);
|
||||
approx(xcv, error, std::back_inserter(apoints));
|
||||
auto it = apoints.begin();
|
||||
template <typename Kernel_, int AtanX, int AtanY>
|
||||
void draw_curve_impl1
|
||||
(const X_monotone_curve& xcv,
|
||||
Arr_geodesic_arc_on_sphere_traits_2<Kernel_, AtanX, AtanY> const& traits,
|
||||
int,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{
|
||||
auto approx = traits.approximate_2_object();
|
||||
using Kernel = Kernel_;
|
||||
using Traits = Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY>;
|
||||
using Ak = typename Traits::Approximate_kernel;
|
||||
using Ap = typename Traits::Approximate_point_2;
|
||||
using Approx_point_3 = typename Ak::Point_3;
|
||||
std::vector<Ap> apoints;
|
||||
double error(0.01);
|
||||
approx(xcv, error, std::back_inserter(apoints));
|
||||
auto it = apoints.begin();
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 prev(x/l, y/l, z/l);
|
||||
for (++it; it != apoints.end(); ++it) {
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 prev(x/l, y/l, z/l);
|
||||
for (++it; it != apoints.end(); ++it) {
|
||||
auto x = it->dx();
|
||||
auto y = it->dy();
|
||||
auto z = it->dz();
|
||||
auto l = std::sqrt(x*x + y*y + z*z);
|
||||
Approx_point_3 next(x/l, y/l, z/l);
|
||||
if(colored)
|
||||
{ m_gs.add_segment(prev, next, c); }
|
||||
else
|
||||
{ m_gs.add_segment(prev, next); }
|
||||
prev = next;
|
||||
}
|
||||
Approx_point_3 next(x/l, y/l, z/l);
|
||||
if (colored) m_gs.add_segment(prev, next, c);
|
||||
else m_gs.add_segment(prev, next);
|
||||
prev = next;
|
||||
}
|
||||
}
|
||||
|
||||
/// Draw a curve.
|
||||
template <typename XMonotoneCurve>
|
||||
void draw_curve(const XMonotoneCurve& curve,
|
||||
bool colored, const CGAL::IO::Color& c)
|
||||
{
|
||||
/* Check whether the traits has a member function called
|
||||
* approximate_2_object() and if so check whether the return type, namely
|
||||
* `Approximate_2` has an appropriate operator.
|
||||
*
|
||||
* C++20 supports concepts and `requires` expression; see, e.g.,
|
||||
* https://en.cppreference.com/w/cpp/language/constraints; thus, the first
|
||||
* condition above can be elegantly verified as follows:
|
||||
* constexpr bool has_approximate_2_object =
|
||||
* requires(const Gt& traits) { traits.approximate_2_object(); };
|
||||
*
|
||||
* C++17 has experimental constructs called is_detected and
|
||||
* is_detected_v that can be used to achieve the same goal.
|
||||
*
|
||||
* For now we use C++14 features.
|
||||
*/
|
||||
//! draws a curve.
|
||||
template <typename XMonotoneCurve>
|
||||
void draw_curve(const XMonotoneCurve& curve,
|
||||
bool colored, const CGAL::IO::Color& c) {
|
||||
/* Check whether the traits has a member function called
|
||||
* approximate_2_object() and if so check whether the return type, namely
|
||||
* `Approximate_2` has an appropriate operator.
|
||||
*
|
||||
* C++20 supports concepts and `requires` expression; see, e.g.,
|
||||
* https://en.cppreference.com/w/cpp/language/constraints; thus, the first
|
||||
* condition above can be elegantly verified as follows:
|
||||
* constexpr bool has_approximate_2_object =
|
||||
* requires(const Gt& traits) { traits.approximate_2_object(); };
|
||||
*
|
||||
* C++17 has experimental constructs called is_detected and
|
||||
* is_detected_v that can be used to achieve the same goal.
|
||||
*
|
||||
* For now we use C++14 features.
