mirror of https://github.com/CGAL/cgal
Added triangulated_mixed_complex back. Next, do the locate in the
triangulated mixed complex
This commit is contained in:
parent
d37cf16eb1
commit
8f4555ea5d
|
|
@ -46,7 +46,7 @@ int main(int argc, char *argv[]) {
|
|||
std::cout << "Is closed: " << (p.is_closed() ? "Yes" : "No") << std::endl;
|
||||
|
||||
std::ofstream out("mesh.off");
|
||||
// // write_polyhedron_with_normals(p, skin_surface, out);
|
||||
//write_polyhedron_with_normals(p, skin_surface, out);
|
||||
out << p;
|
||||
|
||||
return 0;
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
// examples/Skin_surface_3/NGHK_skin_surface_subdiv.C
|
||||
//#define CGAL_PROFILE
|
||||
#define CGAL_PROFILE
|
||||
//#define CGAL_NO_ASSERTIONS
|
||||
|
||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ include $(CGAL_MAKEFILE)
|
|||
# compiler flags
|
||||
#---------------------------------------------------------------------#
|
||||
|
||||
CXXFLAGS = -g \
|
||||
CXXFLAGS = \
|
||||
-I.\
|
||||
-Idsrpdb/include\
|
||||
-I../../include \
|
||||
|
|
|
|||
|
|
@ -15,8 +15,8 @@ void write_polyhedron_with_normals(SkinSurface &skin,
|
|||
typedef typename Polyhedron::Facet_iterator Facet_iterator;
|
||||
typedef typename Polyhedron::Halfedge_around_facet_circulator HFC;
|
||||
typedef typename Polyhedron::Vertex_handle Vertex_handle;
|
||||
typedef typename Polyhedron::Traits::Vector_3 Vector_3;
|
||||
|
||||
typedef typename Polyhedron::Traits::Vector_3 Vector;
|
||||
//typedef typename SkinSurface::Vector Vector;
|
||||
// Write header
|
||||
out << "NOFF " << p.size_of_vertices ()
|
||||
<< " " << p.size_of_facets()
|
||||
|
|
@ -29,7 +29,7 @@ void write_polyhedron_with_normals(SkinSurface &skin,
|
|||
// Subdivision_policy *policy = get_subdivision_policy(p, skin);
|
||||
for (Vertex_iterator vit = p.vertices_begin();
|
||||
vit != p.vertices_end(); vit ++) {
|
||||
Vector_3 n = skin.normal(vit->point());
|
||||
Vector n = skin.normal(vit->point());
|
||||
n = n/sqrt(n*n);
|
||||
out << vit->point() << " "
|
||||
<< n
|
||||
|
|
|
|||
|
|
@ -105,6 +105,7 @@ private:
|
|||
typedef typename TMC::Finite_cells_iterator TMC_Cell_iterator;
|
||||
typedef typename TMC::Vertex_handle TMC_Vertex_handle;
|
||||
typedef typename TMC::Cell_handle TMC_Cell_handle;
|
||||
typedef typename TMC::Point TMC_Point;
|
||||
public:
|
||||
template < class WP_iterator >
|
||||
Skin_surface_3(WP_iterator begin, WP_iterator end,
|
||||
|
|
@ -170,8 +171,13 @@ public:
|
|||
template <class Polyhedron_3>
|
||||
void subdivide_skin_surface_mesh_3(Polyhedron_3 &p) const;
|
||||
|
||||
Sign sign(const Bare_point &p, const Simplex &start = Simplex()) const {
|
||||
return get_sign(locate_mixed(p,start), p);
|
||||
Sign sign(const Bare_point &p,
|
||||
const TMC_Cell_handle start = TMC_Cell_handle()) const {
|
||||
if (start == TMC_Cell_handle()) {
|
||||
return sign(locate_mixed(p,start), p);
|
||||
} else {
|
||||
return sign(start, p);
|
||||
}
|
||||
}
|
||||
Sign sign(TMC_Vertex_handle vit) const {
|
||||
CGAL_assertion(!tmc.is_infinite(vit));
|
||||
|
|
@ -187,7 +193,7 @@ public:
|
|||
}
|
||||
CGAL_assertion(!tmc.is_infinite(ch));
|
||||
|
||||
// don't use get_sign, since the point is constructed:
|
||||
// don't use sign, since the point is constructed:
|
||||
try
|
||||
{
|
||||
CGAL_PROFILER(std::string("NGHK: calls to : ") +
|
||||
|
|
@ -210,8 +216,13 @@ public:
|
|||
EK() ).sign(p_exact);
|
||||
}
|
||||
Vector
|
||||
normal(const Bare_point &p, const Simplex &start = Simplex()) const {
|
||||
return get_normal(locate_mixed(p,start), p);
|
||||
normal(const Bare_point &p,
|
||||
const TMC_Cell_handle start = TMC_Cell_handle()) const {
|
||||
if (start == TMC_Cell_handle()) {
|
||||
return get_normal(locate_mixed(p,start), p);
|
||||
} else {
|
||||
return get_normal(start, p);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Gt2>
|
||||
|
|
@ -361,7 +372,7 @@ private:
|
|||
public:
|
||||
TMC_Cell_handle
|
||||
locate_mixed(const Bare_point &p,
|
||||
const TMC_Cell_handle &start = TMC_Cell_handle()) const;
|
||||
TMC_Cell_handle start = TMC_Cell_handle()) const;
|
||||
|
||||
// exact computation of the sign on a vertex of the TMC
|
||||
// Sign sign(const CMCT_Vertex_handle vh) const {
|
||||
|
|
@ -427,9 +438,37 @@ public:
|
|||
).value(p1));
|
||||
}
|
||||
FT
|
||||
less(Cell_info &info1,
|
||||
const Bare_point &p1,
|
||||
Cell_info &info2,
|
||||
const Bare_point &p2) const {
|
||||
try
|
||||
{
|
||||
CGAL_PROFILER(std::string("NGHK: calls to : ") +
|
||||
std::string(CGAL_PRETTY_FUNCTION));
|
||||
Protect_FPU_rounding<true> P;
|
||||
Sign result = CGAL_NTS sign(info2.second->value(p2) -
|
||||
info1.second->value(p1));
|
||||
if (! is_indeterminate(result))
|
||||
return result==POSITIVE;
|
||||
}
|
||||
catch (Interval_nt_advanced::unsafe_comparison) {}
|
||||
CGAL_PROFILER(std::string("NGHK: failures of : ") +
|
||||
std::string(CGAL_PRETTY_FUNCTION));
|
||||
Protect_FPU_rounding<false> P(CGAL_FE_TONEAREST);
|
||||
|
||||
return
|
||||
CGAL_NTS sign(construct_surface(info2.first,
|
||||
Exact_predicates_exact_constructions_kernel()
|
||||
).value(p2) -
|
||||
construct_surface(info1.first,
|
||||
Exact_predicates_exact_constructions_kernel()
|
||||
).value(p1));
|
||||
}
|
||||
FT
|
||||
value(const Bare_point &p) const {
|
||||
Simplex sim = locate_mixed(p);
|
||||
return value(sim,p);
|
||||
TMC_Cell_handle ch = locate_mixed(p);
|
||||
return value(Simplex(ch),p);
|
||||
}
|
||||
|
||||
FT
|
||||
|
|
@ -444,31 +483,36 @@ public:
|
|||
return value(ch->info(), p);
|
||||
}
|
||||
Vector
|
||||
get_normal(const Simplex &mc, const Bare_point &p) const {
|
||||
return construct_surface(mc).gradient(p);
|
||||
get_normal(TMC_Cell_handle ch, const Bare_point &p) const {
|
||||
CGAL_assertion(!tmc.is_infinite(ch));
|
||||
|
||||
return ch->info().second->gradient(p);
|
||||
}
|
||||
|
||||
// Move the point in the direction of the gradient
|
||||
void to_surface(Bare_point &p,
