Refactor to properly forward NPs to triangulate_hole_polyline + other imprvmts

This commit is contained in:
Mael Rouxel-Labbé 2023-03-29 11:53:27 +02:00
parent 4a2d91e03b
commit 9387f087e0
1 changed files with 338 additions and 428 deletions

View File

@ -15,20 +15,22 @@
#include <CGAL/license/Polygon_mesh_processing/meshing_hole_filling.h>
#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/array.h>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/Named_function_parameters.h>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <algorithm>
#include <iterator>
#include <map>
#include <queue>
#include <vector>
#include <utility>
#include <CGAL/array.h>
#include <vector>
namespace CGAL {
namespace Polygon_mesh_processing {
@ -51,68 +53,157 @@ struct Default_visitor
void after_subface_created(face_descriptor /*f_new*/) {}
};
} //end namespace Triangulate_faces
} // namespace Triangulate_faces
namespace internal {
template <class PM
, typename VertexPointMap
, typename Kernel
, typename Visitor>
template <typename PolygonMesh>
class Triangulate_polygon_mesh_modifier
{
typedef Kernel Traits;
using vertex_descriptor = typename boost::graph_traits<PolygonMesh>::vertex_descriptor;
using halfedge_descriptor = typename boost::graph_traits<PolygonMesh>::halfedge_descriptor;
using face_descriptor = typename boost::graph_traits<PolygonMesh>::face_descriptor;
typedef typename boost::graph_traits<PM>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<PM>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<PM>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<PM>::edge_descriptor edge_descriptor;
typedef typename Kernel::Point_3 Point;
struct Face_info {
typename boost::graph_traits<PM>::halfedge_descriptor e[3];
bool is_external;
};
typedef typename boost::property_traits<VertexPointMap>::reference Point_ref;
VertexPointMap _vpmap;
Traits _traits;
public:
Triangulate_polygon_mesh_modifier(VertexPointMap vpmap, const Traits& traits = Traits())
: _vpmap(vpmap), _traits(traits)
private:
template <typename VPM,
typename Visitor,
typename NamedParameters>
bool triangulate_face_with_hole_filling(face_descriptor f,
PolygonMesh& pmesh,
const VPM vpm,
Visitor visitor,
const NamedParameters& np)
{
}
namespace PMP = CGAL::Polygon_mesh_processing;
template <class Face_handle>
bool is_external(Face_handle fh) const {
return fh->info().is_external;
}
using Point = typename boost::property_traits<VPM>::value_type;
bool triangulate_face(face_descriptor f, PM& pmesh, bool use_cdt, Visitor visitor)
{
typedef typename Traits::FT FT;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<vertex_descriptor> border_vertices;
CGAL_assertion(CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh).size() > 0);
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
vertex_descriptor v = source(h, pmesh);
hole_points.push_back(get(vpm, v));
border_vertices.push_back(v);
}
typename Traits::Vector_3 normal =
Polygon_mesh_processing::compute_face_normal(
f, pmesh, CGAL::parameters::geom_traits(_traits)
.vertex_point_map(_vpmap));
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch), np);
if(normal == typename Traits::Vector_3(0,0,0))
if(patch.empty())
return false;
std::size_t original_size = CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh).size();
// triangulate the hole
std::map<std::pair<int, int>, halfedge_descriptor > halfedge_map;
int i = 0;
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
int j = std::size_t(i+1) == hole_points.size() ? 0 : i+1;
halfedge_map[std::make_pair(i, j)] = h;
++i;
}
visitor.before_subface_creations(f);
bool first = true;
std::vector<halfedge_descriptor> hedges;
hedges.reserve(4);
for(const Face_indices& triangle : patch)
{
if(first)
first = false;
else
f = add_face(pmesh);