|
||||
*/
|
||||
#if 0
|
||||
if constexpr (std::experimental::is_detected_v<approximate_2_object_t, Gt>)
|
||||
{
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
auto approx = traits->approximate_2_object();
|
||||
draw_approximate_curve(curve, approx);
|
||||
return;
|
||||
}
|
||||
draw_exact_curve(curve);
|
||||
#else
|
||||
if constexpr (std::experimental::is_detected_v<approximate_2_object_t, Gt>) {
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
draw_curve_impl1(curve, *traits, 0, colored, c);
|
||||
#endif
|
||||
auto approx = traits->approximate_2_object();
|
||||
draw_approximate_curve(curve, approx);
|
||||
return;
|
||||
}
|
||||
draw_exact_curve(curve);
|
||||
#else
|
||||
const auto* traits = this->m_aos.geometry_traits();
|
||||
draw_curve_impl1(curve, *traits, 0, colored, c);
|
||||
#endif
|
||||
}
|
||||
|
||||
protected:
|
||||
Arr& m_aos;
|
||||
CGAL::Graphics_scene& m_gs;
|
||||
const GSOptions& m_gso;
|
||||
std::unordered_map<Face_const_handle, bool> m_visited;
|
||||
};
|
||||
protected:
|
||||
Arr& m_aos;
|
||||
CGAL::Graphics_scene& m_gs;
|
||||
const GSOptions& m_gso;
|
||||
std::unordered_map<Face_const_handle, bool> m_visited;
|
||||
};
|
||||
|
||||
} // namespace draw_function_for_arrangement_2
|
||||
} // namespace draw_aos
|
||||
|
||||
#define CGAL_ARR_TYPE CGAL::Arrangement_on_surface_2<GeometryTraits_2, TopologyTraits>
|
||||
|
||||
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
||||
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos,
|
||||
CGAL::Graphics_scene& graphics_scene,
|
||||
const GSOptions& gso)
|
||||
{
|
||||
draw_function_for_arrangement_2::Draw_arr_tool dar(aos, graphics_scene, gso);
|
||||
const GSOptions& gso) {
|
||||
draw_aos::Draw_arr_tool dar(aos, graphics_scene, gso);
|
||||
dar.add_elements();
|
||||
}
|
||||
|
||||
template <typename GeometryTraits_2, typename TopologyTraits>
|
||||
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos,
|
||||
CGAL::Graphics_scene& graphics_scene)
|
||||
{
|
||||
CGAL::Graphics_scene& graphics_scene) {
|
||||
CGAL::Graphics_scene_options<CGAL_ARR_TYPE,
|
||||
typename CGAL_ARR_TYPE::Vertex_const_handle,
|
||||
typename CGAL_ARR_TYPE::Halfedge_const_handle,
|
||||
|
|
@ -589,11 +555,10 @@ void add_to_graphics_scene(const CGAL_ARR_TYPE& aos,
|
|||
add_to_graphics_scene(aos, graphics_scene, gso);
|
||||
}
|
||||
|
||||
/// Draw an arrangement on surface.
|
||||
//! draws an arrangement on surface.
|
||||
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
||||
void draw(const CGAL_ARR_TYPE& aos, const GSOptions& gso,
|
||||
const char* title = "2D Arrangement on Surface Basic Viewer")
|
||||
{
|
||||
const char* title = "2D Arrangement on Surface Basic Viewer") {
|
||||
CGAL::Graphics_scene graphics_scene;
|
||||
add_to_graphics_scene(aos, graphics_scene, gso);
|
||||
draw_graphics_scene(graphics_scene, title);
|
||||
|
|
@ -602,8 +567,7 @@ void draw(const CGAL_ARR_TYPE& aos, const GSOptions& gso,
|
|||
|
||||
template <typename GeometryTraits_2, typename TopologyTraits>
|
||||
void draw(const CGAL_ARR_TYPE& aos,
|
||||
const char* title = "2D Arrangement on Surface Basic Viewer")
|
||||
{
|
||||
const char* title = "2D Arrangement on Surface Basic Viewer") {
|
||||
CGAL::Graphics_scene graphics_scene;
|
||||
add_to_graphics_scene(aos, graphics_scene);
|
||||
draw_graphics_scene(graphics_scene, title);
|
||||
|
|
|
|||
Loading…
Reference in New Issue