|
||||
const Simplex &start = Simplex()) const {
|
||||
const TMC_Cell_handle &start = TMC_Cell_handle()) const {
|
||||
Bare_point p1 = p;
|
||||
Simplex s1 = locate_mixed(p,start);
|
||||
Sign sign1 = get_sign(s1, p1);
|
||||
TMC_Cell_handle ch1 = start;
|
||||
if (start != TMC_Cell_handle()) {
|
||||
ch1 = locate_mixed(p,ch1);
|
||||
}
|
||||
Sign sign1 = sign(ch1, p1);
|
||||
|
||||
Vector n = get_normal(s1,p);
|
||||
if (sign1 == POSITIVE) n = -value(s1,p)*n;
|
||||
Vector n = get_normal(ch1,p);
|
||||
if (sign1 == POSITIVE) n = -value(ch1,p)*n;
|
||||
|
||||
int k=2;
|
||||
Bare_point p2 = p+k*n;
|
||||
Simplex s2 = locate_mixed(p2, s1);
|
||||
while (get_sign(s2,p2) == sign1) {
|
||||
TMC_Cell_handle ch2 = locate_mixed(p2, ch1);
|
||||
while (sign(ch2,p2) == sign1) {
|
||||
k++;
|
||||
p1 = p2;
|
||||
s1 = s2;
|
||||
ch1 = ch2;
|
||||
p2 = p+k*n;
|
||||
s2 = locate_mixed(p2, s2);
|
||||
ch2 = locate_mixed(p2, ch2);
|
||||
}
|
||||
intersect(p1,p2, s1,s2, p);
|
||||
intersect(p1,p2, ch1,ch2, p);
|
||||
}
|
||||
// void intersect(const CMCT_Vertex_handle vh1,
|
||||
// const CMCT_Vertex_handle vh2,
|
||||
|
|
@ -500,21 +544,21 @@ public:
|
|||
|
||||
FT sq_dist = squared_distance(p1,p2);
|
||||
// Use value to make the computation robust (endpoints near the surface)
|
||||
if (value(s1, p1) > value(s2, p2)) std::swap(p1, p2);
|
||||
if (less(s2->info(), p2, s1->info(), p1)) std::swap(p1, p2);
|
||||
TMC_Cell_handle sp = s1;
|
||||
|
||||
while ((s1 != s2) && (sq_dist > 1e-8)) {
|
||||
p = midpoint(p1, p2);
|
||||
sp = locate_mixed(converter(p), sp);
|
||||
|
||||
if (get_sign(sp, p) == NEGATIVE) { p1 = p; s1 = sp; }
|
||||
if (sign(sp, p) == NEGATIVE) { p1 = p; s1 = sp; }
|
||||
else { p2 = p; s2 = sp; }
|
||||
|
||||
sq_dist *= .25;
|
||||
}
|
||||
while (sq_dist > 1e-8) {
|
||||
p = midpoint(p1, p2);
|
||||
if (get_sign(s1, p) == NEGATIVE) { p1 = p; }
|
||||
if (sign(s1, p) == NEGATIVE) { p1 = p; }
|
||||
else { p2 = p; }
|
||||
sq_dist *= .25;
|
||||
}
|
||||
|
|
@ -581,7 +625,7 @@ public:
|
|||
if (nIn==1) {
|
||||
p1 = tet_pts[sortedV[0]];
|
||||
obj = CGAL::intersection(Plane(tet_pts[sortedV[1]],
|
||||
tet_pts[sortedV[3]],
|
||||
tet_pts[sortedV[2]],
|
||||
tet_pts[sortedV[3]]),
|
||||
Line(p1, p));
|
||||
if ( !assign(p2, obj) ) {
|
||||
|
|
@ -614,6 +658,7 @@ public:
|
|||
CGAL_assertion_msg(false,"intersection: no intersection.");
|
||||
}
|
||||
} else {
|
||||
std::cout << "nIn == " << nIn << std::endl;
|
||||
CGAL_assertion(false);
|
||||
}
|
||||
|
||||
|
|
@ -706,6 +751,9 @@ public:
|
|||
FT shrink_factor() const {
|
||||
return gt.get_shrink();
|
||||
}
|
||||
const TMC &triangulated_mixed_complex() const {
|
||||
return tmc;
|
||||
}
|
||||
|
||||
private:
|
||||
void construct_bounding_box(Regular ®ular);
|
||||
|
|
@ -772,12 +820,86 @@ construct_bounding_box(Regular ®ular)
|
|||
template <class MixedComplexTraits_3>
|
||||
typename Skin_surface_3<MixedComplexTraits_3>::TMC_Cell_handle
|
||||
Skin_surface_3<MixedComplexTraits_3>::
|
||||
locate_mixed(const Bare_point &p,
|
||||
const TMC_Cell_handle &start) const {
|
||||
Cartesian_converter<typename Geometric_traits::Bare_point::R, FK> converter;
|
||||
|
||||
// NGHK: add a try ... catch?
|
||||
return tmc.locate(converter(p));
|
||||
locate_mixed(const Bare_point &p0,
|
||||
TMC_Cell_handle start) const {
|
||||
typedef Exact_predicates_exact_constructions_kernel EK;
|
||||
Cartesian_converter<typename Geometric_traits::Bare_point::R, EK> converter;
|
||||
Skin_surface_traits_3<EK> exact_traits(shrink_factor());
|
||||
|
||||
typename EK::Point_3 p = converter(p0);
|
||||
|
||||
Protect_FPU_rounding<false> P(CGAL_FE_TONEAREST);
|
||||
|
||||
typename EK::Point_3 e_pts[4];
|
||||
const typename EK::Point_3 *pts[4];
|
||||
|
||||
// Make sure we continue from here with a finite cell.
|
||||
if ( start == TMC_Cell_handle() )
|
||||
start = tmc.infinite_cell();
|
||||
|
||||
int ind_inf;
|
||||
if (start->has_vertex(tmc.infinite_vertex(), ind_inf) )
|
||||
start = start->neighbor(ind_inf);
|
||||
|
||||
CGAL_triangulation_precondition(start != TMC_Cell_handle());
|
||||
CGAL_triangulation_precondition(!start->has_vertex(tmc.infinite_vertex()));
|
||||
|
||||
// We implement the remembering visibility/stochastic walk.
|
||||
|
||||
// Remembers the previous cell to avoid useless orientation tests.
|
||||
TMC_Cell_handle previous = TMC_Cell_handle();
|
||||
TMC_Cell_handle c = start;
|
||||
|
||||
// Stores the results of the 4 orientation tests. It will be used
|
||||
// at the end to decide if p lies on a face/edge/vertex/interior.
|
||||
Orientation o[4];
|
||||
|
||||
// Now treat the cell c.
|
||||
try_next_cell:
|
||||
|
||||
// We know that the 4 vertices of c are positively oriented.
|
||||
// So, in order to test if p is seen outside from one of c's facets,
|
||||
// we just replace the corresponding point by p in the orientation
|
||||
// test. We do this using the array below.
|
||||
for (int j=0; j<4; j++) {
|
||||
e_pts[j] = get_anchor_point(c->vertex(j)->info(), exact_traits);
|
||||
pts[j] = &e_pts[j];
|
||||
}
|
||||
|
||||
// For the remembering stochastic walk,
|
||||
// we need to start trying with a random index :
|
||||
int i = rng.template get_bits<2>();
|
||||
// For the remembering visibility walk (Delaunay only), we don't :
|
||||
// int i = 0;
|
||||
|
||||
for (int j=0; j != 4; ++j, i = (i+1)&3) {
|
||||
TMC_Cell_handle next = c->neighbor(i);
|
||||
if (previous == next) {
|
||||
o[i] = POSITIVE;
|
||||
continue;
|
||||
}
|
||||
// We temporarily put p at i's place in pts.
|
||||
const typename EK::Point_3* backup = pts[i];
|
||||
pts[i] = &p;
|
||||
try {
|
||||
o[i] = orientation(*pts[0], *pts[1], *pts[2], *pts[3]);
|
||||
} catch (Interval_nt_advanced::unsafe_comparison) {
|
||||
}
|
||||
if ( o[i] != NEGATIVE ) {
|
||||
pts[i] = backup;
|
||||
continue;
|
||||
}
|
||||
if ( next->has_vertex(tmc.infinite_vertex()) ) {
|
||||
// We are outside the convex hull.