visitor.after_subface_created(f);
std::array<int, 4> indices = make_array(triangle.first,
triangle.second,
triangle.third,
triangle.first);
for (int i=0; i<3; ++i)
{
typename std::map< std::pair<int, int> , halfedge_descriptor >::iterator insert_res =
halfedge_map.emplace(std::make_pair(indices[i], indices[i+1]),
boost::graph_traits<PolygonMesh>::null_halfedge()).first;
if(insert_res->second == boost::graph_traits<PolygonMesh>::null_halfedge())
{
halfedge_descriptor nh = halfedge(add_edge(pmesh), pmesh);
insert_res->second = nh;
halfedge_map[std::make_pair(indices[i+1], indices[i])] = opposite(nh, pmesh);
}
hedges.push_back(insert_res->second);
}
hedges.push_back(hedges.front());
for(int i=0; i<3;++i)
{
set_next(hedges[i], hedges[i+1], pmesh);
set_face(hedges[i], f, pmesh);
set_target(hedges[i], border_vertices[indices[i+1]], pmesh);
}
set_halfedge(f, hedges[0], pmesh);
hedges.clear();
}
visitor.after_subface_creations();
return true;
}
public:
template <typename NamedParameters>
bool operator()(face_descriptor f,
PolygonMesh& pmesh,
const NamedParameters& np)
{
using Traits = typename GetGeomTraits<PolygonMesh, NamedParameters>::type;
using VPM = typename GetVertexPointMap<PolygonMesh, NamedParameters>::type;
using FT = typename Traits::FT;
using Point_ref = typename boost::property_traits<VPM>::reference;
using Vector = typename Traits::Vector_3;
using Visitor = typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh> // default
>::type;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(is_valid_face_descriptor(f, pmesh));
Traits traits = choose_parameter<Traits>(get_parameter(np, internal_np::geom_traits));
VPM vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
Visitor visitor = choose_parameter<Visitor>(get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
typename Traits::Construct_cross_product_vector_3 cross_product =
traits.construct_cross_product_vector_3_object();
typename boost::graph_traits<PolygonMesh>::degree_size_type original_size = degree(f, pmesh);
if(original_size <= 3)
return true;
if(original_size == 4)
{
halfedge_descriptor v0, v1, v2, v3;
v0 = halfedge(f, pmesh);
Point_ref p0 = get(_vpmap, target(v0, pmesh));
Point_ref p0 = get(vpm, target(v0, pmesh));
v1 = next(v0, pmesh);
Point_ref p1 = get(_vpmap, target(v1, pmesh));
Point_ref p1 = get(vpm, target(v1, pmesh));
v2 = next(v1, pmesh);
Point_ref p2 = get(_vpmap, target(v2, pmesh));
Point_ref p2 = get(vpm, target(v2, pmesh));
v3 = next(v2, pmesh);
Point_ref p3 = get(_vpmap, target(v3, pmesh));
Point_ref p3 = get(vpm, target(v3, pmesh));
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of of the un-normalized normals of the two triangles.
@ -123,150 +214,23 @@ public:
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
FT p1p3 = CGAL::cross_product(p2-p1,p3-p2) * CGAL::cross_product(p0-p3,p1-p0);
FT p0p2 = CGAL::cross_product(p1-p0,p1-p2) * CGAL::cross_product(p3-p2,p3-p0);
visitor.before_subface_creations(f);
halfedge_descriptor res = (p0p2>p1p3)
? CGAL::Euler::split_face(v0, v2, pmesh)
: CGAL::Euler::split_face(v1, v3, pmesh);
visitor.after_subface_created(face(res,pmesh));
visitor.after_subface_created(face(opposite(res,pmesh),pmesh));
const FT p1p3 = cross_product(p2-p1, p3-p2) * cross_product(p0-p3, p1-p0);
const FT p0p2 = cross_product(p1-p0, p1-p2) * cross_product(p3-p2, p3-p0);
halfedge_descriptor res = (p0p2>p1p3) ? CGAL::Euler::split_face(v0, v2, pmesh)
: CGAL::Euler::split_face(v1, v3, pmesh);
visitor.after_subface_created(face(res, pmesh));
visitor.after_subface_created(face(opposite(res, pmesh), pmesh));
visitor.after_subface_creations();
return true;
}
return triangulate_face_with_hole_filling(f, pmesh, use_cdt, visitor);
return triangulate_face_with_hole_filling(f, pmesh, vpm, visitor, np);