|
||||
return next;
|
||||
}
|
||||
previous = c;
|
||||
c = next;
|
||||
goto try_next_cell;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// Simplex prev, s;
|
||||
// if (start == Simplex()) {
|
||||
|
|
@ -957,15 +1079,12 @@ locate_mixed(const Bare_point &p,
|
|||
// // std::cout << "]";
|
||||
|
||||
// return s;
|
||||
}
|
||||
// }
|
||||
|
||||
template <class MixedComplexTraits_3>
|
||||
template <class Polyhedron_3>
|
||||
void
|
||||
Skin_surface_3<MixedComplexTraits_3>::mesh_skin_surface_3(Polyhedron_3 &p) const {
|
||||
std::cout << "Mesh_Skin_Surface_3" << std::endl;
|
||||
std::cout << " TODO" << std::endl;
|
||||
|
||||
typedef Polyhedron_3 Polyhedron;
|
||||
|
||||
typedef Marching_tetrahedra_traits_skin_surface_3<
|
||||
|
|
|
|||
|
|
@ -95,78 +95,76 @@ public:
|
|||
Rt_Cell_handle ch;
|
||||
|
||||
switch (s.dimension()) {
|
||||
case 0:
|
||||
{
|
||||
vh = s;
|
||||
create_sphere(r2s_converter(vh->point().point()),
|
||||
-r2s_converter(vh->point().weight()),
|
||||
shrink,
|
||||
1);
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
e = s;
|
||||
Surface_weighted_point p0 =
|
||||
r2s_converter(e.first->vertex(e.second)->point());
|
||||
Surface_weighted_point p1 =
|
||||
r2s_converter(e.first->vertex(e.third)->point());
|
||||
|
||||
create_hyperboloid
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()(p0,p1),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()(p0,p1),
|
||||
p0 - p1,
|
||||
shrink,
|
||||
1);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
f = s;
|
||||
Surface_weighted_point p0 =
|
||||
r2s_converter(f.first->vertex((f.second+1)&3)->point());
|
||||
Surface_weighted_point p1 =
|
||||
r2s_converter(f.first->vertex((f.second+2)&3)->point());
|
||||
Surface_weighted_point p2 =
|
||||
r2s_converter(f.first->vertex((f.second+3)&3)->point());
|
||||
|
||||
create_hyperboloid
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()(p0,p1,p2),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()(p0,p1,p2),
|
||||
typename Surface_regular_traits::
|
||||
Construct_orthogonal_vector_3()(p0,p1,p2),
|
||||
1-shrink,
|
||||
-1);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
ch = s;
|
||||
create_sphere
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()
|
||||
(r2s_converter(ch->vertex(0)->point()),
|
||||
r2s_converter(ch->vertex(1)->point()),
|
||||
r2s_converter(ch->vertex(2)->point()),
|
||||
r2s_converter(ch->vertex(3)->point())),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()
|
||||
(r2s_converter(ch->vertex(0)->point()),
|
||||
r2s_converter(ch->vertex(1)->point()),
|
||||
r2s_converter(ch->vertex(2)->point()),
|
||||
r2s_converter(ch->vertex(3)->point())),
|
||||
1-shrink,
|
||||
-1);
|
||||
}
|
||||
case 0:
|
||||
{
|
||||
vh = s;
|
||||
create_sphere(r2s_converter(vh->point().point()),
|
||||
-r2s_converter(vh->point().weight()),
|
||||
shrink,
|
||||
1);
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
e = s;
|
||||
Surface_weighted_point p0 =
|
||||
r2s_converter(e.first->vertex(e.second)->point());
|
||||
Surface_weighted_point p1 =
|
||||
r2s_converter(e.first->vertex(e.third)->point());
|
||||
|
||||
create_hyperboloid
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()(p0,p1),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()(p0,p1),
|
||||
p0 - p1,
|
||||
shrink,
|
||||
1);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
f = s;
|
||||
Surface_weighted_point p0 =
|
||||
r2s_converter(f.first->vertex((f.second+1)&3)->point());
|
||||
Surface_weighted_point p1 =
|
||||
r2s_converter(f.first->vertex((f.second+2)&3)->point());
|
||||
Surface_weighted_point p2 =
|
||||
r2s_converter(f.first->vertex((f.second+3)&3)->point());
|
||||
|
||||
create_hyperboloid
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()(p0,p1,p2),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()(p0,p1,p2),
|
||||
typename Surface_regular_traits::
|
||||
Construct_orthogonal_vector_3()(p0,p1,p2),
|
||||
1-shrink,
|
||||
-1);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
ch = s;
|
||||
create_sphere
|
||||
(typename Surface_regular_traits::
|
||||
Construct_weighted_circumcenter_3()
|
||||
(r2s_converter(ch->vertex(0)->point()),
|
||||
r2s_converter(ch->vertex(1)->point()),
|
||||
r2s_converter(ch->vertex(2)->point()),
|
||||
r2s_converter(ch->vertex(3)->point())),
|
||||
typename Surface_regular_traits::
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_3()
|
||||
(r2s_converter(ch->vertex(0)->point()),
|
||||
r2s_converter(ch->vertex(1)->point()),
|
||||
r2s_converter(ch->vertex(2)->point()),
|
||||
r2s_converter(ch->vertex(3)->point())),
|
||||
1-shrink,
|
||||
-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
// NGHK: uncomment:
|
||||
ch->info() = typename SkinSurface_3::Cell_info(s,surf);
|
||||
//ch->simp = s;
|
||||
}
|
||||
|
||||
FT shrink;
|
||||
|
|
|
|||
|
|
@ -17,9 +17,10 @@
|
|||
//
|
||||
// Author(s) : Nico Kruithof <Nico@cs.rug.nl>
|
||||
|
||||
#ifndef CGAL_TRIANGULATE_MIXED_COMPLEX_3_H
|
||||
#define CGAL_TRIANGULATE_MIXED_COMPLEX_3_H
|
||||
#ifndef CGAL_TRIANGULATE_MIXED_COMPLEX_3
|
||||
#define CGAL_TRIANGULATE_MIXED_COMPLEX_3
|
||||
|
||||
// #include <CGAL/Unique_hash_map.h>
|
||||
#include <CGAL/Compute_anchor_3.h>
|
||||
|
||||
#include <CGAL/Triangulation_data_structure_3.h>
|
||||
|
|
@ -96,6 +97,8 @@ private:
|
|||
typedef std::pair<Rt_Simplex,Rt_Simplex> Symb_anchor;
|
||||
|
||||
// You might get type differences here:
|
||||
// The map that maps a Rt_Simplex to an iterator of the map
|
||||
// (used as union_find_structure)
|
||||
struct Anchor_map_iterator_tmp;
|
||||
typedef std::map<Rt_Simplex, Anchor_map_iterator_tmp> Anchor_map;
|
||||
struct Anchor_map_iterator_tmp : Anchor_map::iterator {
|
||||
|
|
@ -105,12 +108,15 @@ private:
|
|||
: Anchor_map::iterator(it) {}
|
||||
};
|
||||
typedef typename Anchor_map::iterator Anchor_map_iterator;
|
||||
public:
|
||||
|
||||
public:
|
||||
Mixed_complex_triangulator_3(Regular const ®ular,
|
||||
Triangulated_mixed_complex const &triangulated_mixed_complex,
|
||||
Rt_FT const &shrink,
|
||||
Triangulated_mixed_complex
|
||||
&triangulated_mixed_complex,
|
||||
bool verbose)
|
||||
: regular(regular),
|
||||
shrink(shrink),
|
||||
_tmc(triangulated_mixed_complex),
|
||||
triangulation_incr_builder(triangulated_mixed_complex),
|
||||
compute_anchor_obj(regular),
|
||||
|
|
@ -119,11 +125,14 @@ public:
|
|||
build();
|
||||
}
|
||||
|