}
bool triangulate_face_with_hole_filling(face_descriptor f,
PM& pmesh,
const bool use_cdt,
Visitor visitor)
{
namespace PMP = CGAL::Polygon_mesh_processing;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<vertex_descriptor> border_vertices;
CGAL_assertion(CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh).size() > 0);
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
vertex_descriptor v = source(h, pmesh);
hole_points.push_back( get(_vpmap, v) );
border_vertices.push_back(v);
}
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch),
parameters::geom_traits(_traits)
.use_2d_constrained_delaunay_triangulation(use_cdt));
if(patch.empty())
return false;
// triangulate the hole
std::map< std::pair<int, int> , halfedge_descriptor > halfedge_map;
int i=0;
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
int j = std::size_t(i+1) == hole_points.size() ? 0 : i+1;
halfedge_map[ std::make_pair(i, j) ] = h;
++i;
}
visitor.before_subface_creations(f);
bool first = true;
std::vector<halfedge_descriptor> hedges;
hedges.reserve(4);
for(const Face_indices& triangle : patch)
{
if (first)
first=false;
else
f=add_face(pmesh);
visitor.after_subface_created(f);
std::array<int, 4> indices =
make_array( triangle.first,
triangle.second,
triangle.third,
triangle.first );
for (int i=0; i<3; ++i)
{
typename std::map< std::pair<int, int> , halfedge_descriptor >::iterator insert_res =
halfedge_map.insert(
std::make_pair( std::make_pair(indices[i], indices[i+1]),
boost::graph_traits<PM>::null_halfedge() ) ).first;
if (insert_res->second == boost::graph_traits<PM>::null_halfedge())
{
halfedge_descriptor nh = halfedge(add_edge(pmesh), pmesh);
insert_res->second=nh;
halfedge_map[std::make_pair(indices[i+1], indices[i])]=opposite(nh, pmesh);
}
hedges.push_back(insert_res->second);
}
hedges.push_back(hedges.front());
for(int i=0; i<3;++i)
{
set_next(hedges[i], hedges[i+1], pmesh);
set_face(hedges[i], f, pmesh);
set_target(hedges[i], border_vertices[indices[i+1]], pmesh);
}
set_halfedge(f, hedges[0], pmesh);
hedges.clear();
}
visitor.after_subface_creations();
return true;
}
template<typename FaceRange>
bool operator()(FaceRange face_range, PM& pmesh, bool use_cdt, Visitor visitor)
{
bool result = true;
// One need to store facet handles into a vector, because the list of
// facets of the polyhedron will be modified during the loop, and
// that invalidates the range [facets_begin(), facets_end()[.
std::vector<face_descriptor> facets;
facets.reserve(std::distance(boost::begin(face_range), boost::end(face_range)));
//only consider non-triangular faces
for(face_descriptor fit : face_range)
if ( next( next( halfedge(fit, pmesh), pmesh), pmesh)
!= prev( halfedge(fit, pmesh), pmesh) )
facets.push_back(fit);
// Iterates on the vector of face descriptors
for(face_descriptor f : facets)
{
if(!this->triangulate_face(f, pmesh, use_cdt, visitor))
result = false;
}
return result;
}
void make_hole(halfedge_descriptor h, PM& pmesh)
{
//we are not using Euler::make_hole because it has a precondition
//that the hole is not made on the boundary of the mesh
//here we allow making a hole on the boundary, and the pair(s) of
//halfedges that become border-border are fixed by the connectivity
//setting made in operator()
CGAL_assertion(!is_border(h, pmesh));
face_descriptor fd = face(h, pmesh);
for(halfedge_descriptor hd : halfedges_around_face(h, pmesh))
{
CGAL::internal::set_border(hd, pmesh);
}
remove_face(fd, pmesh);
}
}; // class Triangulate_polygon_mesh_modifier
} // namespace internal
@ -309,45 +273,23 @@ public:
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()`.
* Refer to its documentation for its named parameters.
*
* @pre The face `f` is not degenerate.
*
* @return `true` if the face has been triangulated.