||||
Mixed_complex_triangulator_3(Regular const®ular,
|
||||
Triangulated_mixed_complex &triangulated_mixed_complex,
|
||||
Mixed_complex_triangulator_3(Regular ®ular,
|
||||
Rt_FT const &shrink,
|
||||
Triangulated_mixed_complex
|
||||
&triangulated_mixed_complex,
|
||||
Triangulated_mixed_complex_observer &observer,
|
||||
bool verbose)
|
||||
: regular(regular),
|
||||
shrink(shrink),
|
||||
_tmc(triangulated_mixed_complex),
|
||||
observer(observer),
|
||||
triangulation_incr_builder(triangulated_mixed_complex),
|
||||
|
|
@ -141,27 +150,64 @@ private:
|
|||
if (verbose) std::cout << "Construct vertices" << std::endl;
|
||||
construct_vertices();
|
||||
|
||||
if (verbose) std::cout << "Construct cells" << std::endl;
|
||||
construct_cells(); // mixed cells corresponding to regular vertices
|
||||
// mixed cells corresponding to regular vertices
|
||||
if (verbose) std::cout << "Construct 0 cells" << std::endl;
|
||||
for (Rt_Finite_vertices_iterator vit = regular.finite_vertices_begin();
|
||||
vit != regular.finite_vertices_end(); vit ++) {
|
||||
construct_0_cell(vit);
|
||||
}
|
||||
|
||||
// mixed cells corresponding to regular edges
|
||||
if (verbose) std::cout << "Construct 1 cells" << std::endl;
|
||||
for (Rt_Finite_edges_iterator eit = regular.finite_edges_begin();
|
||||
eit != regular.finite_edges_end(); eit ++) {
|
||||
construct_1_cell(eit);
|
||||
}
|
||||
|
||||
// mixed cells corresponding to regular facets
|
||||
if (verbose) std::cout << "Construct 2 cells" << std::endl;
|
||||
for (Rt_Finite_facets_iterator fit = regular.finite_facets_begin();
|
||||
fit != regular.finite_facets_end(); fit ++) {
|
||||
construct_2_cell(fit);
|
||||
}
|
||||
|
||||
// mixed cells corresponding to regular cells
|
||||
if (verbose) std::cout << "Construct 3 cells" << std::endl;
|
||||
for (Rt_Finite_cells_iterator cit = regular.finite_cells_begin();
|
||||
cit != regular.finite_cells_end();
|
||||
cit++) {
|
||||
construct_3_cell(cit);
|
||||
}
|
||||
|
||||
triangulation_incr_builder.end_triangulation();
|
||||
|
||||
anchors.clear();
|
||||
|
||||
CGAL_assertion(_tmc.is_valid());
|
||||
|
||||
//remove_small_edges();
|
||||
|
||||
// { // NGHK: debug code:
|
||||
// CGAL_assertion(_tmc.is_valid());
|
||||
// std::vector<Tmc_Vertex_handle> ch_vertices;
|
||||
// _tmc.incident_vertices(_tmc.infinite_vertex(),
|
||||
// std::back_inserter(ch_vertices));
|
||||
// for (typename std::vector<Tmc_Vertex_handle>::iterator
|
||||
// vit = ch_vertices.begin(); vit != ch_vertices.end(); vit++) {
|
||||
// CGAL_assertion((*vit)->sign() == POSITIVE);
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
Tmc_Vertex_handle add_vertex(Rt_Simplex const &anchor);
|
||||
Tmc_Vertex_handle add_vertex(Symb_anchor const &anchor);
|
||||
Tmc_Cell_handle add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s);
|
||||
|
||||
Tmc_Vertex_handle get_vertex(Rt_Simplex &sVor);
|
||||
Tmc_Vertex_handle get_vertex(Rt_Simplex &sDel, Rt_Simplex &sVor);
|
||||
|
||||
|
||||
void construct_anchor_del(Rt_Simplex const &sDel);
|
||||
void construct_anchor_vor(Rt_Simplex const &sVor);
|
||||
void construct_anchors();
|
||||
Rt_Simplex get_anchor_del(Rt_Simplex const &sDel) {
|
||||
return find_anchor(anchor_del2, sDel)->first;
|
||||
}
|
||||
Rt_Simplex get_anchor_vor(Rt_Simplex const &sVor) {
|
||||
return find_anchor(anchor_vor2, sVor)->first;
|
||||
}
|
||||
|
|
@ -183,20 +229,17 @@ private:
|
|||
void construct_vertices();
|
||||
|
||||
Tmc_Point get_orthocenter(Rt_Simplex const &s);
|
||||
Tmc_Point get_anchor(Rt_Simplex const &sVor);
|
||||
Tmc_Point get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor);
|
||||
template <class Point>
|
||||
Point construct_anchor_point(const Point ¢er_vor) {
|
||||
std::cout << "still union_of_balls" << std::endl;
|
||||
// typename Other_MixedComplexTraits_3::Bare_point p_del =
|
||||
// orthocenter(v.first, traits);
|
||||
// typename Other_MixedComplexTraits_3::Bare_point p_vor =
|
||||
// orthocenter(v.second, traits);
|
||||
|
||||
// return traits.construct_anchor_point_3_object()(p_del, p_vor);
|
||||
return center_vor;
|
||||
Point construct_anchor_point(const Point ¢er_del,
|
||||
const Point ¢er_vor) {
|
||||
return center_del + shrink*(center_vor-center_del);
|
||||
}
|
||||
|
||||
void construct_cells();
|
||||
void construct_0_cell(Rt_Vertex_handle rt_vh);
|
||||
void construct_1_cell(const Rt_Finite_edges_iterator &eit);
|
||||
void construct_2_cell(const Rt_Finite_facets_iterator &fit);
|
||||
void construct_3_cell(Rt_Cell_handle rt_ch);
|
||||
|
||||
void remove_small_edges();
|
||||
bool is_collapsible(Tmc_Vertex_handle vh,
|
||||
|
|
@ -207,6 +250,7 @@ private:
|
|||
|
||||
private:
|
||||
Regular const ®ular;
|
||||
Rt_FT const &shrink;
|
||||
Triangulated_mixed_complex &_tmc;
|
||||
Triangulated_mixed_complex_observer &observer;
|
||||
|
||||
|
|
@ -240,8 +284,8 @@ private:
|
|||
Unique_hash_map < Rt_Cell_handle, Index_c4 > index_03;
|
||||
|
||||
|
||||
Anchor_map anchor_vor2;
|
||||
std::map<Rt_Simplex, Tmc_Vertex_handle> anchors;
|
||||
Anchor_map anchor_del2, anchor_vor2;
|
||||
std::map<Symb_anchor, Tmc_Vertex_handle> anchors;
|
||||
};
|
||||
|
||||
template <
|
||||
|
|
@ -255,6 +299,47 @@ const int Mixed_complex_triangulator_3<
|
|||
edge_index[4][4] = {{-1,0,1,2},{0,-1,3,4},{1,3,-1,5},{2,4,5,-1}};
|
||||
|
||||
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3,
|
||||
class TriangulatedMixedComplexObserver_3>
|
||||
void
|
||||
Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
construct_anchor_del(Rt_Simplex const &sDel) {
|
||||
Rt_Simplex s = compute_anchor_obj.anchor_del(sDel);
|
||||
anchor_del2[sDel] = Anchor_map_iterator();
|
||||
|
||||
Anchor_map_iterator it = anchor_del2.find(sDel);
|
||||
Anchor_map_iterator it2 = anchor_del2.find(s);
|
||||
CGAL_assertion(it != anchor_del2.end());
|
||||
CGAL_assertion(it2 != anchor_del2.end());
|
||||
it->second = it2;
|
||||
|
||||
// degenerate simplices:
|
||||
if (compute_anchor_obj.is_degenerate()) {
|
||||
it = find_anchor(anchor_del2, it);
|
||||
typename Compute_anchor::Simplex_iterator degenerate_it;
|
||||
for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin();
|
||||
degenerate_it != compute_anchor_obj.equivalent_anchors_end();
|
||||
degenerate_it++) {
|
||||
Anchor_map_iterator tmp;
|
||||
it2 = anchor_del2.find(*degenerate_it);
|
||||
CGAL_assertion(it2 != anchor_del2.end());
|
||||