*
* @see `triangulate_faces()`
*/
template<typename PolygonMesh, typename NamedParameters = parameters::Default_named_parameters>
template <typename PolygonMesh,
typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_face(typename boost::graph_traits<PolygonMesh>::face_descriptor f,
PolygonMesh& pmesh,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(is_valid_face_descriptor(f, pmesh));
//VertexPointMap
typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::type VPMap;
VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
//Kernel
typedef typename GetGeomTraits<PolygonMesh, NamedParameters>::type Kernel;
Kernel traits = choose_parameter<Kernel>(get_parameter(np, internal_np::geom_traits));
//Option
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_2d_constrained_delaunay_triangulation), true);
typedef typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh>//default
>::type Visitor;
Visitor visitor = choose_parameter<Visitor>(
get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
internal::Triangulate_polygon_mesh_modifier<PolygonMesh, VPMap, Kernel, Visitor> modifier(vpmap, traits);
return modifier.triangulate_face(f, pmesh, use_cdt, visitor);
internal::Triangulate_polygon_mesh_modifier<PolygonMesh> modifier;
return modifier(f, pmesh, np);
}
/**
@ -390,43 +332,39 @@ bool triangulate_face(typename boost::graph_traits<PolygonMesh>::face_descriptor
* `\cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` for each face.
* Refer to its documentation for its named parameters.
*
* @pre No face within `face_range` is degenerate.
*
* @return `true` if all the faces have been triangulated.
*
* @see `triangulate_face()`
*/
template <typename FaceRange, typename PolygonMesh, typename NamedParameters = parameters::Default_named_parameters>
template <typename FaceRange,
typename PolygonMesh,
typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_faces(FaceRange face_range,
PolygonMesh& pmesh,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
using face_descriptor = typename boost::graph_traits<PolygonMesh>::face_descriptor;
//VertexPointMap
typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::type VPMap;
VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
bool result = true;
//Kernel
typedef typename GetGeomTraits<PolygonMesh, NamedParameters>::type Kernel;
Kernel traits = choose_parameter<Kernel>(get_parameter(np, internal_np::geom_traits));
// One need to store facet handles into a vector, because the list of
// facets of the polyhedron will be modified during the loop, and
// that invalidates the range [facets_begin(), facets_end()[.
std::vector<face_descriptor> facets(std::begin(face_range), std::end(face_range));
//Option
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_2d_constrained_delaunay_triangulation), true);
internal::Triangulate_polygon_mesh_modifier<PolygonMesh> modifier;
for(face_descriptor f : facets)
{
if(!modifier(f, pmesh, np))
result = false;
}
typedef typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh>//default
>::type Visitor;
Visitor visitor = choose_parameter<Visitor>(
get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
internal::Triangulate_polygon_mesh_modifier<PolygonMesh, VPMap, Kernel, Visitor> modifier(vpmap, traits);
return modifier(face_range, pmesh, use_cdt, visitor);
return result;
}
/**
@ -466,6 +404,9 @@ bool triangulate_faces(FaceRange face_range,
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` on all the faces of the polygon mesh.
* Refer to its documentation for its named parameters.
*
* @pre No face of `pmesh` is degenerate.
*
* @return `true` if all the faces have been triangulated.
@ -484,169 +425,6 @@ bool triangulate_faces(PolygonMesh& pmesh,
////////////////////////////////////////////////////////////////////////////////////////////////////
// Polygon Soup
namespace internal {
template <typename Kernel>
class Triangulate_polygon_soup_modifier
{
using Traits = Kernel;
using Point = typename Traits::Point_3;
using Vector = typename Traits::Vector_3;
private:
Traits _traits;
public:
Triangulate_polygon_soup_modifier(const Traits& traits = Traits())
: _traits(traits)
{ }
private:
template<typename Polygon,
typename PointRange,
typename PolygonRange,
typename PMap,
typename Visitor>
bool triangulate_polygon_with_hole_filling(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons,
PMap pmap,
const bool use_cdt,
Visitor visitor)
{
namespace PMP = CGAL::Polygon_mesh_processing;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<std::size_t> hole_points_indices;
for(std::size_t i : polygon)
{
hole_points.push_back(get(pmap, points[i]));
hole_points_indices.push_back(i);
}
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch),
parameters::geom_traits(_traits)
.use_2d_constrained_delaunay_triangulation(use_cdt));
if(patch.empty())
{
std::cout << "failed hole filling" << std::endl;
return false;
}
visitor.before_subface_creations(polygon);
for(const Face_indices& triangle : patch)
{
triangulated_polygons.push_back({hole_points_indices[triangle.first],
hole_points_indices[triangle.second],
hole_points_indices[triangle.third]});
visitor.after_subface_created(triangulated_polygons.back());
}
visitor.after_subface_creations();
return true;
}
template <typename Polygon,
typename PointRange,
typename PolygonRange,
typename PMap,
typename Visitor>
bool triangulate_polygon(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons,
PMap pmap,
const bool use_cdt,
Visitor visitor)
{
using FT = typename Traits::FT;
using Point_ref = typename boost::property_traits<PMap>::reference;
const std::size_t original_size = polygon.size();
if(original_size == 4)
{
Point_ref p0 = get(pmap, points[polygon[0]]);
Point_ref p1 = get(pmap, points[polygon[1]]);
Point_ref p2 = get(pmap, points[polygon[2]]);
Point_ref p3 = get(pmap, points[polygon[3]]);
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of of the un-normalized normals of the two triangles.