// Merge sets:
|
||||
while (it2 != it2->second) {
|
||||
tmp = it2->second;
|
||||
it2->second = it->second;
|
||||
it2 = tmp;
|
||||
CGAL_assertion(it2 != anchor_del2.end());
|
||||
}
|
||||
it2->second = it->second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3,
|
||||
|
|
@ -318,9 +403,26 @@ construct_anchors() {
|
|||
Rt_Simplex s;
|
||||
|
||||
// Compute anchor points:
|
||||
for (vit=regular.finite_vertices_begin();
|
||||
vit!=regular.finite_vertices_end(); vit++) {
|
||||
construct_anchor_del(Rt_Simplex(vit));
|
||||
}
|
||||
for (eit=regular.finite_edges_begin();
|
||||
eit!=regular.finite_edges_end(); eit++) {
|
||||
s = Rt_Simplex(*eit);
|
||||
construct_anchor_del(s);
|
||||
CGAL_assertion(s.dimension() == 1);
|
||||
}
|
||||
for (fit=regular.finite_facets_begin();
|
||||
fit!=regular.finite_facets_end(); fit++) {
|
||||
s = Rt_Simplex(*fit);
|
||||
construct_anchor_del(s);
|
||||
CGAL_assertion(s.dimension() == 2);
|
||||
}
|
||||
for (cit=regular.finite_cells_begin();
|
||||
cit!=regular.finite_cells_end(); cit++) {
|
||||
s = Rt_Simplex(cit);
|
||||
construct_anchor_del(s);
|
||||
construct_anchor_vor(s);
|
||||
CGAL_assertion(s.dimension() == 3);
|
||||
}
|
||||
|
|
@ -366,55 +468,178 @@ construct_vertices() {
|
|||
Rt_Vertex_handle v1, v2, v3;
|
||||
Rt_Edge e;
|
||||
Rt_Cell_handle c1, c2;
|
||||
Rt_Simplex sVor;
|
||||
Rt_Simplex sDel, sVor;
|
||||
Tmc_Vertex_handle vh;
|
||||
|
||||
if (verbose) std::cout << "construct_anchors" << std::endl;
|
||||
construct_anchors();
|
||||
|
||||
if (verbose) std::cout << "4 ";
|
||||
if (verbose) std::cout << "9 ";
|
||||
// anchor dimDel=0, dimVor=3
|
||||
for (cit=regular.finite_cells_begin();
|
||||
cit!=regular.finite_cells_end(); cit++) {
|
||||
sVor = get_anchor_vor(Rt_Simplex(cit));
|
||||
if (anchors.find(sVor) == anchors.end()) {
|
||||
vh = add_vertex(sVor);
|
||||
anchors[sVor] = vh;
|
||||
CGAL_assertion(vh == get_vertex(sVor));
|
||||
for (int i=0; i<4; i++) {
|
||||
sDel = get_anchor_del(Rt_Simplex(cit->vertex(i)));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
CGAL_assertion(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "3 ";
|
||||
if (verbose) std::cout << "8 ";
|
||||
// anchor dimDel=1, dimVor=3
|
||||
for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) {
|
||||
sVor = get_anchor_vor(Rt_Simplex(cit));
|
||||
for (int i=0; i<3; i++) {
|
||||
for (int j=i+1; j<4; j++) {
|
||||
sDel = get_anchor_del(Rt_Simplex(Rt_Edge(cit,i,j)));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "7 ";
|
||||
// anchor dimDel=2, dimVor=3 and dimDel=0, dimVor=2
|
||||
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
||||
// anchor dimDel=2, dimVor=3
|
||||
c1 = fit->first;
|
||||
c2 = c1->neighbor(fit->second);
|
||||
|
||||
sDel = get_anchor_del(*fit);
|
||||
if (!regular.is_infinite(c1)) {
|
||||
sVor = get_anchor_vor(c1);
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
if (!regular.is_infinite(c2)) {
|
||||
sVor = get_anchor_vor(c2);
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
// anchor dimDel=0, dimVor=2
|
||||
sVor = get_anchor_vor(*fit);
|
||||
if (anchors.find(sVor) == anchors.end()) {
|
||||
vh = add_vertex(sVor);
|
||||
anchors[sVor] = vh;
|
||||
assert(vh == get_vertex(sVor));
|
||||
for (int i=1; i<4; i++) {
|
||||
sDel = get_anchor_del(Rt_Simplex(c1->vertex((fit->second+i)&3)));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
} else {
|
||||
vh = get_vertex(sDel, sVor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "6 ";
|
||||
// anchor dimDel=0, dimVor=1
|
||||
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
|
||||
sVor = get_anchor_vor(*eit);
|
||||
|
||||
v1 = eit->first->vertex(eit->second);
|
||||
v2 = eit->first->vertex(eit->third);
|
||||
sDel = get_anchor_del(v1);
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
|
||||
sDel = get_anchor_del(v2);
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "5 ";
|
||||
// anchor dimDel=3, dimVor=3
|
||||
for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) {
|
||||
sDel = get_anchor_del(Rt_Simplex(cit));
|
||||
sVor = get_anchor_vor(Rt_Simplex(cit));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (verbose) std::cout << "4 ";
|
||||
// anchor dimDel=0, dimVor=0
|
||||
for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) {
|
||||
sDel = get_anchor_del(Rt_Simplex(vit));
|
||||
sVor = get_anchor_vor(Rt_Simplex(vit));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "3 ";
|
||||
// anchor dimDel=1, dimVor=2
|
||||
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
||||
c1 = fit->first;
|
||||
c2 = c1->neighbor(fit->second);
|
||||
|
||||
sVor = get_anchor_vor(Rt_Simplex(*fit));
|
||||
for (int i=1; i<3; i++) {
|
||||
for (int j=i+1; j<4; j++) {
|
||||
e.first = c1;
|
||||
e.second = (fit->second+i)&3;
|
||||
e.third = (fit->second+j)&3;
|
||||
sDel = get_anchor_del(Rt_Simplex(e));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "2 ";
|
||||
// anchor dimDel=0, dimVor=1
|
||||
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
|
||||
sVor = get_anchor_vor(*eit);
|
||||
if (anchors.find(sVor) == anchors.end()) {
|
||||
vh = add_vertex(sVor);
|
||||
anchors[sVor] = vh;
|
||||
assert(vh == get_vertex(sVor));
|
||||
// anchor dimDel=2, dimVor=2
|
||||
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
||||
c1 = fit->first;
|
||||
c2 = c1->neighbor(fit->second);
|
||||
|
||||
sVor = get_anchor_vor(Rt_Simplex(*fit));
|
||||
sDel = get_anchor_del(Rt_Simplex(*fit));
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose) std::cout << "1 ";
|
||||
// anchor dimDel=0, dimVor=0
|
||||
for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) {
|
||||
sVor = get_anchor_vor(Rt_Simplex(vit));
|
||||
if (anchors.find(sVor) == anchors.end()) {
|
||||
vh = add_vertex(sVor);
|
||||
anchors[sVor] = vh;
|
||||
assert(vh == get_vertex(sVor));
|
||||
if (verbose) std::cout << "1" << std::endl;
|
||||
// anchor dimDel=1, dimVor=1
|
||||
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
|
||||
v1 = eit->first->vertex(eit->second);
|
||||
v2 = eit->first->vertex(eit->third);
|
||||
|
||||
sVor = get_anchor_vor(Rt_Simplex(*eit));
|
||||
sDel = get_anchor_del(Rt_Simplex(*eit));
|
||||
|
||||
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
||||
vh = add_vertex(Symb_anchor(sDel,sVor));
|
||||
anchors[Symb_anchor(sDel,sVor)] = vh;
|
||||
assert(vh == get_vertex(sDel, sVor));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -430,49 +655,253 @@ Mixed_complex_triangulator_3<
|
|||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
construct_cells() {
|
||||
Rt_Simplex sVor_v, sVor_e, sVor_f, sVor_c;
|
||||
construct_0_cell(Rt_Vertex_handle rt_vh) {
|
||||
Rt_Simplex sDel_v, sVor_v, sVor_e, sVor_f, sVor_c;
|
||||
Tmc_Vertex_handle vh[4];
|
||||
|
||||
for (Rt_Finite_vertices_iterator vit=regular.finite_vertices_begin();
|
||||
vit!=regular.finite_vertices_end(); vit++) {
|
||||
Rt_Simplex simplex(rt_vh);
|
||||
sDel_v = get_anchor_del(Rt_Simplex(rt_vh));
|
||||
sVor_v = get_anchor_vor(Rt_Simplex(rt_vh));
|
||||
vh[0] = get_vertex(sDel_v,sVor_v);
|
||||
|
||||
Rt_Simplex simplex(vit);
|
||||
sVor_v = get_anchor_vor(Rt_Simplex(vit));
|
||||
vh[0] = get_vertex(sVor_v);
|
||||
std::list<Rt_Cell_handle> adj_cells;
|
||||
typename std::list<Rt_Cell_handle>::iterator adj_cell;
|
||||
regular.incident_cells(rt_vh, std::back_inserter(adj_cells));
|
||||
|
||||
std::list<Rt_Cell_handle> adj_cells;
|
||||
typename std::list<Rt_Cell_handle>::iterator adj_cell;
|
||||
regular.incident_cells(vit, std::back_inserter(adj_cells));
|
||||
|
||||
// Construct cells:
|
||||
for (adj_cell = adj_cells.begin();
|
||||
adj_cell != adj_cells.end();
|
||||
adj_cell ++) {
|
||||
if (!regular.is_infinite(*adj_cell)) {
|
||||
sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell));
|
||||
vh[3] = get_vertex(sVor_c);
|
||||
int index = (*adj_cell)->index(vit);
|
||||
for (int i=1; i<4; i++) {
|
||||
sVor_f = get_anchor_vor(
|
||||
Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3)));
|
||||
vh[2] = get_vertex(sVor_f);
|
||||
// Construct cells:
|
||||
for (adj_cell = adj_cells.begin();
|
||||
adj_cell != adj_cells.end();
|
||||
adj_cell ++) {
|
||||
if (!regular.is_infinite(*adj_cell)) {
|
||||
sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell));
|
||||
vh[3] = get_vertex(sDel_v,sVor_c);
|
||||
int index = (*adj_cell)->index(rt_vh);
|
||||
for (int i=1; i<4; i++) {
|
||||
sVor_f = get_anchor_vor(Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3)));
|
||||
vh[2] = get_vertex(sDel_v,sVor_f);
|
||||
|
||||
for (int j=1; j<4; j++) {
|
||||
if (j!=i) {
|
||||
sVor_e = get_anchor_vor(
|
||||
Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3)));
|
||||
vh[1] = get_vertex(sVor_e);
|
||||
if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) {
|
||||
CGAL_assertion(sVor_v != sVor_e);
|
||||
CGAL_assertion(sVor_e != sVor_f);
|
||||
CGAL_assertion(sVor_f != sVor_c);
|
||||
Tmc_Cell_handle ch =
|
||||
add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,simplex);
|
||||
for (int j=1; j<4; j++) {
|
||||
if (j!=i) {
|
||||
sVor_e = get_anchor_vor(
|
||||
Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3)));
|
||||
vh[1] = get_vertex(sDel_v,sVor_e);
|
||||
if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) {
|
||||
CGAL_assertion(sVor_v != sVor_e);
|
||||
CGAL_assertion(sVor_e != sVor_f);
|
||||
CGAL_assertion(sVor_f != sVor_c);
|
||||
Tmc_Cell_handle ch =
|
||||
add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,simplex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Constructs 1-cells of the mixed complex corresponding to edges
|
||||
// of the regular triangulation
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3,
|
||||
class TriangulatedMixedComplexObserver_3>
|
||||
void
|
||||
Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
construct_1_cell(const Rt_Finite_edges_iterator &e) {
|
||||
Rt_Simplex sDel_v, sDel_e, sVor_e, sVor_f, sVor_c;
|
||||
Tmc_Vertex_handle vh[4];
|
||||
Rt_Vertex_handle v[2];
|
||||
Tmc_Cell_handle ch;
|
||||
|
||||
Rt_Simplex mixed_cell_simplex(*e);
|
||||
sDel_e = get_anchor_del(Rt_Simplex(*e));
|
||||
sVor_e = get_anchor_vor(Rt_Simplex(*e));
|
||||
|
||||
v[0] = e->first->vertex(e->second);
|
||||
v[1] = e->first->vertex(e->third);
|
||||
|
||||
// Construct cells on the side of v[vi]:
|
||||
for (int vi=0; vi<2; vi++) {
|
||||
sDel_v = get_anchor_del(Rt_Simplex(v[vi]));
|
||||
if (!(sDel_v == sDel_e)) {
|
||||
Rt_Cell_circulator ccir, cstart;
|
||||
ccir = cstart = regular.incident_cells(*e);
|
||||
do {
|
||||
if (!regular.is_infinite(ccir)) {
|
||||
int index0 = ccir->index(v[vi]);
|
||||
int index1 = ccir->index(v[1-vi]);
|
||||
|
||||
sVor_c = get_anchor_vor(Rt_Simplex(ccir));
|
||||
|
||||
for (int fi=1; fi<4; fi++) {
|
||||
if (((index0+fi)&3) != index1) {
|
||||
sVor_f =
|
||||
get_anchor_vor(Rt_Simplex(Rt_Facet(ccir,(index0+fi)&3)));
|
||||
if ((sVor_c != sVor_f) && (sVor_f != sVor_e)) {
|
||||
vh[0] = get_vertex(sDel_v, sVor_e);
|
||||
vh[1] = get_vertex(sDel_e, sVor_e);
|
||||
vh[2] = get_vertex(sDel_e, sVor_f);
|
||||
vh[3] = get_vertex(sDel_e, sVor_c);
|
||||
int orient;
|
||||
if (((4+index1-index0)&3) == 1) {
|
||||
orient = (index1 + (fi==2))&1;
|
||||
} else {
|
||||
orient = (index1 + (fi==1))&1;
|
||||
}
|
||||
// vh: dimension are (01,11,12,13)
|
||||
ch = add_cell(vh,orient,mixed_cell_simplex);
|
||||
|
||||
vh[1] = get_vertex(sDel_v, sVor_f);
|
||||
// vh: dimension are (01,02,12,13)
|
||||
ch = add_cell(vh,1-orient,mixed_cell_simplex);
|
||||
|
||||
vh[2] = get_vertex(sDel_v, sVor_c);
|
||||
// vh: dimension are (01,02,03,13)
|
||||
ch = add_cell(vh,orient,mixed_cell_simplex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ccir ++;
|
||||
} while (ccir != cstart);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Constructs 2-cells of the mixed complex corresponding to facets
|
||||
// of the regular triangulation
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3,
|
||||
class TriangulatedMixedComplexObserver_3>
|
||||
void
|
||||
Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
construct_2_cell(const Rt_Finite_facets_iterator &fit) {
|
||||
Rt_Simplex sDel_v, sDel_e, sDel_f, sVor_f, sVor_c;
|
||||
Tmc_Vertex_handle vh[4]; // Implicit function over vLabels is increasing ...
|
||||
Rt_Cell_handle rt_ch;
|
||||
int index;
|
||||
|
||||
rt_ch = fit->first;
|
||||
index = fit->second;
|
||||
Rt_Simplex simplex(*fit);
|
||||
sDel_f = get_anchor_del(Rt_Simplex(*fit));
|
||||
sVor_f = get_anchor_vor(Rt_Simplex(*fit));
|
||||
|
||||
for (int i=0; i<2; i++) { // Do this twice
|
||||
if (!regular.is_infinite(rt_ch)) {
|
||||
sVor_c = get_anchor_vor(Rt_Simplex(rt_ch));
|
||||
|
||||
vh[3] = get_vertex(sDel_f, sVor_c);
|
||||
Tmc_Vertex_handle vh2 = get_vertex(sDel_f, sVor_f);
|
||||
if (vh2 != vh[3]) {
|
||||
// Facet and cell do not coincide ..