* The lengths of the un-normalized normals (computed using cross-products of two vectors)
* are proportional to the area of the triangles.
* Maximize the scalar product of the two normals will avoid skinny triangles,
* and will also taken into account the cosine of the angle between the two normals.
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
FT p1p3 = CGAL::cross_product(p2-p1, p3-p2) * CGAL::cross_product(p0-p3, p1-p0);
FT p0p2 = CGAL::cross_product(p1-p0, p1-p2) * CGAL::cross_product(p3-p2, p3-p0);
visitor.before_subface_creations(polygon);
if(p0p2 > p1p3)
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[2]});
triangulated_polygons.push_back({polygon[0], polygon[2], polygon[3]});
}
else
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[3]});
triangulated_polygons.push_back({polygon[1], polygon[2], polygon[3]});
}
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-2]);
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-1]);
visitor.after_subface_creations();
return true;
}
return triangulate_polygon_with_hole_filling(polygon, points, triangulated_polygons, pmap, use_cdt, visitor);
}
public:
template<typename PolygonRange,
typename PointRange,
typename PMap,
typename Visitor>
bool operator()(const PolygonRange& polygons,
const PointRange& points,
PolygonRange& triangulated_polygons,
PMap pmap,
const bool use_cdt,
Visitor visitor)
{
using Polygon = typename boost::range_value<PolygonRange>::type;
bool result = true;
triangulated_polygons.reserve(polygons.size());
for(const Polygon& polygon : polygons)
{
if(polygon.size() <= 3)
{
triangulated_polygons.push_back(polygon);
continue;
}
if(!triangulate_polygon(polygon, points, triangulated_polygons, pmap, use_cdt, visitor))
result = false;
}
return result;
}
}; // class Triangulate_polygon_soup_modifier
} // namespace internal
namespace Triangulate_polygons {
namespace internal {
@ -670,6 +448,148 @@ struct Default_visitor
} // namespace internal
} // namespace Triangulate_polygons
namespace internal {
class Triangulate_polygon_soup_modifier
{
private:
template<typename Polygon,
typename PointRange,
typename PolygonRange,
typename PMap,
typename Visitor,
typename NamedParameters>
bool triangulate_polygon_with_hole_filling(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons, // output
PMap pm,
Visitor visitor,
const NamedParameters& np)
{
namespace PMP = CGAL::Polygon_mesh_processing;
using Point = typename boost::property_traits<PMap>::value_type;
using Kernel = typename CGAL::Kernel_traits<Point>::type;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<std::size_t> hole_points_indices;
for(std::size_t i : polygon)
{
hole_points.push_back(get(pm, points[i]));
hole_points_indices.push_back(i);
}
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch), np);
if(patch.empty())
return false;
visitor.before_subface_creations(polygon);
for(const Face_indices& triangle : patch)
{
triangulated_polygons.push_back({hole_points_indices[triangle.first],
hole_points_indices[triangle.second],
hole_points_indices[triangle.third]});
visitor.after_subface_created(triangulated_polygons.back());
}
visitor.after_subface_creations();
return true;
}
public:
template <typename Polygon,
typename PointRange,
typename PolygonRange,
typename NamedParameters>
bool operator()(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons,
const NamedParameters& np)
{
// PointMap
using PMap = typename GetPointMap<PointRange, NamedParameters>::const_type;
using Point_ref = typename boost::property_traits<PMap>::reference;
// Kernel
using Point = typename boost::property_traits<PMap>::value_type;
using Def_Kernel = typename CGAL::Kernel_traits<Point>::Kernel;
using Traits = typename internal_np::Lookup_named_param_def<
internal_np::geom_traits_t,
NamedParameters,
Def_Kernel>::type;
using FT = typename Traits::FT;
// Visitor
using Visitor = typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_polygons::internal::Default_visitor // default
>::type;
using parameters::choose_parameter;
using parameters::get_parameter;
PMap pm = choose_parameter<PMap>(get_parameter(np, internal_np::point_map));
Traits traits = choose_parameter<Traits>(get_parameter(np, internal_np::geom_traits));
Visitor visitor = choose_parameter<Visitor>(get_parameter(np, internal_np::visitor),
Triangulate_polygons::internal::Default_visitor());
typename Traits::Construct_cross_product_vector_3 cross_product =
traits.construct_cross_product_vector_3_object();
const std::size_t original_size = polygon.size();
if(original_size == 4)
{
Point_ref p0 = get(pm, points[polygon[0]]);
Point_ref p1 = get(pm, points[polygon[1]]);
Point_ref p2 = get(pm, points[polygon[2]]);
Point_ref p3 = get(pm, points[polygon[3]]);
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of of the un-normalized normals of the two triangles.
* The lengths of the un-normalized normals (computed using cross-products of two vectors)
* are proportional to the area of the triangles.
* Maximize the scalar product of the two normals will avoid skinny triangles,
* and will also taken into account the cosine of the angle between the two normals.
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
visitor.before_subface_creations(polygon);
const FT p1p3 = cross_product(p2-p1, p3-p2) * cross_product(p0-p3, p1-p0);
const FT p0p2 = cross_product(p1-p0, p1-p2) * cross_product(p3-p2, p3-p0);
if(p0p2 > p1p3)
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[2]});
triangulated_polygons.push_back({polygon[0], polygon[2], polygon[3]});
}
else
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[3]});
triangulated_polygons.push_back({polygon[1], polygon[2], polygon[3]});
}
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-2]);
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-1]);
visitor.after_subface_creations();
return true;
}
return triangulate_polygon_with_hole_filling(polygon, points, triangulated_polygons, pm, visitor, np);
}
}; // class Triangulate_polygon_soup_modifier
} // namespace internal
/**
* \ingroup PMP_meshing_grp
*
@ -709,6 +629,9 @@ struct Default_visitor
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` for each polygon.
* Refer to its documentation for its named parameters.
*
* @pre No polygon within `polygons` is degenerate.
*
* @return `true` if all the polygons have been triangulated.
@ -724,36 +647,23 @@ bool triangulate_polygons(const PointRange& points,
{
using Polygon = typename boost::range_value<PolygonRange>::type;
using parameters::choose_parameter;
using parameters::get_parameter;
//VertexPointMap
using PMap = typename GetPointMap<PointRange, NamedParameters>::const_type;
PMap pmap = choose_parameter<PMap>(get_parameter(np, internal_np::point_map));
//Kernel
using Point = typename boost::property_traits<PMap>::value_type;
using Def_Kernel = typename CGAL::Kernel_traits<Point>::Kernel;
using Kernel = typename internal_np::Lookup_named_param_def<
internal_np::geom_traits_t,
NamedParameters,
Def_Kernel>::type;
Kernel traits = choose_parameter<Kernel>(get_parameter(np, internal_np::geom_traits));
// Option
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_2d_constrained_delaunay_triangulation), true);
typedef typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_polygons::internal::Default_visitor // default
>::type Visitor;
Visitor visitor = choose_parameter<Visitor>(get_parameter(np, internal_np::visitor),
Triangulate_polygons::internal::Default_visitor());
PolygonRange triangulated_polygons;
internal::Triangulate_polygon_soup_modifier<Kernel> modifier(traits);
const bool success = modifier(polygons, points, triangulated_polygons, pmap, use_cdt, visitor);
triangulated_polygons.reserve(polygons.size());
bool success = true;
internal::Triangulate_polygon_soup_modifier modifier;
for(const Polygon& polygon : polygons)
{
if(polygon.size() <= 3)
{
triangulated_polygons.push_back(polygon);
continue;
}
if(!modifier(polygon, points, triangulated_polygons, np))
success = false;
}
std::swap(polygons, triangulated_polygons);