|
||||
for (int vi=1; vi<4; vi++) {
|
||||
sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex((index+vi)&3)));
|
||||
//index_02[rt_ch].V[index][(index+vi)&3];
|
||||
vh[0] = get_vertex(sDel_v, sVor_f);
|
||||
for (int ei=1; ei<4; ei++) {
|
||||
if (vi != ei) {
|
||||
vh[2] = vh2;
|
||||
int index0 = (index+vi)&3;
|
||||
int index1 = (index+ei)&3;
|
||||
int fi = (6+index-vi-ei)&3;//6-index-index0-index1;
|
||||
sDel_e =
|
||||
get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1)));
|
||||
vh[1] = get_vertex(sDel_e, sVor_f);
|
||||
//index_12[rt_ch].V[index][(6+index-vi-ei)&3];
|
||||
if ((vh[0] != vh[1]) && (vh[1] != vh[2])) {
|
||||
// index0: v0
|
||||
// index1: v1
|
||||
// index0+fi&3 == facet
|
||||
int orient;
|
||||
|
||||
if (((4+index1-index0)&3) == 3) {
|
||||
orient = (index1 + (((4+index0-fi)&3)==2))&1;
|
||||
} else {
|
||||
orient = (index1 + (((4+index0-fi)&3)==1))&1;
|
||||
}
|
||||
|
||||
add_cell(vh,orient,simplex);
|
||||
|
||||
vh[2] = get_vertex(sDel_e, sVor_c);
|
||||
add_cell(vh,1-orient,simplex);
|
||||
|
||||
vh[1] = get_vertex(sDel_v, sVor_c);
|
||||
add_cell(vh,orient,simplex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// swap to the other cell
|
||||
Rt_Cell_handle ch_old = rt_ch;
|
||||
rt_ch = rt_ch->neighbor(index);
|
||||
index = rt_ch->index(ch_old);
|
||||
}
|
||||
|
||||
CGAL_assertion(rt_ch == fit->first);
|
||||
CGAL_assertion(index == fit->second);
|
||||
}
|
||||
|
||||
|
||||
// Constructs 3-cells of the mixed complex corresponding to cells
|
||||
// of the regular triangulation
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3,
|
||||
class TriangulatedMixedComplexObserver_3>
|
||||
void
|
||||
Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
construct_3_cell(Rt_Cell_handle rt_ch) {
|
||||
Rt_Simplex sDel_v, sDel_e, sDel_f, sDel_c, sVor_c;
|
||||
Tmc_Vertex_handle vh[4];
|
||||
Tmc_Cell_handle ch;
|
||||
|
||||
// construct the tetrahedron:
|
||||
// C[ch], C[Facet(ch,fi)], C[Edge(ch,ei,vi)], C[ch->vertex(vi)]
|
||||
sDel_c = get_anchor_del(Rt_Simplex(rt_ch));
|
||||
sVor_c = get_anchor_vor(Rt_Simplex(rt_ch));
|
||||
Rt_Simplex simplex = Rt_Simplex(rt_ch);
|
||||
vh[0] = get_vertex(sDel_c, sVor_c);
|
||||
for (int fi=0; fi<4; fi++) {
|
||||
sDel_f = get_anchor_del(Rt_Simplex(Rt_Facet(rt_ch, fi)));
|
||||
vh[1] = get_vertex(sDel_f, sVor_c);
|
||||
if (vh[0] != vh[1]) {
|
||||
for (int vi=1; vi<4; vi++) {
|
||||
int index0 = (fi+vi)&3;
|
||||
sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex(index0)));
|
||||
for (int ei=1; ei<4; ei++) {
|
||||
int index1 = (fi+ei)&3;
|
||||
if (vi != ei) {
|
||||
sDel_e = get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1)));
|
||||
vh[2] = get_vertex(sDel_e, sVor_c);
|
||||
// index_13[rt_ch].V[edge_index[index0][index1]];
|
||||
vh[3] = get_vertex(sDel_v, sVor_c);
|
||||
// index_03[rt_cit].V[index0];
|
||||
if ((vh[1] != vh[2]) && (vh[2] != vh[3])) {
|
||||
int orient;
|
||||
|
||||
if (((4+index1-index0)&3) == 1) {
|
||||
orient = (index1 + (vi==2))&1;
|
||||
} else {
|
||||
orient = (index1 + (vi==3))&1;
|
||||
}
|
||||
ch = add_cell(vh, orient, simplex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -491,12 +920,12 @@ Mixed_complex_triangulator_3<
|
|||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
add_vertex (Rt_Simplex const &anchor)
|
||||
add_vertex (Symb_anchor const &anchor)
|
||||
{
|
||||
Tmc_Vertex_handle vh;
|
||||
vh = triangulation_incr_builder.add_vertex();
|
||||
vh->point() = get_anchor(anchor);
|
||||
observer.after_vertex_insertion(anchor, anchor, vh);
|
||||
vh->point() = get_anchor(anchor.first, anchor.second);
|
||||
observer.after_vertex_insertion(anchor.first, anchor.second, vh);
|
||||
|
||||
return vh;
|
||||
}
|
||||
|
|
@ -513,11 +942,14 @@ typename Mixed_complex_triangulator_3<
|
|||
Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::get_vertex (Rt_Simplex &sVor)
|
||||
TriangulatedMixedComplexObserver_3>::get_vertex (
|
||||
Rt_Simplex &sDel, Rt_Simplex &sVor)
|
||||
{
|
||||
Rt_Simplex sDel2 = get_anchor_del(sDel);
|
||||
Rt_Simplex sVor2 = get_anchor_vor(sVor);
|
||||
CGAL_assertion(sDel == sDel2);
|
||||
CGAL_assertion(sVor == sVor2);
|
||||
Tmc_Vertex_handle vh = anchors[sVor2];
|
||||
Tmc_Vertex_handle vh = anchors[Symb_anchor(sDel2,sVor2)];
|
||||
CGAL_assertion(vh != Tmc_Vertex_handle());
|
||||
return vh;
|
||||
}
|
||||
|
|
@ -622,9 +1054,12 @@ Mixed_complex_triangulator_3<
|
|||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3>::
|
||||
get_anchor(Rt_Simplex const &sVor)
|
||||
get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor)
|
||||
{
|
||||
return get_orthocenter(sVor);
|
||||
Tmc_Point dfoc = get_orthocenter(sDel);
|
||||
Tmc_Point vfoc = get_orthocenter(sVor);
|
||||
|
||||
return construct_anchor_point(dfoc, vfoc);
|
||||
}
|
||||
|
||||
template <
|
||||
|
|
@ -651,17 +1086,14 @@ remove_small_edges()
|
|||
// NGHK: This may intrudoce rounding errors, since the quadratic surface
|
||||
// may change:
|
||||
Tmc_Vertex_handle vh, vh_collapse_to;
|
||||
Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin();
|
||||
int nCollapsed=0;
|
||||
while (vit != _tmc.finite_vertices_end()) {
|
||||
for (Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin();
|
||||
vit != _tmc.finite_vertices_end(); ) {
|
||||
vh = vit;
|
||||
vit++;
|
||||
if (is_collapsible(vh, vh_collapse_to,sq_length)) {
|
||||
nCollapsed ++;
|
||||
do_collapse(vh,vh_collapse_to);
|
||||
}
|
||||
}
|
||||
std::cout << "Collapsed: " << nCollapsed << std::endl;
|
||||
}
|
||||
|
||||
template <
|
||||
|
|
@ -696,8 +1128,8 @@ is_collapsible(Tmc_Vertex_handle vh,
|
|||
it = incident_vertices.begin();
|
||||
it != incident_vertices.end(); it++) {
|
||||
if ((_tmc.geom_traits().compute_squared_distance_3_object()(vh->point(),
|
||||
(*it)->point())
|
||||
< sq_length) &&
|
||||
(*it)->point())
|
||||
< sq_length) &&
|
||||
(vh->cell()->surf == (*it)->cell()->surf) &&
|
||||
(vh->sign() == (*it)->sign())) {
|
||||
bool ok = true;
|
||||
|
|
@ -774,37 +1206,37 @@ template <
|
|||
class TriangulatedMixedComplex_3,
|
||||
class TriangulatedMixedComplexObserver_3>
|
||||
void
|
||||
triangulate_mixed_complex_3
|
||||
(RegularTriangulation_3 const &rt,
|
||||
typename RegularTriangulation_3::Geom_traits::FT shrink,
|
||||
TriangulatedMixedComplex_3 &tmc,
|
||||
TriangulatedMixedComplexObserver_3 &observer,
|
||||
bool verbose)
|
||||
triangulate_mixed_complex_3(RegularTriangulation_3 &rt,
|
||||
typename RegularTriangulation_3::Geom_traits::FT
|
||||
const & shrink_factor,
|
||||
TriangulatedMixedComplex_3 &tmc,
|
||||
TriangulatedMixedComplexObserver_3 &observer,
|
||||
bool verbose)
|
||||
{
|
||||
typedef Mixed_complex_triangulator_3<
|
||||
RegularTriangulation_3,
|
||||
TriangulatedMixedComplex_3,
|
||||
TriangulatedMixedComplexObserver_3> Mixed_complex_triangulator;
|
||||
Mixed_complex_triangulator(rt, tmc, observer, verbose);
|
||||
Mixed_complex_triangulator(rt, shrink_factor, tmc, observer, verbose);
|
||||
}
|
||||
|
||||
|
||||
// template <
|
||||
// class RegularTriangulation_3,
|
||||
// class TriangulatedMixedComplex_3>
|
||||
// void
|
||||
// triangulate_mixed_complex_3
|
||||
// (RegularTriangulation_3 const ®ular,
|
||||
// typename RegularTriangulation_3::Geom_Traits::FT shrink,
|
||||
// TriangulatedMixedComplex_3 &tmc,
|
||||
// bool verbose)
|
||||
// {
|
||||
// Triangulated_mixed_complex_observer_3<
|
||||
// TriangulatedMixedComplex_3, const RegularTriangulation_3>
|
||||
// observer(1);
|
||||
// triangulate_mixed_complex_3(regular, shrink, tmc, observer, verbose);
|
||||
// }
|
||||
template <
|
||||
class RegularTriangulation_3,
|
||||
class TriangulatedMixedComplex_3>
|
||||
void
|
||||
triangulate_mixed_complex_3(RegularTriangulation_3 const ®ular,
|
||||
typename RegularTriangulation_3::Geom_traits::FT
|
||||
const &shrink_factor,
|
||||
TriangulatedMixedComplex_3 &tmc,
|
||||
bool verbose)
|
||||
{
|
||||
Triangulated_mixed_complex_observer_3<
|
||||
TriangulatedMixedComplex_3, const RegularTriangulation_3>
|
||||
observer(shrink_factor);
|
||||
triangulate_mixed_complex_3(regular, shrink_factor, tmc, observer, verbose);
|
||||
}
|
||||
|
||||
CGAL_END_NAMESPACE
|
||||
|
||||
#endif // CGAL_TRIANGULATE_MIXED_COMPLEX_3_H
|
||||
#endif // CGAL_TRIANGULATE_MIXED_COMPLEX_H
|
||||
|
|
|
|||
|
|
@ -10,15 +10,15 @@
|
|||
#include <fstream>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel Inexact_K;
|
||||
typedef CGAL::Skin_surface_traits_3<Inexact_K> Traits;
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel Exact_K;
|
||||
typedef CGAL::Skin_surface_traits_3<Inexact_K> Traits;
|
||||
//typedef CGAL::Skin_surface_traits_3<Inexact_K> Traits;
|
||||
typedef CGAL::Skin_surface_3<Traits> Skin_surface;
|
||||
typedef Skin_surface::Simplex Simplex;
|
||||
typedef Skin_surface::FT FT;
|
||||
typedef Skin_surface::Weighted_point Weighted_point;
|
||||
typedef Skin_surface::Simplex Simplex;
|
||||
typedef Skin_surface::FT FT;
|
||||
typedef Skin_surface::Weighted_point Weighted_point;
|
||||
typedef Weighted_point::Point Bare_point;
|
||||
typedef CGAL::Polyhedron_3<Traits> Polyhedron;
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel Exact_K;
|
||||
typedef CGAL::Skin_surface_quadratic_surface_3<Exact_K> Quadratic_surface;
|
||||
|
||||
CGAL::Cartesian_converter<Exact_K,Inexact_K> e2i_converter;
|
||||
CGAL::Cartesian_converter<Inexact_K,Exact_K> i2e_converter;
|
||||
|
|
@ -51,58 +51,36 @@ public:
|
|||
|
||||
Skin_surface skin_surface(l.begin(), l.end(), s);
|
||||
|
||||
TMC tmc;
|
||||
CGAL::Triangulated_mixed_complex_observer_3<TMC, Skin_surface>
|
||||
observer(skin_surface.shrink_factor());
|
||||
triangulate_mixed_complex_3(skin_surface.get_regular_triangulation(),
|
||||
skin_surface.shrink_factor(),
|
||||
tmc,
|
||||
observer,
|
||||
false);
|
||||
// CGAL::triangulate_mixed_complex_3(skin_surface.get_regular_triangulation(),
|
||||
// skin_surface.shrink_factor(),
|
||||
// tmc,
|
||||
// false // verbose
|
||||
// );
|
||||
const TMC &tmc = skin_surface.triangulated_mixed_complex();
|
||||
// CGAL::Triangulated_mixed_complex_observer_3<TMC, Skin_surface>
|
||||
// observer(skin_surface.shrink_factor());
|
||||
// triangulate_mixed_complex_3(skin_surface.get_regular_triangulation(),
|
||||
// skin_surface.shrink_factor(),
|
||||
// tmc,
|
||||
// observer,
|
||||
// false);
|
||||
|
||||
for (TMC_Finite_vertices_iterator vit = tmc.finite_vertices_begin();
|
||||
vit != tmc.finite_vertices_end(); vit++) {
|
||||
|
||||
if (tmc.is_infinite(vit->cell())) {
|
||||
std::cerr << "ERROR: is_infinite (main)" << std::endl;
|
||||
}
|
||||
Quadratic_surface::FT
|
||||
val = vit->cell()->info().second->value(vit->point());
|
||||
Exact_K::FT val = vit->cell()->info().second->value(vit->point());
|
||||
std::list<TMC_Cell_handle> cells;
|
||||
tmc.incident_cells(vit, std::back_inserter(cells));
|
||||
for (std::list<TMC_Cell_handle>::iterator cell =
|
||||
cells.begin();
|
||||
cell != cells.end(); cell++) {
|
||||
if (!tmc.is_infinite(*cell)) {
|
||||
Quadratic_surface::FT val2 = (*cell)->info().second->value(vit->point());
|
||||
CGAL_assertion(val == val2);
|
||||
Exact_K::FT val2 = (*cell)->info().second->value(vit->point());
|
||||
// NGHK: Make exact:
|
||||
//CGAL_assertion(val == val2);
|
||||
CGAL_assertion(std::abs(CGAL::to_double(val-val2)) < 1e-8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// for (TMC_Finite_cells_iterator cit = tmc.finite_cells_begin();
|
||||
// cit != tmc.finite_cells_end(); cit++) {
|
||||
// Bare_point baryc =
|
||||
// e2i_converter(cit->vertex(0)->point() +
|
||||
// (cit->vertex(1)->point()-cit->vertex(0)->point())/4 +
|
||||
// (cit->vertex(2)->point()-cit->vertex(0)->point())/4 +
|
||||
// (cit->vertex(3)->point()-cit->vertex(0)->point())/4);
|
||||
// if (tmc.tetrahedron(cit).has_on_bounded_side(i2e_converter(baryc))) {
|
||||
// Quadratic_surface::FT val1 = cit->info()->value(i2e_converter(baryc));
|
||||
// Simplex s = skin_surface.locate_mixed(baryc);
|
||||
// Quadratic_surface::FT val2 =
|
||||
// skin_surface.construct_surface(s, Exact_K()).value(i2e_converter(baryc));
|
||||
// // std::cout << val1 << " " << val2 << " " << val2-val1 << std::endl;
|
||||
// CGAL_assertion(val1==val2);
|
||||
// } else {
|
||||
// std::cout << "Barycenter on unbounded side, due to rounding errors\n";
|
||||
// }
|
||||
// }
|
||||
|
||||
}
|
||||
private:
|
||||
double s;
|
||||
|
|
@ -110,21 +88,21 @@ private:
|
|||
|
||||
int main(int argc, char *argv[]) {
|
||||
std::vector<char *> filenames;
|
||||
filenames.push_back("data/degenerate.cin");
|
||||
filenames.push_back("data/test1.cin");
|
||||
filenames.push_back("data/test2.cin");
|
||||
filenames.push_back("data/test3.cin");
|
||||
filenames.push_back("data/test4.cin");
|
||||
filenames.push_back("data/test5.cin");
|
||||
filenames.push_back("data/test6.cin");
|
||||
filenames.push_back("data/test7.cin");
|
||||
filenames.push_back("data/test8.cin");
|
||||
filenames.push_back("data/test9.cin");
|
||||
filenames.push_back("data/test10.cin");
|
||||
filenames.push_back("data/test11.cin");
|
||||
filenames.push_back("data/test1.cin");
|
||||
filenames.push_back("data/test2.cin");
|
||||
filenames.push_back("data/test3.cin");
|
||||
filenames.push_back("data/test4.cin");
|
||||
filenames.push_back("data/test5.cin");
|
||||
filenames.push_back("data/test6.cin");
|
||||
filenames.push_back("data/test7.cin");
|
||||
filenames.push_back("data/test8.cin");
|
||||
filenames.push_back("data/test9.cin");
|
||||
filenames.push_back("data/test10.cin");
|
||||
filenames.push_back("data/test11.cin");
|
||||
filenames.push_back("data/degenerate.cin");
|
||||
|
||||
std::for_each(filenames.begin(), filenames.end(), Test_file(.85));
|
||||
std::for_each(filenames.begin(), filenames.end(), Test_file(.5));
|
||||
std::for_each(filenames.begin(), filenames.end(), Test_file(.85));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue