mirror of https://github.com/CGAL/cgal
Merge branch 'Triangulation-add_regular_tri-cjamin_mglisse-old' into Triangulation-add_regular_tri-cjamin_mglisse
This commit is contained in:
commit
9487c71ad1
|
|
@ -37,6 +37,7 @@ icc 15 work.
|
|||
|
||||
\cgalModels `Kernel_d`
|
||||
\cgalModels `DelaunayTriangulationTraits`
|
||||
\cgalModels `RegularTriangulationTraits`
|
||||
|
||||
\sa `CGAL::Cartesian_d<FieldNumberType>`
|
||||
\sa `CGAL::Homogeneous_d<RingNumberType>`
|
||||
|
|
@ -74,6 +75,21 @@ Cartesian_const_iterator_d cartesian_begin()const;
|
|||
Cartesian_const_iterator_d cartesian_end()const;
|
||||
};
|
||||
|
||||
/*!
|
||||
represents a weighted point in the Euclidean space
|
||||
\cgalModels `DefaultConstructible`
|
||||
\cgalModels `Assignable`
|
||||
*/
|
||||
class Weighted_point_d {
|
||||
public:
|
||||
/*! introduces a weighted point with point p and weight w. */
|
||||
Weighted_point_d(const Point_d& p, const double& w);
|
||||
/*! extracts the point of a weighted point. */
|
||||
Point_d point() const;
|
||||
/*! extracts the weight of a weighted point. */
|
||||
double weight() const;
|
||||
};
|
||||
|
||||
/*! \cgalModels `Kernel_d::Center_of_sphere_d`
|
||||
*/
|
||||
struct Construct_circumcenter_d {
|
||||
|
|
|
|||
|
|
@ -26,6 +26,7 @@
|
|||
#include <CGAL/NewKernel_d/Kernel_d_interface.h>
|
||||
#include <CGAL/internal/Exact_type_selector.h>
|
||||
#include <CGAL/Interval_nt.h>
|
||||
#include <CGAL/NewKernel_d/Types/Weighted_point.h>
|
||||
|
||||
|
||||
namespace CGAL {
|
||||
|
|
|
|||
|
|
@ -86,6 +86,7 @@ struct Cartesian_LA_base_d : public Dimension_base<Dim_>
|
|||
::add<Segment_tag>::type
|
||||
::add<Hyperplane_tag>::type
|
||||
::add<Sphere_tag>::type
|
||||
::add<Weighted_point_tag>::type
|
||||
Object_list;
|
||||
|
||||
typedef typeset< Point_cartesian_const_iterator_tag>::type
|
||||
|
|
|
|||
|
|
@ -89,6 +89,7 @@ template<class R_> struct Construct_flat_orientation : private Store_kernel<R_>
|
|||
std::vector<int>& rest=o.rest; rest.reserve(dim+1);
|
||||
for(int i=0; i<dim+1; ++i) rest.push_back(i);
|
||||
for( ; f != e ; ++col, ++f ) {
|
||||
//std::cerr << "(*f)[0]=" << (*f)[0] << std::endl;
|
||||
Point const&p=*f;
|
||||
// use a coordinate iterator instead?
|
||||
for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
|
||||
|
|
@ -268,11 +269,61 @@ template<class R_> struct In_flat_side_of_oriented_sphere : private Store_kernel
|
|||
}
|
||||
};
|
||||
|
||||
template<class R_> struct In_flat_power_test_raw : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(In_flat_power_test_raw)
|
||||
typedef R_ R;
|
||||
typedef typename Get_type<R, FT_tag>::type FT;
|
||||
typedef typename Get_type<R, Point_tag>::type Point;
|
||||
typedef typename Get_type<R, Orientation_tag>::type result_type;
|
||||
typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
|
||||
typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
|
||||
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||||
typedef typename LA::Square_matrix Matrix;
|
||||
|
||||
template<class Iter, class IterW, class Wt>
|
||||
result_type operator()(Flat_orientation const&o, Iter f, Iter e, IterW fw, Point const&x, Wt const&w) const {
|
||||
// TODO: can't work in the projection, but we should at least remove the row of 1s.
|
||||
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
|
||||
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
|
||||
int d=pd(*f);
|
||||
Matrix m(d+2,d+2);
|
||||
int i=0;
|
||||
for(;f!=e;++f,++fw,++i) {
|
||||
Point const& p=*f;
|
||||
m(i,0)=1;
|
||||
m(i,d+1)=-*fw;
|
||||
for(int j=0;j<d;++j){
|
||||
m(i,j+1)=c(p,j);
|
||||
m(i,d+1)+=CGAL_NTS square(m(i,j+1));
|
||||
}
|
||||
}
|
||||
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
|
||||
m(i,0)=1;
|
||||
for(int j=0;j<d;++j){
|
||||
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
|
||||
}
|
||||
if(*it != d) m(i,d+1)=m(i,1+*it)=1;
|
||||
else m(i,d+1)=0;
|
||||
}
|
||||
m(d+1,0)=1;
|
||||
m(d+1,d+1)=-w;
|
||||
for(int j=0;j<d;++j){
|
||||
m(d+1,j+1)=c(x,j);
|
||||
m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
|
||||
}
|
||||
|
||||
result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
|
||||
if(o.reverse) ret=-ret;
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
CGAL_KD_DEFAULT_TYPE(Flat_orientation_tag,(CGAL::CartesianDKernelFunctors::Flat_orientation),(),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(In_flat_orientation_tag,(CartesianDKernelFunctors::In_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(In_flat_side_of_oriented_sphere_tag,(CartesianDKernelFunctors::In_flat_side_of_oriented_sphere<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_test_raw_tag,(CartesianDKernelFunctors::In_flat_power_test_raw<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Construct_flat_orientation_tag,(CartesianDKernelFunctors::Construct_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag,In_flat_orientation_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_affine_hull_tag,(CartesianDKernelFunctors::Contained_in_affine_hull<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -97,7 +97,7 @@ class KernelD_converter_
|
|||
//typedef typename KOC::argument_type K1_Obj;
|
||||
//typedef typename KOC::result_type K2_Obj;
|
||||
public:
|
||||
using Base::operator(); // don't use directly, just make it accessible to the next level
|
||||
using Base::operator(); // don't use directly, just make it accessible to the next level
|
||||
K2_Obj helper(K1_Obj const& o,CGAL_BOOSTD true_type)const{
|
||||
return KOC()(this->myself().kernel(),this->myself().kernel2(),this->myself(),o);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
typedef typename Get_type<Base, Ray_tag>::type Ray_d;
|
||||
typedef typename Get_type<Base, Iso_box_tag>::type Iso_box_d;
|
||||
typedef typename Get_type<Base, Aff_transformation_tag>::type Aff_transformation_d;
|
||||
typedef typename Get_type<Base, Weighted_point_tag>::type Weighted_point_d;
|
||||
typedef typename Get_functor<Base, Compute_point_cartesian_coordinate_tag>::type Compute_coordinate_d;
|
||||
typedef typename Get_functor<Base, Compare_lexicographically_tag>::type Compare_lexicographically_d;
|
||||
typedef typename Get_functor<Base, Equal_points_tag>::type Equal_d;
|
||||
|
|
@ -64,10 +65,12 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
typedef typename Get_functor<Base, Less_point_cartesian_coordinate_tag>::type Less_coordinate_d;
|
||||
typedef typename Get_functor<Base, Point_dimension_tag>::type Point_dimension_d;
|
||||
typedef typename Get_functor<Base, Side_of_oriented_sphere_tag>::type Side_of_oriented_sphere_d;
|
||||
typedef typename Get_functor<Base, Power_test_tag>::type Power_test_d;
|
||||
typedef typename Get_functor<Base, Contained_in_affine_hull_tag>::type Contained_in_affine_hull_d;
|
||||
typedef typename Get_functor<Base, Construct_flat_orientation_tag>::type Construct_flat_orientation_d;
|
||||
typedef typename Get_functor<Base, In_flat_orientation_tag>::type In_flat_orientation_d;
|
||||
typedef typename Get_functor<Base, In_flat_side_of_oriented_sphere_tag>::type In_flat_side_of_oriented_sphere_d;
|
||||
typedef typename Get_functor<Base, In_flat_power_test_tag>::type In_flat_power_test_d;
|
||||
typedef typename Get_functor<Base, Point_to_vector_tag>::type Point_to_vector_d;
|
||||
typedef typename Get_functor<Base, Vector_to_point_tag>::type Vector_to_point_d;
|
||||
typedef typename Get_functor<Base, Scaled_vector_tag>::type Scaled_vector_d;
|
||||
|
|
@ -83,6 +86,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
typedef typename Get_functor<Base, Construct_ttag<Ray_tag> >::type Construct_ray_d;
|
||||
typedef typename Get_functor<Base, Construct_ttag<Iso_box_tag> >::type Construct_iso_box_d;
|
||||
typedef typename Get_functor<Base, Construct_ttag<Aff_transformation_tag> >::type Construct_aff_transformation_d;
|
||||
typedef typename Get_functor<Base, Construct_ttag<Weighted_point_tag> >::type Construct_weighted_point_d;
|
||||
typedef typename Get_functor<Base, Midpoint_tag>::type Midpoint_d;
|
||||
struct Component_accessor_d : private Store_kernel<Kernel> {
|
||||
typedef Kernel R_; // for the macro
|
||||
|
|
@ -164,6 +168,9 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
typedef typename Get_functor<Base, Construct_min_vertex_tag>::type Construct_min_vertex_d;
|
||||
typedef typename Get_functor<Base, Construct_max_vertex_tag>::type Construct_max_vertex_d;
|
||||
|
||||
typedef typename Get_functor<Base, Point_weight_tag>::type Point_weight_d;
|
||||
typedef typename Get_functor<Base, Point_drop_weight_tag>::type Point_drop_weight_d;
|
||||
|
||||
//TODO:
|
||||
//typedef ??? Intersect_d;
|
||||
|
||||
|
|
@ -180,6 +187,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
Point_dimension_d point_dimension_d_object()const{ return Point_dimension_d(*this); }
|
||||
Point_of_sphere_d point_of_sphere_d_object()const{ return Point_of_sphere_d(*this); }
|
||||
Side_of_oriented_sphere_d side_of_oriented_sphere_d_object()const{ return Side_of_oriented_sphere_d(*this); }
|
||||
Power_test_d power_test_d_object()const{ return Power_test_d(*this); }
|
||||
Side_of_bounded_sphere_d side_of_bounded_sphere_d_object()const{ return Side_of_bounded_sphere_d(*this); }
|
||||
Contained_in_affine_hull_d contained_in_affine_hull_d_object()const{ return Contained_in_affine_hull_d(*this); }
|
||||
Contained_in_linear_hull_d contained_in_linear_hull_d_object()const{ return Contained_in_linear_hull_d(*this); }
|
||||
|
|
@ -187,6 +195,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
Construct_flat_orientation_d construct_flat_orientation_d_object()const{ return Construct_flat_orientation_d(*this); }
|
||||
In_flat_orientation_d in_flat_orientation_d_object()const{ return In_flat_orientation_d(*this); }
|
||||
In_flat_side_of_oriented_sphere_d in_flat_side_of_oriented_sphere_d_object()const{ return In_flat_side_of_oriented_sphere_d(*this); }
|
||||
In_flat_power_test_d in_flat_power_test_d_object()const{ return In_flat_power_test_d(*this); }
|
||||
Point_to_vector_d point_to_vector_d_object()const{ return Point_to_vector_d(*this); }
|
||||
Vector_to_point_d vector_to_point_d_object()const{ return Vector_to_point_d(*this); }
|
||||
Scaled_vector_d scaled_vector_d_object()const{ return Scaled_vector_d(*this); }
|
||||
|
|
@ -221,6 +230,10 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
Construct_aff_transformation_d construct_aff_transformation_d_object()const{ return Construct_aff_transformation_d(*this); }
|
||||
Construct_min_vertex_d construct_min_vertex_d_object()const{ return Construct_min_vertex_d(*this); }
|
||||
Construct_max_vertex_d construct_max_vertex_d_object()const{ return Construct_max_vertex_d(*this); }
|
||||
Construct_weighted_point_d construct_weighted_point_d_object()const{ return Construct_weighted_point_d(*this); }
|
||||
|
||||
Point_weight_d point_weight_d_object()const{ return Point_weight_d(*this); }
|
||||
Point_drop_weight_d point_drop_weight_d_object()const{ return Point_drop_weight_d(*this); }
|
||||
|
||||
// Dummies for those required functors missing a concept.
|
||||
typedef Null_functor Position_on_line_d;
|
||||
|
|
|
|||
|
|
@ -118,5 +118,17 @@ template <class K1, class K2> struct KO_converter<Sphere_tag,K1,K2>{
|
|||
}
|
||||
};
|
||||
|
||||
template <class K1, class K2> struct KO_converter<Weighted_point_tag,K1,K2>{
|
||||
typedef typename Get_type<K1, Weighted_point_tag>::type argument_type;
|
||||
typedef typename Get_type<K2, Weighted_point_tag>::type result_type;
|
||||
template <class C>
|
||||
result_type operator()(K1 const& k1, K2 const& k2, C const& conv, argument_type const& s) const {
|
||||
typename Get_functor<K1, Point_drop_weight_tag>::type pdw(k1);
|
||||
typename Get_functor<K1, Point_weight_tag>::type pw(k1);
|
||||
typename Get_functor<K2, Construct_ttag<Weighted_point_tag> >::type cwp(k2);
|
||||
return cwp(conv(pdw(s)),conv(pw(s)));
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -0,0 +1,125 @@
|
|||
// Copyright (c) 2014
|
||||
// INRIA Saclay-Ile de France (France)
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author(s) : Marc Glisse
|
||||
|
||||
#ifndef CGAL_KD_TYPE_WP_H
|
||||
#define CGAL_KD_TYPE_WP_H
|
||||
#include <CGAL/NewKernel_d/store_kernel.h>
|
||||
#include <boost/iterator/counting_iterator.hpp>
|
||||
namespace CGAL {
|
||||
namespace KerD {
|
||||
template <class R_> class Weighted_point {
|
||||
typedef typename Get_type<R_, FT_tag>::type FT_;
|
||||
typedef typename Get_type<R_, Point_tag>::type Point_;
|
||||
Point_ c_;
|
||||
FT_ w_;
|
||||
|
||||
public:
|
||||
Weighted_point(Point_ const&p, FT_ const&w): c_(p), w_(w) {}
|
||||
// TODO: Add a piecewise constructor?
|
||||
|
||||
Point_ const& point()const{return c_;}
|
||||
FT_ const& weight()const{return w_;}
|
||||
};
|
||||
}
|
||||
|
||||
namespace CartesianDKernelFunctors {
|
||||
template <class R_> struct Construct_weighted_point : Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(Construct_weighted_point)
|
||||
typedef typename Get_type<R_, Weighted_point_tag>::type result_type;
|
||||
typedef typename Get_type<R_, Point_tag>::type Point;
|
||||
typedef typename Get_type<R_, FT_tag>::type FT;
|
||||
result_type operator()(Point const&a, FT const&b)const{
|
||||
return result_type(a,b);
|
||||
}
|
||||
// Not really needed
|
||||
result_type operator()()const{
|
||||
typename Get_functor<R_, Construct_ttag<Point_tag> >::type cp(this->kernel());
|
||||
return result_type(cp(),0);
|
||||
}
|
||||
};
|
||||
|
||||
template <class R_> struct Point_drop_weight {
|
||||
CGAL_FUNCTOR_INIT_IGNORE(Point_drop_weight)
|
||||
typedef typename Get_type<R_, Weighted_point_tag>::type argument_type;
|
||||
typedef typename Get_type<R_, Point_tag>::type const& result_type;
|
||||
// Returning a reference is fragile
|
||||
|
||||
result_type operator()(argument_type const&s)const{
|
||||
return s.point();
|
||||
}
|
||||
};
|
||||
|
||||
template <class R_> struct Point_weight {
|
||||
CGAL_FUNCTOR_INIT_IGNORE(Point_weight)
|
||||
typedef typename Get_type<R_, Weighted_point_tag>::type argument_type;
|
||||
typedef typename Get_type<R_, FT_tag>::type result_type;
|
||||
|
||||
result_type operator()(argument_type const&s)const{
|
||||
return s.weight();
|
||||
}
|
||||
};
|
||||
|
||||
template<class R_> struct Power_test : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(Power_test)
|
||||
typedef R_ R;
|
||||
typedef typename Get_type<R, Oriented_side_tag>::type result_type;
|
||||
|
||||
template<class Iter, class Pt>
|
||||
result_type operator()(Iter const& f, Iter const& e, Pt const& p0) const {
|
||||
typename Get_functor<R, Power_test_raw_tag>::type ptr(this->kernel());
|
||||
typename Get_functor<R, Point_drop_weight_tag>::type pdw(this->kernel());
|
||||
typename Get_functor<R, Point_weight_tag>::type pw(this->kernel());
|
||||
return ptr (
|
||||
make_transforming_iterator (f, pdw),
|
||||
make_transforming_iterator (e, pdw),
|
||||
make_transforming_iterator (f, pw),
|
||||
pdw (p0),
|
||||
pw (p0));
|
||||
}
|
||||
};
|
||||
|
||||
template<class R_> struct In_flat_power_test : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(In_flat_power_test)
|
||||
typedef R_ R;
|
||||
typedef typename Get_type<R, Oriented_side_tag>::type result_type;
|
||||
|
||||
template<class Fo, class Iter, class Pt>
|
||||
result_type operator()(Fo const& fo, Iter const& f, Iter const& e, Pt const& p0) const {
|
||||
typename Get_functor<R, In_flat_power_test_raw_tag>::type ptr(this->kernel());
|
||||
typename Get_functor<R, Point_drop_weight_tag>::type pdw(this->kernel());
|
||||
typename Get_functor<R, Point_weight_tag>::type pw(this->kernel());
|
||||
return ptr (
|
||||
fo,
|
||||
make_transforming_iterator (f, pdw),
|
||||
make_transforming_iterator (e, pdw),
|
||||
make_transforming_iterator (f, pw),
|
||||
pdw (p0),
|
||||
pw (p0));
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
CGAL_KD_DEFAULT_TYPE(Weighted_point_tag,(CGAL::KerD::Weighted_point<K>),(Point_tag),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Construct_ttag<Weighted_point_tag>,(CartesianDKernelFunctors::Construct_weighted_point<K>),(Weighted_point_tag,Point_tag),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Point_drop_weight_tag,(CartesianDKernelFunctors::Point_drop_weight<K>),(Weighted_point_tag,Point_tag),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Point_weight_tag,(CartesianDKernelFunctors::Point_weight<K>),(Weighted_point_tag,Point_tag),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Power_test_tag,(CartesianDKernelFunctors::Power_test<K>),(Weighted_point_tag),(Power_test_raw_tag,Point_drop_weight_tag,Point_weight_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_test_tag,(CartesianDKernelFunctors::In_flat_power_test<K>),(Weighted_point_tag),(In_flat_power_test_raw_tag,Point_drop_weight_tag,Point_weight_tag));
|
||||
} // namespace CGAL
|
||||
#endif
|
||||
|
|
@ -33,6 +33,7 @@
|
|||
#include <CGAL/NewKernel_d/Wrapper/Segment_d.h>
|
||||
#include <CGAL/NewKernel_d/Wrapper/Sphere_d.h>
|
||||
#include <CGAL/NewKernel_d/Wrapper/Hyperplane_d.h>
|
||||
#include <CGAL/NewKernel_d/Wrapper/Weighted_point_d.h>
|
||||
|
||||
#include <CGAL/NewKernel_d/Wrapper/Ref_count_obj.h>
|
||||
|
||||
|
|
@ -111,6 +112,7 @@ CGAL_REGISTER_OBJECT_WRAPPER(Vector);
|
|||
CGAL_REGISTER_OBJECT_WRAPPER(Segment);
|
||||
CGAL_REGISTER_OBJECT_WRAPPER(Sphere);
|
||||
CGAL_REGISTER_OBJECT_WRAPPER(Hyperplane);
|
||||
CGAL_REGISTER_OBJECT_WRAPPER(Weighted_point);
|
||||
#undef CGAL_REGISTER_OBJECT_WRAPPER
|
||||
|
||||
// Note: this tends to be an all or nothing thing currently, wrapping
|
||||
|
|
|
|||
|
|
@ -0,0 +1,129 @@
|
|||
// Copyright (c) 2014
|
||||
// INRIA Saclay-Ile de France (France)
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author(s) : Marc Glisse
|
||||
|
||||
#ifndef CGAL_WRAPPER_WEIGHTED_POINT_D_H
|
||||
#define CGAL_WRAPPER_WEIGHTED_POINT_D_H
|
||||
|
||||
#include <CGAL/representation_tags.h>
|
||||
#include <boost/static_assert.hpp>
|
||||
#include <boost/type_traits.hpp>
|
||||
#include <CGAL/Kernel/Return_base_tag.h>
|
||||
#include <CGAL/Dimension.h>
|
||||
#ifndef CGAL_CXX11
|
||||
#include <boost/preprocessor/repetition.hpp>
|
||||
#endif
|
||||
#include <boost/utility/result_of.hpp>
|
||||
|
||||
namespace CGAL {
|
||||
namespace Wrap {
|
||||
|
||||
template <class R_>
|
||||
class Weighted_point_d : public Get_type<typename R_::Kernel_base, Weighted_point_tag>::type
|
||||
{
|
||||
typedef typename Get_type<R_, FT_tag>::type FT_;
|
||||
typedef typename R_::Kernel_base Kbase;
|
||||
typedef typename Get_type<R_, Point_tag>::type Point_;
|
||||
typedef typename Get_functor<Kbase, Construct_ttag<Weighted_point_tag> >::type CWPBase;
|
||||
typedef typename Get_functor<Kbase, Point_drop_weight_tag>::type PDWBase;
|
||||
typedef typename Get_functor<Kbase, Point_weight_tag>::type PWBase;
|
||||
|
||||
typedef Weighted_point_d Self;
|
||||
BOOST_STATIC_ASSERT((boost::is_same<Self, typename Get_type<R_, Weighted_point_tag>::type>::value));
|
||||
|
||||
public:
|
||||
|
||||
typedef Tag_true Is_wrapper;
|
||||
typedef typename R_::Default_ambient_dimension Ambient_dimension;
|
||||
typedef Dimension_tag<0> Feature_dimension;
|
||||
|
||||
typedef typename Get_type<Kbase, Weighted_point_tag>::type Rep;
|
||||
|
||||
const Rep& rep() const
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
Rep& rep()
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
typedef R_ R;
|
||||
|
||||
#ifdef CGAL_CXX11
|
||||
template<class...U,class=typename std::enable_if<!std::is_same<std::tuple<typename std::decay<U>::type...>,std::tuple<Weighted_point_d> >::value>::type> explicit Weighted_point_d(U&&...u)
|
||||
: Rep(CWPBase()(std::forward<U>(u)...)){}
|
||||
|
||||
// // called from Construct_point_d
|
||||
// template<class...U> explicit Point_d(Eval_functor&&,U&&...u)
|
||||
// : Rep(Eval_functor(), std::forward<U>(u)...){}
|
||||
template<class F,class...U> explicit Weighted_point_d(Eval_functor&&,F&&f,U&&...u)
|
||||
: Rep(std::forward<F>(f)(std::forward<U>(u)...)){}
|
||||
|
||||
#if 0
|
||||
// the new standard may make this necessary
|
||||
Point_d(Point_d const&)=default;
|
||||
Point_d(Point_d &);//=default;
|
||||
Point_d(Point_d &&)=default;
|
||||
#endif
|
||||
|
||||
// try not to use these
|
||||
Weighted_point_d(Rep const& v) : Rep(v) {}
|
||||
Weighted_point_d(Rep& v) : Rep(static_cast<Rep const&>(v)) {}
|
||||
Weighted_point_d(Rep&& v) : Rep(std::move(v)) {}
|
||||
|
||||
#else
|
||||
|
||||
Weighted_point_d() : Rep(CWPBase()()) {}
|
||||
|
||||
Weighted_point_d(Rep const& v) : Rep(v) {} // try not to use it
|
||||
|
||||
#define CGAL_CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class T)> \
|
||||
explicit Weighted_point_d(BOOST_PP_ENUM_BINARY_PARAMS(N,T,const&t)) \
|
||||
: Rep(CWPBase()( \
|
||||
BOOST_PP_ENUM_PARAMS(N,t))) {} \
|
||||
\
|
||||
template<class F,BOOST_PP_ENUM_PARAMS(N,class T)> \
|
||||
Weighted_point_d(Eval_functor,F const& f,BOOST_PP_ENUM_BINARY_PARAMS(N,T,const&t)) \
|
||||
: Rep(f(BOOST_PP_ENUM_PARAMS(N,t))) {}
|
||||
/*
|
||||
template<BOOST_PP_ENUM_PARAMS(N,class T)> \
|
||||
Point_d(Eval_functor,BOOST_PP_ENUM_BINARY_PARAMS(N,T,const&t)) \
|
||||
: Rep(Eval_functor(), BOOST_PP_ENUM_PARAMS(N,t)) {}
|
||||
*/
|
||||
|
||||
BOOST_PP_REPEAT_FROM_TO(1,11,CGAL_CODE,_)
|
||||
#undef CGAL_CODE
|
||||
|
||||
#endif
|
||||
|
||||
//TODO: use references?
|
||||
Point_ point()const{
|
||||
return Point_(Eval_functor(),PDWBase(),rep());
|
||||
}
|
||||
FT_ weight()const{
|
||||
return PWBase()(rep());
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} //namespace Wrap
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_WRAPPER_SPHERE_D_H
|
||||
|
|
@ -554,6 +554,60 @@ template<class R_> struct Orientation<R_,false> : private Store_kernel<R_> {
|
|||
}
|
||||
#endif
|
||||
|
||||
namespace CartesianDKernelFunctors {
|
||||
template<class R_> struct Power_test_raw : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(Power_test_raw)
|
||||
typedef R_ R;
|
||||
typedef typename Get_type<R, RT_tag>::type RT;
|
||||
typedef typename Get_type<R, FT_tag>::type FT;
|
||||
typedef typename Get_type<R, Point_tag>::type Point;
|
||||
typedef typename Get_type<R, Oriented_side_tag>::type result_type;
|
||||
typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
|
||||
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
|
||||
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||||
typedef typename LA::Square_matrix Matrix;
|
||||
|
||||
template<class IterP, class IterW, class Pt, class Wt>
|
||||
result_type operator()(IterP f, IterP const& e, IterW fw, Pt const& p0, Wt const& w0) const {
|
||||
typedef typename Get_functor<R, Squared_distance_to_origin_tag>::type Sqdo;
|
||||
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
|
||||
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
|
||||
|
||||
int d=pd(p0);
|
||||
Matrix m(d+1,d+1);
|
||||
if(CGAL::Is_stored<Sqdo>::value) {
|
||||
Sqdo sqdo(this->kernel());
|
||||
FT const& h0 = sqdo(p0) - w0;
|
||||
for(int i=0;f!=e;++f,++fw,++i) {
|
||||
Point const& p=*f;
|
||||
for(int j=0;j<d;++j){
|
||||
RT const& x=c(p,j);
|
||||
m(i,j)=x-c(p0,j);
|
||||
}
|
||||
m(i,d) = sqdo(p) - *fw - h0;
|
||||
}
|
||||
} else {
|
||||
for(int i=0;f!=e;++f,++fw,++i) {
|
||||
Point const& p=*f;
|
||||
m(i,d) = w0 - *fw;
|
||||
for(int j=0;j<d;++j){
|
||||
RT const& x=c(p,j);
|
||||
m(i,j)=x-c(p0,j);
|
||||
m(i,d)+=CGAL::square(m(i,j));
|
||||
}
|
||||
}
|
||||
}
|
||||
if(d%2)
|
||||
return -LA::sign_of_determinant(CGAL_MOVE(m));
|
||||
else
|
||||
return LA::sign_of_determinant(CGAL_MOVE(m));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Power_test_raw_tag,(CartesianDKernelFunctors::Power_test_raw<K>),(Point_tag),(Point_dimension_tag,Squared_distance_to_origin_tag,Compute_point_cartesian_coordinate_tag));
|
||||
|
||||
// TODO: make Side_of_oriented_sphere call Power_test_raw
|
||||
namespace CartesianDKernelFunctors {
|
||||
template<class R_> struct Side_of_oriented_sphere : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(Side_of_oriented_sphere)
|
||||
|
|
|
|||
|
|
@ -172,6 +172,7 @@ namespace CGAL {
|
|||
CGAL_DECL_OBJ(Iso_box, Object);
|
||||
CGAL_DECL_OBJ(Bbox, Object);
|
||||
CGAL_DECL_OBJ(Aff_transformation, Object);
|
||||
CGAL_DECL_OBJ(Weighted_point, Object);
|
||||
#undef CGAL_DECL_OBJ_
|
||||
#undef CGAL_DECL_OBJ
|
||||
|
||||
|
|
@ -214,6 +215,7 @@ namespace CGAL {
|
|||
CGAL_DECL_COMPUTE(Scalar_product);
|
||||
CGAL_DECL_COMPUTE(Hyperplane_translation);
|
||||
CGAL_DECL_COMPUTE(Value_at);
|
||||
CGAL_DECL_COMPUTE(Point_weight);
|
||||
#undef CGAL_DECL_COMPUTE
|
||||
|
||||
#define CGAL_DECL_ITER_OBJ(X,Y,Z,C) struct X##_tag {}; \
|
||||
|
|
@ -266,6 +268,7 @@ namespace CGAL {
|
|||
CGAL_DECL_CONSTRUCT(Construct_min_vertex,Point);
|
||||
CGAL_DECL_CONSTRUCT(Construct_max_vertex,Point);
|
||||
CGAL_DECL_CONSTRUCT(Construct_circumcenter,Point);
|
||||
CGAL_DECL_CONSTRUCT(Point_drop_weight,Point);
|
||||
#undef CGAL_DECL_CONSTRUCT
|
||||
#if 0
|
||||
#define CGAL_DECL_ITER_CONSTRUCT(X,Y) struct X##_tag {}; \
|
||||
|
|
@ -306,6 +309,10 @@ namespace CGAL {
|
|||
CGAL_DECL_PREDICATE(Affinely_independent);
|
||||
CGAL_DECL_PREDICATE(Contained_in_linear_hull);
|
||||
CGAL_DECL_PREDICATE(Contained_in_simplex);
|
||||
CGAL_DECL_PREDICATE(Power_test_raw);
|
||||
CGAL_DECL_PREDICATE(Power_test);
|
||||
CGAL_DECL_PREDICATE(In_flat_power_test_raw);
|
||||
CGAL_DECL_PREDICATE(In_flat_power_test);
|
||||
#undef CGAL_DECL_PREDICATE
|
||||
|
||||
#define CGAL_DECL_MISC(X) struct X##_tag {}; \
|
||||
|
|
|
|||
|
|
@ -22,6 +22,10 @@
|
|||
#include <boost/iterator/iterator_adaptor.hpp>
|
||||
#include <boost/utility/result_of.hpp>
|
||||
#include <boost/type_traits/is_empty.hpp>
|
||||
#include <boost/type_traits/is_reference.hpp>
|
||||
#include <boost/type_traits/is_integral.hpp>
|
||||
#include <boost/mpl/if.hpp>
|
||||
#include <boost/mpl/or.hpp>
|
||||
#include <CGAL/Default.h>
|
||||
#include <utility>
|
||||
|
||||
|
|
@ -54,23 +58,31 @@ template<class T> struct Functor_as_base<T,true> : public T {
|
|||
template <typename Derived, typename F, typename Iter, typename Ref, typename Val>
|
||||
class transforming_iterator_helper
|
||||
{
|
||||
typedef std::iterator_traits<Iter> Iter_traits;
|
||||
typedef typename Iter_traits::reference Iter_ref;
|
||||
typedef typename Default::Get<Ref,
|
||||
#ifdef CGAL_CXX11
|
||||
decltype(std::declval<F>()(std::declval<typename std::iterator_traits<Iter>::reference>()))
|
||||
decltype(std::declval<F>()(std::declval<Iter_ref>()))
|
||||
#else
|
||||
typename boost::result_of<F(typename std::iterator_traits<Iter>::value_type)>::type
|
||||
typename boost::result_of<F(typename Iter_traits::value_type)>::type
|
||||
// should be reference instead of value_type
|
||||
#endif
|
||||
>::type reference;
|
||||
>::type reference_;
|
||||
|
||||
typedef typename Default::Get<Val,typename boost::remove_cv<typename boost::remove_reference<reference>::type>::type>::type value_type;
|
||||
typedef typename Default::Get<Val,typename boost::remove_cv<typename boost::remove_reference<reference_>::type>::type>::type value_type;
|
||||
|
||||
// Crappy heuristic. If we have *it that returns a Weighted_point and F that returns a reference to the Point contained in the Weighted_point it takes as argument, we do NOT want the transformed iterator to return a reference to the temporary *it. On the other hand, if *it returns an int n, and F returns a reference to array[n] it is not so good to lose the reference. This probably should be done elsewhere and should at least be made optional...
|
||||
typedef typename boost::mpl::if_<
|
||||
boost::mpl::or_<boost::is_reference<Iter_ref>,
|
||||
boost::is_integral<Iter_ref> >,
|
||||
reference_, value_type>::type reference;
|
||||
|
||||
public:
|
||||
typedef boost::iterator_adaptor<
|
||||
Derived,
|
||||
Iter,
|
||||
value_type,
|
||||
typename std::iterator_traits<Iter>::iterator_category,
|
||||
typename Iter_traits::iterator_category,
|
||||
reference
|
||||
> type;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ int main()
|
|||
#include <CGAL/use.h>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <CGAL/NewKernel_d/Types/Weighted_point.h>
|
||||
|
||||
//typedef CGAL::Cartesian_base_d<double,CGAL::Dimension_tag<2> > K0;
|
||||
//typedef CGAL::Cartesian_base_d<CGAL::Interval_nt_advanced,CGAL::Dimension_tag<2> > KA;
|
||||
|
|
@ -534,6 +535,7 @@ void test3(){
|
|||
P x4=cp(0,0,1);
|
||||
P x5=cp(0,0,0);
|
||||
P x6=cp(0,0,-1);
|
||||
assert(!ed(x1,x2));
|
||||
P tab2[]={x1,x2,x3,x4,x5};
|
||||
assert(cis(tab2+0,tab2+4,x5));
|
||||
assert(po(tab2+0,tab2+4)==CGAL::POSITIVE);
|
||||
|
|
@ -591,6 +593,26 @@ void test3(){
|
|||
assert(sbds(t1+0,t1+2,cp(2,2,3.415)) == CGAL::ON_UNBOUNDED_SIDE);
|
||||
assert(sbds(t1+0,t1+3,cp(2.1,3.5,1.9)) == CGAL::ON_BOUNDED_SIDE);
|
||||
assert(sbds(t1+0,t1+3,cp(10,10,10)) == CGAL::ON_UNBOUNDED_SIDE);
|
||||
|
||||
typedef typename K1::Weighted_point_d WP;
|
||||
typedef typename K1::Construct_weighted_point_d CWP;
|
||||
typedef typename K1::Point_drop_weight_d PDW;
|
||||
typedef typename K1::Point_weight_d PW;
|
||||
typedef typename K1::Power_test_d PT;
|
||||
typedef typename K1::In_flat_power_test_d IFPT;
|
||||
CWP cwp Kinit(construct_weighted_point_d_object);
|
||||
PDW pdw Kinit(point_drop_weight_d_object);
|
||||
PW pw Kinit(point_weight_d_object);
|
||||
PT pt Kinit(power_test_d_object);
|
||||
IFPT ifpt Kinit(in_flat_power_test_d_object);
|
||||
WP wp;
|
||||
wp = cwp (x1, 2);
|
||||
WP xw6 = cwp (x6, 0);
|
||||
assert (pw(wp) == 2);
|
||||
assert (ed(pdw(wp), x1));
|
||||
WP tabw[]={cwp(x1,0),cwp(x2,0),cwp(x3,0),cwp(x4,0),cwp(x5,0)};
|
||||
assert(pt(tabw+0,tabw+4,tabw[4])==CGAL::ON_POSITIVE_SIDE);
|
||||
assert(ifpt(fo4,tabw+0,tabw+3,xw6)==CGAL::ON_POSITIVE_SIDE);
|
||||
}
|
||||
template struct CGAL::Epick_d<CGAL::Dimension_tag<2> >;
|
||||
template struct CGAL::Epick_d<CGAL::Dimension_tag<3> >;
|
||||
|
|
|
|||
|
|
@ -155,6 +155,17 @@ namespace Eigen {
|
|||
MulCost = 100
|
||||
};
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<>
|
||||
struct significant_decimals_impl<CGAL::Gmpq>
|
||||
{
|
||||
static inline int run()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
//since types are included by Gmp_coercion_traits.h:
|
||||
|
|
|
|||
|
|
@ -1283,6 +1283,13 @@ namespace Eigen {
|
|||
MulCost = 10
|
||||
};
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<class> struct significant_decimals_impl;
|
||||
template<bool b>
|
||||
struct significant_decimals_impl<CGAL::Interval_nt<b> >
|
||||
: significant_decimals_impl<typename CGAL::Interval_nt<b>::value_type> { };
|
||||
}
|
||||
}
|
||||
|
||||
#endif // CGAL_INTERVAL_NT_H
|
||||
|
|
|
|||
|
|
@ -0,0 +1,69 @@
|
|||
# Created by the script cgal_create_cmake_script_with_options
|
||||
# This is the CMake script for compiling a set of CGAL applications.
|
||||
|
||||
project( Triangulation_apps )
|
||||
|
||||
|
||||
cmake_minimum_required(VERSION 2.6.2)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" VERSION_GREATER 2.6)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}.${CMAKE_PATCH_VERSION}" VERSION_GREATER 2.8.3)
|
||||
cmake_policy(VERSION 2.8.4)
|
||||
else()
|
||||
cmake_policy(VERSION 2.6)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set( CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true )
|
||||
|
||||
if ( COMMAND cmake_policy )
|
||||
|
||||
cmake_policy( SET CMP0003 NEW )
|
||||
|
||||
endif()
|
||||
|
||||
# CGAL and its components
|
||||
find_package( CGAL QUIET COMPONENTS )
|
||||
|
||||
if ( NOT CGAL_FOUND )
|
||||
|
||||
message(STATUS "This project requires the CGAL library, and will not be compiled.")
|
||||
return()
|
||||
|
||||
endif()
|
||||
|
||||
# include helper file
|
||||
include( ${CGAL_USE_FILE} )
|
||||
|
||||
|
||||
# Boost and its components
|
||||
find_package( Boost REQUIRED )
|
||||
|
||||
if ( NOT Boost_FOUND )
|
||||
|
||||
message(STATUS "This project requires the Boost library, and will not be compiled.")
|
||||
|
||||
return()
|
||||
|
||||
endif()
|
||||
|
||||
find_package(Eigen3 3.1.0)
|
||||
if (EIGEN3_FOUND)
|
||||
include( ${EIGEN3_USE_FILE} )
|
||||
endif()
|
||||
|
||||
# include for local directory
|
||||
include_directories( BEFORE include )
|
||||
|
||||
# include for local package
|
||||
include_directories( BEFORE ../../include )
|
||||
|
||||
|
||||
# Creating entries for all .cpp/.C files with "main" routine
|
||||
# ##########################################################
|
||||
|
||||
include( CGAL_CreateSingleSourceCGALProgram )
|
||||
|
||||
create_single_source_cgal_program( "points_to_RT_to_off.cpp" )
|
||||
create_single_source_cgal_program( "points_to_DT_to_off.cpp" )
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
2
|
||||
0.0071 1.6899 0
|
||||
0.3272 1.3694 0.05
|
||||
1.3697 1.8296 0.1
|
||||
0.6722 0.3012 0.15
|
||||
1.1726 0.1899 0.2
|
||||
0.4374 2.8541 100.25
|
||||
2.5923 0.1904 0.3
|
||||
1.3083 2.5462 200.35
|
||||
1.4981 1.3929 0.4
|
||||
2.1304 2.055 0.45
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
2
|
||||
0 0 6.28953
|
||||
-2.85086 -0.471442 6.12896
|
||||
1.90972 0.101219 0.988689
|
||||
0.637771 2.59367 5.80372
|
||||
2.22209 0.903198 2.19478
|
||||
-0.487202 -2.71506 4.90996
|
||||
1.1193 -1.91787 2.99626
|
||||
1.54714 0.109831 0
|
||||
0.44556 -2.73047 4.48142
|
||||
0.427936 1.28495 6.23624
|
||||
-2.67212 0.766674 5.29623
|
||||
1.5763 -1.59828 2.58905
|
||||
-0.476603 2.2546 6.04797
|
||||
1.57172 -0.514711 6.11405
|
||||
1.84528 2.10139 5.53936
|
||||
-2.99827 -0.101677 5.92246
|
||||
-0.482122 -2.39584 4.44264
|
||||
-2.25558 -1.492 6.23448
|
||||
0.128475 -1.75125 3.18916
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
3
|
||||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0.05
|
||||
1.3697 1.8296 2.654 0.1
|
||||
-10.6722 0.3012 0.1548 1000.15
|
||||
1.1726 0.1899 0.3658 0.2
|
||||
0.4374 20.8541 1.45894 2000.25
|
||||
2.5923 0.1904 0.6971 0.3
|
||||
10.3083 2.5462 1.3658 1000.35
|
||||
1.4981 1.3929 2.949 0.4
|
||||
2.1304 2.055 0.6597455 1.45
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
3
|
||||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0
|
||||
1.3697 1.8296 2.654 0
|
||||
-10.6722 0.3012 0.1548 0
|
||||
1.1726 0.1899 0.3658 0
|
||||
0.4374 20.8541 1.45894 0
|
||||
2.5923 0.1904 0.6971 0
|
||||
10.3083 2.5462 1.3658 0
|
||||
1.4981 1.3929 2.949 0
|
||||
2.1304 2.055 0.6597455 0
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
3
|
||||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0.05
|
||||
1.3697 1.8296 2.654 0.1
|
||||
-10.6722 0.3012 0.1548 1000.15
|
||||
1.1726 0.1899 0.3658 0.2
|
||||
0.4374 20.8541 1.45894 2000.25
|
||||
2.5923 0.1904 0.6971 0.3
|
||||
10.3083 2.5462 1.3658 1000.35
|
||||
1.4981 1.3929 2.949 0.4
|
||||
2.1304 2.055 0.6597455 1.45
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream.h>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
|
||||
typedef CGAL::Delaunay_triangulation<K> DT;
|
||||
|
||||
void test(int dim)
|
||||
{
|
||||
std::stringstream input_filename;
|
||||
input_filename << "data/points_" << dim << ".cin";
|
||||
std::ifstream in(input_filename.str());
|
||||
|
||||
DT::Point p;
|
||||
std::vector<DT::Point> points;
|
||||
|
||||
int dim_from_file;
|
||||
in >> dim_from_file;
|
||||
while(in >> p)
|
||||
points.push_back(p);
|
||||
|
||||
// Build the Regular Triangulation
|
||||
DT dt(dim_from_file);
|
||||
dt.insert(points.begin(), points.end());
|
||||
CGAL_assertion(dt.is_valid(true));
|
||||
|
||||
// Export
|
||||
std::stringstream output_filename;
|
||||
output_filename << "data/dt_dim" << dim << ".off";
|
||||
std::ofstream off_stream(output_filename.str());
|
||||
CGAL::export_triangulation_to_off(off_stream, dt);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
//test(2);
|
||||
//test(3);
|
||||
test(10);
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream.h>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
|
||||
typedef CGAL::Regular_triangulation<K> RT;
|
||||
|
||||
void test(int dim)
|
||||
{
|
||||
std::stringstream input_filename;
|
||||
input_filename << "data/points_" << dim << ".cin";
|
||||
std::ifstream in(input_filename.str());
|
||||
|
||||
RT::Weighted_point wp;
|
||||
std::vector<RT::Weighted_point> wpoints;
|
||||
|
||||
int dim_from_file;
|
||||
in >> dim_from_file;
|
||||
while(in >> wp)
|
||||
wpoints.push_back(wp);
|
||||
|
||||
// Build the Regular Triangulation
|
||||
RT rt(dim_from_file);
|
||||
rt.insert(wpoints.begin(), wpoints.end());
|
||||
CGAL_assertion(rt.is_valid(true));
|
||||
|
||||
// Export
|
||||
std::stringstream output_filename;
|
||||
output_filename << "data/rt_dim" << dim << ".off";
|
||||
std::ofstream off_stream(output_filename.str());
|
||||
CGAL::export_triangulation_to_off(off_stream, rt);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test(2);
|
||||
test(3);
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -21,6 +21,7 @@ if ( CGAL_FOUND )
|
|||
include_directories (BEFORE "../../include")
|
||||
include_directories (BEFORE "include")
|
||||
create_single_source_cgal_program( "delaunay.cpp" )
|
||||
create_single_source_cgal_program( "Td_vs_T2_and_T3.cpp" )
|
||||
|
||||
else()
|
||||
message(STATUS "NOTICE: Some of the executables in this directory need Eigen 3.1 (or greater) and will not be compiled.")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,267 @@
|
|||
// To deactivate statics filters in the 2D/3D case
|
||||
//#define CGAL_NO_STATIC_FILTERS
|
||||
|
||||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
|
||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Regular_triangulation_euclidean_traits_2.h>
|
||||
#include <CGAL/Regular_triangulation_filtered_traits_2.h>
|
||||
#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
|
||||
#include <CGAL/Regular_triangulation_filtered_traits_3.h>
|
||||
|
||||
#include <CGAL/Delaunay_triangulation_2.h>
|
||||
#include <CGAL/Delaunay_triangulation_3.h>
|
||||
#include <CGAL/Regular_triangulation_2.h>
|
||||
#include <CGAL/Regular_triangulation_3.h>
|
||||
|
||||
#include <CGAL/point_generators_2.h>
|
||||
#include <CGAL/point_generators_3.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Timer.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "console_color.h"
|
||||
|
||||
template <typename DT_>
|
||||
struct Stats_getter;
|
||||
|
||||
// T2 specialization
|
||||
template <typename K>
|
||||
struct Stats_getter<CGAL::Delaunay_triangulation_2<K> >
|
||||
{
|
||||
typedef CGAL::Delaunay_triangulation_2<K> DT;
|
||||
|
||||
Stats_getter(DT const& dt) : m_dt(dt) {}
|
||||
|
||||
std::size_t number_of_vertices() { return m_dt.number_of_vertices(); }
|
||||
std::size_t number_of_finite_cells() { return m_dt.number_of_faces(); }
|
||||
|
||||
DT m_dt;
|
||||
};
|
||||
|
||||
// RT2 specialization
|
||||
template <typename K>
|
||||
struct Stats_getter<CGAL::Regular_triangulation_2<K> >
|
||||
{
|
||||
typedef CGAL::Regular_triangulation_2<K> DT;
|
||||
|
||||
Stats_getter(DT const& dt) : m_dt(dt) {}
|
||||
|
||||
std::size_t number_of_vertices() { return m_dt.number_of_vertices(); }
|
||||
std::size_t number_of_finite_cells() { return m_dt.number_of_faces(); }
|
||||
|
||||
DT m_dt;
|
||||
};
|
||||
|
||||
// T3 specialization
|
||||
template <typename K>
|
||||
struct Stats_getter<CGAL::Delaunay_triangulation_3<K> >
|
||||
{
|
||||
typedef CGAL::Delaunay_triangulation_3<K> DT;
|
||||
|
||||
Stats_getter(DT const& dt) : m_dt(dt) {}
|
||||
|
||||
std::size_t number_of_vertices() { return m_dt.number_of_vertices(); }
|
||||
std::size_t number_of_finite_cells() { return m_dt.number_of_finite_cells(); }
|
||||
|
||||
DT m_dt;
|
||||
};
|
||||
|
||||
// RT3 specialization
|
||||
template <typename K>
|
||||
struct Stats_getter<CGAL::Regular_triangulation_3<K> >
|
||||
{
|
||||
typedef CGAL::Regular_triangulation_3<K> DT;
|
||||
|
||||
Stats_getter(DT const& dt) : m_dt(dt) {}
|
||||
|
||||
std::size_t number_of_vertices() { return m_dt.number_of_vertices(); }
|
||||
std::size_t number_of_finite_cells() { return m_dt.number_of_finite_cells(); }
|
||||
|
||||
DT m_dt;
|
||||
};
|
||||
|
||||
|
||||
template<typename DT_d, typename DT_23,
|
||||
typename Pt_d_range, typename Pt_23_range>
|
||||
void test(
|
||||
int d, int N, Pt_d_range const& points_d, Pt_23_range const& points_23,
|
||||
std::string const& DTd_static_or_dyn)
|
||||
{
|
||||
// Td
|
||||
{
|
||||
DT_d dt(d);
|
||||
CGAL::Timer timer;
|
||||
timer.start();
|
||||
dt.insert(points_d.begin(), points_d.end());
|
||||
|
||||
std::cerr << " * Td: " << yellow << timer.time() << " s"
|
||||
<< white << std::endl;
|
||||
std::cerr << " " << dt.number_of_vertices() << " vertices, "
|
||||
<< dt.number_of_finite_full_cells() << " finite cells."
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// T2 or T3
|
||||
{
|
||||
CGAL::Timer timer;
|
||||
timer.start();
|
||||
|
||||
DT_23 dt;
|
||||
dt.insert(points_23.begin(), points_23.end());
|
||||
|
||||
std::cerr << " * T" << d << ": " << yellow << timer.time() << " s"
|
||||
<< white << std::endl;
|
||||
Stats_getter<DT_23> sg(dt);
|
||||
std::cerr << " " << sg.number_of_vertices() << " vertices, "
|
||||
<< sg.number_of_finite_cells() << " finite cells."
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template< int D, typename Dim_tag >
|
||||
void go(const int N)
|
||||
{
|
||||
CGAL_assertion(D == 2 || D == 3);
|
||||
|
||||
// Generate points (in a common "array" format)
|
||||
std::vector<CGAL::cpp11::array<double, D> > coords;
|
||||
coords.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
CGAL::cpp11::array<double, D> pt;
|
||||
for (int j = 0; j < D; ++j)
|
||||
pt[j] = CGAL::default_random.get_double(-1., 1.);
|
||||
coords.push_back(pt);
|
||||
}
|
||||
// Generate weights
|
||||
std::vector<double> weights;
|
||||
weights.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
weights.push_back(CGAL::default_random.get_double(-10., 10.));
|
||||
|
||||
// DTd
|
||||
typedef CGAL::Epick_d<Dim_tag> Kd;
|
||||
typedef CGAL::Delaunay_triangulation<Kd> DT_d;
|
||||
typedef typename DT_d::Point Point_d;
|
||||
|
||||
std::vector<Point_d> points_d;
|
||||
points_d.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
points_d.push_back(Point_d(D, coords[i].begin(), coords[i].end()));
|
||||
|
||||
// RTd
|
||||
typedef CGAL::Regular_triangulation<Kd> RT_d;
|
||||
typedef typename RT_d::Bare_point Bare_point_d;
|
||||
typedef typename RT_d::Point WPoint_d;
|
||||
|
||||
std::vector<WPoint_d> wpoints_d;
|
||||
wpoints_d.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
wpoints_d.push_back(WPoint_d(
|
||||
Bare_point_d(D, coords[i].begin(), coords[i].end()),
|
||||
weights[i]));
|
||||
}
|
||||
|
||||
// T2 or T3
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K23;
|
||||
if (D == 2)
|
||||
{
|
||||
// Delaunay
|
||||
typedef CGAL::Delaunay_triangulation_2<K23> DT_2;
|
||||
typedef typename DT_2::Point Point;
|
||||
|
||||
std::vector<Point> points;
|
||||
points.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
points.push_back(Point(coords[i][0], coords[i][1]));
|
||||
|
||||
std::cerr << std::endl << "DELAUNAY - dim " << D << " - "
|
||||
<< N << " points." << std::endl;
|
||||
test<DT_d, DT_2>(D, N, points_d, points, "static");
|
||||
|
||||
// Regular
|
||||
typedef CGAL::Regular_triangulation_filtered_traits_2<K23> Traits_2;
|
||||
typedef CGAL::Regular_triangulation_2<Traits_2> RT_2;
|
||||
typedef typename RT_2::Bare_point Bare_point;
|
||||
typedef typename RT_2::Point WPoint;
|
||||
|
||||
std::vector<WPoint> wpoints;
|
||||
wpoints.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
wpoints.push_back(WPoint(
|
||||
Bare_point(coords[i][0], coords[i][1]),
|
||||
weights[i]));
|
||||
}
|
||||
|
||||
std::cerr << std::endl << "REGULAR - dim " << D << " - "
|
||||
<< N << " points." << std::endl;
|
||||
test<RT_d, RT_2>(D, N, wpoints_d, wpoints, "static");
|
||||
}
|
||||
else if (D == 3)
|
||||
{
|
||||
typedef CGAL::Delaunay_triangulation_3<K23> DT_3;
|
||||
typedef typename DT_3::Point Point;
|
||||
|
||||
std::vector<Point> points;
|
||||
points.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
points.push_back(Point(coords[i][0], coords[i][1], coords[i][2]));
|
||||
|
||||
std::cerr << std::endl << "DELAUNAY - dim " << D << " - "
|
||||
<< N << " points." << std::endl;
|
||||
test<DT_d, DT_3>(D, N, points_d, points, "static");
|
||||
|
||||
// Regular
|
||||
typedef CGAL::Regular_triangulation_filtered_traits_3<K23> Traits_3;
|
||||
typedef CGAL::Regular_triangulation_3<Traits_3> RT_3;
|
||||
typedef typename RT_3::Bare_point Bare_point;
|
||||
typedef typename RT_3::Point WPoint;
|
||||
|
||||
std::vector<WPoint> wpoints;
|
||||
wpoints.reserve(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
wpoints.push_back(WPoint(
|
||||
Bare_point(coords[i][0], coords[i][1], coords[i][2]),
|
||||
weights[i]));
|
||||
}
|
||||
|
||||
std::cerr << std::endl << "REGULAR - dim " << D << " - "
|
||||
<< N << " points." << std::endl;
|
||||
test<RT_d, RT_3>(D, N, wpoints_d, wpoints, "static");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
#ifdef _DEBUG
|
||||
int N = 100;
|
||||
#else
|
||||
int N = 100000;
|
||||
#endif
|
||||
if (argc > 1) N = atoi(argv[1]);
|
||||
|
||||
std::cerr << "-----------------------------------------" << std::endl;
|
||||
std::cerr << "-- STATIC --" << std::endl;
|
||||
std::cerr << "-----------------------------------------" << std::endl;
|
||||
go<2, CGAL::Dimension_tag<2> >(N);
|
||||
go<3, CGAL::Dimension_tag<3> >(N);
|
||||
std::cerr << std::endl;
|
||||
|
||||
std::cerr << "-----------------------------------------" << std::endl;
|
||||
std::cerr << "-- DYNAMIC --" << std::endl;
|
||||
std::cerr << "-----------------------------------------" << std::endl;
|
||||
go<2, CGAL::Dynamic_dimension_tag>(N);
|
||||
go<3, CGAL::Dynamic_dimension_tag>(N);
|
||||
std::cerr << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,68 @@
|
|||
#ifndef CONSOLE_COLOR_H_
|
||||
#define CONSOLE_COLOR_H_
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#if defined(WIN32)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
inline std::ostream& blue(std::ostream &s)
|
||||
{
|
||||
#if defined(WIN32)
|
||||
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
SetConsoleTextAttribute(hStdout,
|
||||
FOREGROUND_BLUE|FOREGROUND_GREEN|FOREGROUND_INTENSITY);
|
||||
#else
|
||||
s << "\x1b[0;34m";
|
||||
#endif
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream& red(std::ostream &s)
|
||||
{
|
||||
#if defined(WIN32)
|
||||
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
SetConsoleTextAttribute(hStdout, FOREGROUND_RED|FOREGROUND_INTENSITY);
|
||||
#else
|
||||
s << "\x1b[0;31m";
|
||||
#endif
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream& green(std::ostream &s)
|
||||
{
|
||||
#if defined(WIN32)
|
||||
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
SetConsoleTextAttribute(hStdout, FOREGROUND_GREEN|FOREGROUND_INTENSITY);
|
||||
#else
|
||||
s << "\x1b[0;32m";
|
||||
#endif
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream& yellow(std::ostream &s)
|
||||
{
|
||||
#if defined(WIN32)
|
||||
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
SetConsoleTextAttribute(hStdout,
|
||||
FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_INTENSITY);
|
||||
#else
|
||||
s << "\x1b[0;33m";
|
||||
#endif
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream& white(std::ostream &s)
|
||||
{
|
||||
#if defined(WIN32)
|
||||
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
SetConsoleTextAttribute(hStdout,
|
||||
FOREGROUND_RED|FOREGROUND_GREEN|FOREGROUND_BLUE);
|
||||
#else
|
||||
s << "\x1b[0;37m";
|
||||
#endif
|
||||
return s;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -1,70 +1,128 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Timer.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/Memory_sizer.h>
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
|
||||
//#define USE_DYNAMIC_KERNEL
|
||||
#define OUTPUT_STATS_IN_CSV
|
||||
//#define EXPORT_POINTS_TO_A_FILE
|
||||
|
||||
template<typename DT>
|
||||
void test(const int d, const std::string & type, const int N)
|
||||
#ifdef OUTPUT_STATS_IN_CSV
|
||||
static std::ofstream csv_file("stats.csv");
|
||||
#endif
|
||||
|
||||
// Return the number of Bytes used
|
||||
template<int D>
|
||||
std::size_t compute_triangulation(std::size_t N)
|
||||
{
|
||||
typedef typename DT::Vertex Vertex;
|
||||
typedef typename DT::Vertex_handle Vertex_handle;
|
||||
typedef typename DT::Full_cell Full_cell;
|
||||
typedef typename DT::Full_cell_handle Full_cell_handle;
|
||||
typedef typename DT::Facet Facet;
|
||||
typedef typename DT::Point Point;
|
||||
typedef typename DT::Geom_traits::RT RT;
|
||||
typedef typename DT::Finite_full_cell_const_iterator Finite_full_cell_const_iterator;
|
||||
#ifdef USE_DYNAMIC_KERNEL
|
||||
typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
|
||||
#else
|
||||
typedef CGAL::Epick_d<CGAL::Dimension_tag<D> > K;
|
||||
#endif
|
||||
typedef CGAL::Delaunay_triangulation<K> DT;
|
||||
|
||||
typedef CGAL::Random_points_in_cube_d<Point> Random_points_iterator;
|
||||
CGAL::Timer cost; // timer
|
||||
typedef typename DT::Vertex Vertex;
|
||||
typedef typename DT::Vertex_handle Vertex_handle;
|
||||
typedef typename DT::Full_cell Full_cell;
|
||||
typedef typename DT::Full_cell_handle Full_cell_handle;
|
||||
typedef typename DT::Facet Facet;
|
||||
typedef typename DT::Point Point;
|
||||
typedef typename DT::Geom_traits::RT RT;
|
||||
typedef typename DT::Finite_full_cell_const_iterator Finite_full_cell_const_iterator;
|
||||
|
||||
DT dt(d);
|
||||
assert(dt.empty());
|
||||
typedef CGAL::Random_points_in_cube_d<Point> Random_points_iterator;
|
||||
CGAL::Timer cost; // timer
|
||||
|
||||
std::vector<Point> points;
|
||||
CGAL::Random rng;
|
||||
Random_points_iterator rand_it(d, 2.0, rng);
|
||||
CGAL::cpp11::copy_n(rand_it, N, std::back_inserter(points));
|
||||
cost.reset();cost.start();
|
||||
std::cout << " Delaunay triangulation of "<<N<<" points in dim "<<d<< std::flush;
|
||||
dt.insert(points.begin(), points.end());
|
||||
std::cout << " done in "<<cost.time()<<" seconds." << std::endl;
|
||||
std::size_t nbfc= dt.number_of_finite_full_cells();
|
||||
std::size_t nbc= dt.number_of_full_cells();
|
||||
std::cout << dt.number_of_vertices() << " vertices, "
|
||||
<< nbfc << " finite simplices and "
|
||||
<< (nbc-nbfc) << " convex hull Facets."
|
||||
<< std::endl;
|
||||
// Generate points
|
||||
std::vector<Point> points;
|
||||
CGAL::Random rng;
|
||||
Random_points_iterator rand_it(D, 2.0, rng);
|
||||
CGAL::cpp11::copy_n(rand_it, N, std::back_inserter(points));
|
||||
|
||||
#ifdef EXPORT_POINTS_TO_A_FILE
|
||||
std::ofstream os("points.txt");
|
||||
for (auto const& p : points)
|
||||
{
|
||||
CGAL::Triangulation_IO::output_point(os, K(), p);
|
||||
os << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
std::size_t mem_before = CGAL::Memory_sizer().virtual_size();
|
||||
cost.reset();
|
||||
cost.start();
|
||||
|
||||
std::cout << "Delaunay triangulation of " << N <<
|
||||
" points in dim " << D << ":" << std::endl;
|
||||
|
||||
DT dt(D);
|
||||
dt.insert(points.begin(), points.end());
|
||||
|
||||
std::size_t mem = CGAL::Memory_sizer().virtual_size() - mem_before;
|
||||
double timing = cost.time();
|
||||
std::cout << " Done in " << timing << " seconds." << std::endl;
|
||||
std::cout << " Memory consumption: " << (mem >> 10) << " KB.\n";
|
||||
std::size_t nbfc= dt.number_of_finite_full_cells();
|
||||
std::size_t nbc= dt.number_of_full_cells();
|
||||
std::cout << " " << dt.number_of_vertices() << " vertices, "
|
||||
<< nbfc << " finite simplices and "
|
||||
<< (nbc-nbfc) << " convex hull Facets."
|
||||
<< std::endl;
|
||||
|
||||
#ifdef OUTPUT_STATS_IN_CSV
|
||||
csv_file
|
||||
<< D << ";"
|
||||
<< N << ";"
|
||||
<< timing << ";"
|
||||
<< mem << ";"
|
||||
<< nbfc << "\n"
|
||||
<< std::flush;
|
||||
#endif
|
||||
|
||||
|
||||
return mem;
|
||||
}
|
||||
|
||||
template< int D >
|
||||
void go(const int N)
|
||||
// Will compute triangulations of i*num_points_steps points,
|
||||
// with i in [1, 2...], stopping after the last computation that takes
|
||||
// more memory than mem_threshold_in_bytes
|
||||
template<int D>
|
||||
void go(
|
||||
std::size_t num_points_increment,
|
||||
std::size_t mem_threshold_in_MB = (3 << 10)) // 3 GB
|
||||
{
|
||||
typedef CGAL::Epick_d<CGAL::Dimension_tag<D> > K;
|
||||
//typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
|
||||
typedef CGAL::Delaunay_triangulation<K> Triangulation;
|
||||
test<Triangulation>(D, "static", N);
|
||||
std::size_t mem = 0;
|
||||
for (std::size_t i = 1 ; mem < (mem_threshold_in_MB << 20) ; ++i)
|
||||
{
|
||||
mem = compute_triangulation<D>(i*num_points_increment);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
int N = 100; if( argc > 1 ) N = atoi(argv[1]);
|
||||
go<2>(N);
|
||||
go<3>(N);
|
||||
go<4>(N);
|
||||
go<5>(N);
|
||||
go<6>(N);
|
||||
go<7>(N);
|
||||
go<8>(N);
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
//int N = 100; if( argc > 1 ) N = atoi(argv[1]);
|
||||
go<2>(5000000);
|
||||
//go<3>(1000000);
|
||||
//go<4>(300000);
|
||||
//go<5>(50000);
|
||||
//go<6>(5000);
|
||||
//go<7>(1000);
|
||||
//go<8>(300);
|
||||
//go<9>(100);
|
||||
//go<10>(30);
|
||||
//go<11>(20);
|
||||
//go<12>(15);
|
||||
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -20,35 +20,32 @@ A <I>circumscribing ball</I> of a simplex is a ball
|
|||
having all vertices of the simplex on its boundary.
|
||||
|
||||
|
||||
\tparam DelaunayTriangulationTraits is the geometric traits class that provides the geometric types
|
||||
and predicates needed by Delaunay triangulations. `DelaunayTriangulationTraits` must be a model of
|
||||
\tparam DelaunayTriangulationTraits_ is the geometric traits class that provides the geometric types
|
||||
and predicates needed by Delaunay triangulations. `DelaunayTriangulationTraits_` must be a model of
|
||||
the concept `DelaunayTriangulationTraits`.
|
||||
|
||||
\tparam TriangulationDataStructure must be a model of the concept
|
||||
\tparam TriangulationDataStructure_ must be a model of the concept
|
||||
`TriangulationDataStructure`. This model is used to store
|
||||
the faces of the triangulation. The parameter `TriangulationDataStructure` defaults to
|
||||
the faces of the triangulation. The parameter `TriangulationDataStructure_` defaults to
|
||||
`Triangulation_data_structure` whose template parameters are instantiated as
|
||||
follows:
|
||||
<UL>
|
||||
<LI>`DelaunayTriangulationTraits::Dimension`</LI>
|
||||
<LI>`Triangulation_vertex<DelaunayTriangulationTraits>`</LI>
|
||||
<LI>`Triangulation_full_cell<DelaunayTriangulationTraits>`.</LI>
|
||||
<LI>`DelaunayTriangulationTraits_::Dimension`</LI>
|
||||
<LI>`Triangulation_vertex<DelaunayTriangulationTraits_>`</LI>
|
||||
<LI>`Triangulation_full_cell<DelaunayTriangulationTraits_>`.</LI>
|
||||
</UL>
|
||||
|
||||
The class template `Delaunay_triangulation` can
|
||||
\tparam Delaunay_triangulation can
|
||||
be defined by specifying only the first parameter, or by using the
|
||||
tag `CGAL::Default` as the second parameter.
|
||||
|
||||
The class `Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>` inherits all the types
|
||||
defined in the base class `Triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`. Additionally, it
|
||||
defines or overloads the following methods:
|
||||
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
\sa `Regular_triangulation`
|
||||
\sa `Triangulation_data_structure`
|
||||
|
||||
*/
|
||||
template< typename DelaunayTriangulationTraits, typename TriangulationDataStructure >
|
||||
template< typename DelaunayTriangulationTraits_, typename TriangulationDataStructure_ >
|
||||
class Delaunay_triangulation
|
||||
: public Triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>
|
||||
: public Triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>
|
||||
{
|
||||
public:
|
||||
|
||||
|
|
@ -139,7 +136,7 @@ is called.)
|
|||
The parameters `lt`, `f`, `ft`
|
||||
and `c` must be consistent with the localization of point `p` in the
|
||||
Delaunay triangulation e.g. by a call to
|
||||
`c = locate(p, lt, f, ft)`.
|
||||
`Triangulation::locate(const Point &, Locate_type &, Face &, Vertex_handle) const`.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
Vertex_handle insert(const Point & p, const Locate_type lt,
|
||||
|
|
@ -151,8 +148,7 @@ Inserts the point `p` in the Delaunay triangulation. Returns a handle to the
|
|||
(possibly newly created) vertex at that position.
|
||||
\pre The point `p`
|
||||
must lie outside the affine hull of the Delaunay triangulation. This implies that
|
||||
`dt`.`current_dimension()` must be less that
|
||||
`dt`.`maximal_dimension()`.
|
||||
`dt`.`current_dimension()` must be less than `dt`.`maximal_dimension()`.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
Vertex_handle insert_outside_affine_hull(const Point & p);
|
||||
|
|
@ -182,15 +178,13 @@ const;
|
|||
|
||||
/*!
|
||||
\cgalAdvancedBegin
|
||||
Outputs handles to the full cells in confict with
|
||||
Outputs handles to the full cells in conflict with
|
||||
point `p` into the `OutputIterator out`. The full cell `c` is used
|
||||
as a starting point for gathering the full cells in conflict with
|
||||
`p`.
|
||||
A facet `(cc,i)` on the boundary of the conflict zone with
|
||||
`cc` in conflict is returned.
|
||||
\pre `c` is in conflict
|
||||
with `p`.
|
||||
`dt`.`current_dimension()`\f$ \geq2\f$.
|
||||
\pre `c` is in conflict with `p` and `dt`.`current_dimension()`\f$ \geq2\f$.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
template< typename OutputIterator >
|
||||
|
|
|
|||
|
|
@ -0,0 +1,171 @@
|
|||
|
||||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgTriangulationsTriangulationClasses
|
||||
|
||||
This class is used to maintain the
|
||||
regular triangulation -- also known as weighted Delaunay triangulation --
|
||||
of a set of weighted points in \f$ \mathbb{R}^D \f$.
|
||||
The dimension \f$ D\f$ can be specified at compile-time or
|
||||
run-time. It should be kept reasonably small -- see the performance
|
||||
section in the user manual for what reasonable means.
|
||||
|
||||
\warning The removal of points is not supported yet.
|
||||
|
||||
A comprehensive definition of regular triangulations is available in the
|
||||
User Manual.
|
||||
|
||||
Parameters
|
||||
--------------
|
||||
|
||||
\tparam RegularTriangulationTraits_ is the geometric traits class that provides the
|
||||
geometric types and predicates needed by regular triangulations.
|
||||
`RegularTriangulationTraits_` must be a model of the concept
|
||||
`RegularTriangulationTraits`.
|
||||
|
||||
\tparam TriangulationDataStructure_ must be a model of the concept
|
||||
`TriangulationDataStructure`. This model is used to store
|
||||
the faces of the triangulation. The parameter `TriangulationDataStructure_`
|
||||
defaults to `Triangulation_data_structure` whose template parameters are
|
||||
instantiated as follows:
|
||||
<UL>
|
||||
<LI>`RegularTriangulationTraits_::Dimension`</LI>
|
||||
<LI>`Triangulation_vertex<CGAL::Regular_triangulation_euclidean_traits<RegularTriangulationTraits_> >`</LI>
|
||||
<LI>`Triangulation_full_cell<CGAL::Regular_triangulation_euclidean_traits<RegularTriangulationTraits_> >`.</LI>
|
||||
</UL>
|
||||
|
||||
\tparam Regular_triangulation can
|
||||
be defined by specifying only the first parameter, or by using the
|
||||
tag `CGAL::Default` as the second parameter.
|
||||
|
||||
\sa `Delaunay_triangulation`
|
||||
\sa `Triangulation_data_structure`
|
||||
|
||||
*/
|
||||
template< typename RegularTriangulationTraits_, typename TriangulationDataStructure_ >
|
||||
class Regular_triangulation
|
||||
: public Triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>
|
||||
{
|
||||
public:
|
||||
|
||||
/// \name Types
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
A point in Euclidean space with an associated weight.
|
||||
*/
|
||||
typedef RegularTriangulationTraits_::Weighted_point Weighted_point;
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Creation
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
Instantiates a regular triangulation with one vertex (the vertex
|
||||
at infinity). See the description of the inherited nested type
|
||||
`Triangulation::Maximal_dimension` for an explanation of
|
||||
the use of the parameter `dim`. The complex stores a copy of the geometric
|
||||
traits `gt`.
|
||||
*/
|
||||
Regular_triangulation(const int dim, const Geom_traits gt = Geom_traits());
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Point insertion
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
Inserts weighted point `p` in the triangulation and returns the corresponding
|
||||
vertex. Returns a handle to the (possibly newly created) vertex at that
|
||||
position.
|
||||
Prior to the actual insertion, `p` is located in the triangulation;
|
||||
`hint` is used as a starting place for locating `p`.
|
||||
*/
|
||||
Vertex_handle insert(const Weighted_point & p, Full_cell_handle hint
|
||||
= Full_cell_handle());
|
||||
|
||||
/*!
|
||||
Same as above but uses a vertex as starting place for the search.
|
||||
*/
|
||||
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint);
|
||||
|
||||
/*!
|
||||
\cgalAdvancedBegin
|
||||
Inserts weighted point `p` in the triangulation and returns the corresponding
|
||||
vertex. Similar to the above `insert()` function, but takes as additional
|
||||
parameter the return values of a previous location query. See description of
|
||||
`Triangulation::locate()`.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
Vertex_handle insert(const Weighted_point & p, const Locate_type lt,
|
||||
const Face & f, const Facet & ft, const Full_cell_handle c);
|
||||
|
||||
/*!
|
||||
Inserts the weighted points found in range `[s,e)` in the regular triangulation.
|
||||
Returns the difference of the number of vertices between after and
|
||||
before the insertions (it may be negative due to hidden points).
|
||||
Note that this function is not guaranteed to insert the points
|
||||
following the order of `ForwardIterator` because `spatial_sort()`
|
||||
is used to improve efficiency.
|
||||
|
||||
\tparam ForwardIterator must be an input iterator with the value
|
||||
type `Weighted_point`.
|
||||
*/
|
||||
template< typename ForwardIterator >
|
||||
std::ptrdiff_t insert(ForwardIterator s, ForwardIterator e);
|
||||
|
||||
/*!
|
||||
\cgalAdvancedBegin
|
||||
Inserts the point `p` in the regular triangulation. Returns a handle to the
|
||||
(possibly newly created) vertex at that position.
|
||||
\pre The point `p`
|
||||
must lie outside the affine hull of the regular triangulation. This implies that
|
||||
`rt`.`current_dimension()` must be less than `rt`.`maximal_dimension()`.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
Vertex_handle insert_outside_affine_hull(const Weighted_point & p);
|
||||
|
||||
/*!
|
||||
\cgalAdvancedBegin
|
||||
Inserts the point `p` in the regular triangulation. Returns a handle to the
|
||||
(possibly newly created) vertex at that position.
|
||||
\pre The point `p` must be in conflict with the full cell `c`.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
Vertex_handle insert_in_conflicting_cell(const Weighted_point & p, const
|
||||
Full_cell_handle c);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Queries
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
Returns `true` if and only if the point `p` is in
|
||||
conflict with full cell `c` (A weighted point `p` is said to be in conflict
|
||||
with a cell `c` if it has a negative power distance to the power sphere of `c`.)
|
||||
*/
|
||||
bool is_in_conflict(const Weighted_point & p, Full_cell_const_handle c)
|
||||
const;
|
||||
|
||||
/*!
|
||||
\cgalAdvancedBegin
|
||||
Outputs handles to the full cells in conflict with
|
||||
point `p` into the `OutputIterator out`. The full cell `c` is used
|
||||
as a starting point for gathering the full cells in conflict with
|
||||
`p`.
|
||||
A facet `(cc,i)` on the boundary of the conflict zone with
|
||||
`cc` in conflict is returned.
|
||||
\pre `c` is in conflict with `p` and `rt`.`current_dimension()`\f$ \geq2\f$.
|
||||
\cgalAdvancedEnd
|
||||
*/
|
||||
template< typename OutputIterator >
|
||||
Facet compute_conflict_zone(const Weighted_point & p, const Full_cell_handle c,
|
||||
OutputIterator out) const;
|
||||
|
||||
/// @}
|
||||
|
||||
}; /* end regular_triangulation */
|
||||
} /* end namespace CGAL */
|
||||
|
|
@ -17,25 +17,25 @@ incident to the infinite vertex and to an \f$ (i-1)\f$-simplex of the
|
|||
convex hull boundary.
|
||||
|
||||
|
||||
\tparam TriangulationTraits is the geometric traits class that provides the geometric types
|
||||
and predicates needed by triangulations. `TriangulationTraits` must be a model of the
|
||||
\tparam `TriangulationTraits_` is the geometric traits class that provides the geometric types
|
||||
and predicates needed by triangulations. `TriangulationTraits_` must be a model of the
|
||||
concept `TriangulationTraits`.
|
||||
|
||||
\tparam TriangulationDataStructure must be a model of the concept
|
||||
\tparam `TriangulationDataStructure_` must be a model of the concept
|
||||
`TriangulationDataStructure`. This model is used to store
|
||||
the faces of the triangulation. The parameter `TriangulationDataStructure` defaults to
|
||||
the faces of the triangulation. The parameter `TriangulationDataStructure_` defaults to
|
||||
`Triangulation_data_structure` whose template parameters are instantiated as
|
||||
follows:
|
||||
<UL>
|
||||
<LI>`DelaunayTriangulationTraits::Dimension`</LI>
|
||||
<LI>`Triangulation_vertex<DelaunayTriangulationTraits>`</LI>
|
||||
<LI>`Triangulation_full_cell<DelaunayTriangulationTraits>`.</LI>
|
||||
<LI>`TriangulationTraits_::Dimension`</LI>
|
||||
<LI>`Triangulation_vertex<TriangulationTraits_>`</LI>
|
||||
<LI>`Triangulation_full_cell<TriangulationTraits_>`.</LI>
|
||||
</UL>
|
||||
|
||||
The triangulation deduces its maximal dimension from the type
|
||||
`TriangulationTraits::Dimension`. This dimension has to match
|
||||
`TriangulationTraits_::Dimension`. This dimension has to match
|
||||
the dimension returned by
|
||||
`TriangulationDataStructure::maximal_dimension()`.
|
||||
`TriangulationDataStructure_::maximal_dimension()`.
|
||||
|
||||
Input/Output
|
||||
--------------
|
||||
|
|
@ -47,25 +47,25 @@ full cell, plus the non-combinatorial information about each full cell, then the
|
|||
indices of the neighbors of each full cell, where the index corresponds to the
|
||||
preceding list of full cells.
|
||||
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
|
||||
*/
|
||||
template< typename TriangulationTraits, typename TriangulationDataStructure >
|
||||
template< typename TriangulationTraits_, typename TriangulationDataStructure_>
|
||||
class Triangulation {
|
||||
public:
|
||||
/// \name Types
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
Type for the model of the `TriangulationTraits` concept.
|
||||
Type for the model of the `TriangulationTraits_` concept.
|
||||
*/
|
||||
typedef TriangulationTraits Geom_traits;
|
||||
typedef TriangulationTraits_ Geom_traits;
|
||||
|
||||
/*!
|
||||
A point in Euclidean space.
|
||||
*/
|
||||
typedef TriangulationTraits::Point_d Point;
|
||||
typedef TriangulationTraits_::Point_d Point;
|
||||
|
||||
/*!
|
||||
This indicates whether the maximal dimension is static
|
||||
|
|
@ -75,34 +75,34 @@ or dynamic (i.e.\ if the type of `Maximal_dimension` is
|
|||
In the latter case, the `dim` parameter passed to the class's constructor
|
||||
is used.
|
||||
*/
|
||||
typedef TriangulationTraits::Dimension Maximal_dimension;
|
||||
typedef TriangulationTraits_::Dimension Maximal_dimension;
|
||||
|
||||
/*!
|
||||
The second template parameter: the triangulation data structure.
|
||||
*/
|
||||
typedef TriangulationDataStructure Triangulation_ds;
|
||||
typedef TriangulationDataStructure_ Triangulation_ds;
|
||||
|
||||
/*!
|
||||
A model of the concept `TriangulationVertex`.
|
||||
*/
|
||||
typedef TriangulationDataStructure::Vertex Vertex;
|
||||
typedef TriangulationDataStructure_::Vertex Vertex;
|
||||
|
||||
/*!
|
||||
A model of the concept
|
||||
`TriangulationFullCell`.
|
||||
*/
|
||||
typedef TriangulationDataStructure::Full_cell Full_cell;
|
||||
typedef TriangulationDataStructure_::Full_cell Full_cell;
|
||||
|
||||
/*!
|
||||
The facet
|
||||
class
|
||||
*/
|
||||
typedef TriangulationDataStructure::Facet Facet;
|
||||
typedef TriangulationDataStructure_::Facet Facet;
|
||||
|
||||
/*!
|
||||
A model of the concept `TriangulationDSFace`.
|
||||
*/
|
||||
typedef TriangulationDataStructure::Face Face;
|
||||
typedef TriangulationDataStructure_::Face Face;
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
@ -122,25 +122,25 @@ typedef TriangulationDataStructure::Face Face;
|
|||
/*!
|
||||
handle to a a vertex
|
||||
*/
|
||||
typedef TriangulationDataStructure::Vertex_handle
|
||||
typedef TriangulationDataStructure_::Vertex_handle
|
||||
Vertex_handle;
|
||||
|
||||
/*!
|
||||
const handle to a a vertex
|
||||
*/
|
||||
typedef TriangulationDataStructure::Vertex_const_handle
|
||||
typedef TriangulationDataStructure_::Vertex_const_handle
|
||||
Vertex_const_handle;
|
||||
|
||||
/*!
|
||||
iterator over all vertices (including the infinite one)
|
||||
*/
|
||||
typedef TriangulationDataStructure::Vertex_iterator
|
||||
typedef TriangulationDataStructure_::Vertex_iterator
|
||||
Vertex_iterator;
|
||||
|
||||
/*!
|
||||
const iterator over all vertices (including the infinite one)
|
||||
*/
|
||||
typedef TriangulationDataStructure::Vertex_const_iterator
|
||||
typedef TriangulationDataStructure_::Vertex_const_iterator
|
||||
Vertex_const_iterator;
|
||||
|
||||
/*!
|
||||
|
|
@ -156,27 +156,27 @@ typedef unspecified_type Finite_vertex_const_iterator;
|
|||
/*!
|
||||
handle to a full cell
|
||||
*/
|
||||
typedef TriangulationDataStructure::Full_cell_handle
|
||||
typedef TriangulationDataStructure_::Full_cell_handle
|
||||
Full_cell_handle;
|
||||
|
||||
/*!
|
||||
const handle to a full cell
|
||||
*/
|
||||
typedef TriangulationDataStructure::Full_cell_const_handle
|
||||
typedef TriangulationDataStructure_::Full_cell_const_handle
|
||||
Full_cell_const_handle;
|
||||
|
||||
/*!
|
||||
iterator over all full cells (including the infinite ones)
|
||||
*/
|
||||
typedef
|
||||
TriangulationDataStructure::Full_cell_iterator
|
||||
TriangulationDataStructure_::Full_cell_iterator
|
||||
Full_cell_iterator;
|
||||
|
||||
/*!
|
||||
const iterator over all full cells (including the infinite ones)
|
||||
*/
|
||||
typedef
|
||||
TriangulationDataStructure::Full_cell_const_iterator
|
||||
TriangulationDataStructure_::Full_cell_const_iterator
|
||||
Full_cell_const_iterator;
|
||||
|
||||
/*!
|
||||
|
|
@ -192,7 +192,7 @@ typedef unspecified_type Finite_full_cell_const_iterator;
|
|||
/*!
|
||||
iterator over all facets (including the infinite ones)
|
||||
*/
|
||||
typedef TriangulationDataStructure::Facet_iterator
|
||||
typedef TriangulationDataStructure_::Facet_iterator
|
||||
Facet_iterator;
|
||||
|
||||
/*!
|
||||
|
|
@ -204,13 +204,13 @@ typedef unspecified_type Finite_facet_iterator;
|
|||
Size type (an unsigned integral
|
||||
type).
|
||||
*/
|
||||
typedef TriangulationDataStructure::size_type size_type;
|
||||
typedef TriangulationDataStructure_::size_type size_type;
|
||||
|
||||
/*!
|
||||
Difference
|
||||
type (a signed integral type).
|
||||
*/
|
||||
typedef TriangulationDataStructure::difference_type difference_type;
|
||||
typedef TriangulationDataStructure_::difference_type difference_type;
|
||||
|
||||
/*!
|
||||
specifies which case occurs when locating a point in the triangulation.
|
||||
|
|
|
|||
|
|
@ -9,29 +9,29 @@ of dimension \f$ d\leq D\f$ (`D` is the maximal dimension).
|
|||
|
||||
|
||||
\tparam Dimensionality can be either <UL>
|
||||
<LI>CGAL::`Dimension_tag<D>` for some integer `D`. This
|
||||
<LI>`CGAL::Dimension_tag<D>` for some integer `D`. This
|
||||
indicates that the triangulation data structure can store simplices (full cells) of dimension at most
|
||||
`D`. The maximal dimension `D` is known by the compiler, which
|
||||
triggers some optimizations. Or
|
||||
<LI>CGAL::`Dynamic_dimension_tag`. In this case, the maximum
|
||||
<LI>`CGAL::Dynamic_dimension_tag`. In this case, the maximum
|
||||
dimension of the simplices (full cells) is passed as an integer argument to an instance
|
||||
constructor (see `TriangulationDataStructure`).</UL>
|
||||
|
||||
\tparam TriangulationDSVertex stands for a class to
|
||||
\tparam `TriangulationDSVertex_` stands for a class to
|
||||
be used as the base `Vertex` type in the triangulation data structure.
|
||||
It must be a model of the concept
|
||||
`TriangulationDSVertex`. The class template `Triangulation_data_structure` can be
|
||||
defined by specifying
|
||||
only the first parameter. It also accepts the tag `CGAL::Default` as
|
||||
second parameter. In both cases, `TriangulationDSVertex` defaults to
|
||||
second parameter. In both cases, `TriangulationDSVertex_` defaults to
|
||||
`CGAL::Triangulation_ds_vertex<>`.
|
||||
|
||||
\tparam TriangulationDSFullCell stands for a class to
|
||||
\tparam `TriangulationDSFullCell_` stands for a class to
|
||||
be used as the base `Full_cell` type in the triangulation data structure.
|
||||
It must be a model of the concept
|
||||
`TriangulationDSFullCell`. The class template `Triangulation_data_structure` accepts that no
|
||||
third parameter be specified. It also accepts the tag `CGAL::Default` as
|
||||
third parameter. In both cases, `TriangulationDSFullCell` defaults to
|
||||
third parameter. In both cases, `TriangulationDSFullCell_` defaults to
|
||||
`CGAL::Triangulation_ds_full_cell<>`.
|
||||
|
||||
\cgalModels `TriangulationDataStructure`. In addition, the class
|
||||
|
|
@ -41,7 +41,7 @@ methods.
|
|||
\sa `Triangulation_ds_vertex`
|
||||
\sa `Triangulation_ds_full_cell`
|
||||
*/
|
||||
template< typename Dimensionality, typename TriangulationDSVertex, typename TriangulationDSFullCell >
|
||||
template< typename Dimensionality, typename TriangulationDSVertex_, typename TriangulationDSFullCell_ >
|
||||
class Triangulation_data_structure {
|
||||
public:
|
||||
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ This class can be used directly or can serve as a base to derive other classes
|
|||
with some additional attributes tuned for a specific application.
|
||||
|
||||
|
||||
\tparam TriangulationDataStructure must be a model of the
|
||||
\tparam `TriangulationDataStructure_` must be a model of the
|
||||
`TriangulationDataStructure` concept.
|
||||
|
||||
\tparam TriangulationDSFullCellStoragePolicy indicates whether or not
|
||||
|
|
@ -49,11 +49,11 @@ Rebind mechanism
|
|||
In case of derivation from that class, the nested class
|
||||
`Rebind_TDS` need to be provided in the derived class.
|
||||
|
||||
\sa `Triangulation_ds_vertex<TriangulationDataStructure>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>>`
|
||||
\sa `Triangulation_ds_vertex<TriangulationDataStructure_>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
|
||||
*/
|
||||
template< typename TriangulationDataStructure, typename TriangulationDSFullCellStoragePolicy >
|
||||
template< typename TriangulationDataStructure_, typename TriangulationDSFullCellStoragePolicy >
|
||||
class Triangulation_ds_full_cell {
|
||||
public:
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
\ingroup PkgTriangulationsVertexCellClasses
|
||||
|
||||
The class `Triangulation_ds_vertex` serves as the default vertex template parameter in the
|
||||
class `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`.
|
||||
class `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`.
|
||||
|
||||
This class does not contain any geometric information but only combinatorial
|
||||
(adjacency) information. Thus, if the `Triangulation_data_structure` is
|
||||
|
|
@ -18,7 +18,7 @@ with some additional attributes tuned for a specific application (a color for
|
|||
example).
|
||||
|
||||
|
||||
\tparam TriangulationDataStructure must be a model of the
|
||||
\tparam `TriangulationDataStructure_` must be a model of the
|
||||
`TriangulationDataStructure` concept.
|
||||
|
||||
\cgalModels `TriangulationDSVertex`
|
||||
|
|
@ -29,11 +29,11 @@ Rebind Mechanism
|
|||
In case of derivation from that class, the nested class
|
||||
`Rebind_TDS` need to be provided in the derived class.
|
||||
|
||||
\sa `Triangulation_ds_full_cell<TriangulationDataStructure, TriangulationDSFullCellStoragePolicy>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>>`
|
||||
\sa `Triangulation_ds_full_cell<TriangulationDataStructure_, TriangulationDSFullCellStoragePolicy>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
|
||||
*/
|
||||
template< typename TriangulationDataStructure >
|
||||
template< typename TriangulationDataStructure_ >
|
||||
class Triangulation_ds_vertex {
|
||||
public:
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ namespace CGAL {
|
|||
|
||||
A `Triangulation_face` is a model of the concept `TriangulationDSFace`.
|
||||
|
||||
\tparam TriangulationDataStructure must be a model of the concept
|
||||
\tparam TriangulationDataStructure_ must be a model of the concept
|
||||
`TriangulationDataStructure`.
|
||||
Actually, `Triangulation_face` needs only that this concept defines the types
|
||||
`Full_cell_handle`,
|
||||
|
|
@ -18,7 +18,7 @@ Actually, `Triangulation_face` needs only that this concept defines the types
|
|||
\sa `TriangulationDataStructure`
|
||||
|
||||
*/
|
||||
template< typename TriangulationDataStructure >
|
||||
template< typename TriangulationDataStructure_ >
|
||||
class Triangulation_face {
|
||||
}; /* end Triangulation_face */
|
||||
|
||||
|
|
|
|||
|
|
@ -6,15 +6,15 @@ namespace CGAL {
|
|||
|
||||
The class `Triangulation_full_cell` is a model of the concept `TriangulationFullCell`. It
|
||||
is used by default for representing full cells in the class
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>`.
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>`.
|
||||
|
||||
A `Triangulation_full_cell` stores handles to the vertices of the cell as well as handles
|
||||
to its adjacent cells.
|
||||
|
||||
|
||||
\tparam TriangulationTraits must be a model of the concept `TriangulationTraits`. It
|
||||
\tparam `TriangulationTraits_` must be a model of the concept `TriangulationTraits`. It
|
||||
provides geometric types and predicates for use in the
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>` class.
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>` class.
|
||||
|
||||
\tparam Data is an optional type of data to be stored in the full cell class. The
|
||||
class template `Triangulation_full_cell` accepts that no second parameter be specified. In
|
||||
|
|
@ -31,13 +31,13 @@ cases, `TriangulationDSFullCell_` defaults to `CGAL::Triangulation_ds_full_cell<
|
|||
`Triangulation_full_cell` provides the following types,
|
||||
constructors and methods:
|
||||
|
||||
\sa `Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
\sa `Triangulation<TriangulationTraits,TriangulationDataStructure>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
\sa `Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
\sa `Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
|
||||
*/
|
||||
template< typename TriangulationTraits, typename Data, typename TriangulationDSFullCell_ >
|
||||
template< typename TriangulationTraits_, typename Data, typename TriangulationDSFullCell_ >
|
||||
class Triangulation_full_cell : public TriangulationDSFullCell_ {
|
||||
public:
|
||||
|
||||
|
|
|
|||
|
|
@ -6,14 +6,14 @@ namespace CGAL {
|
|||
|
||||
The class `Triangulation_vertex` is a model of the concept `TriangulationVertex`. It is
|
||||
used by default for representing vertices in the class
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>`.
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>`.
|
||||
|
||||
A `Triangulation_vertex` stores a point and an incident full cell.
|
||||
|
||||
|
||||
\tparam TriangulationTraits must be a model of the concept `TriangulationTraits`. It
|
||||
\tparam `TriangulationTraits_` must be a model of the concept `TriangulationTraits`. It
|
||||
provides geometric types and predicates for use in the
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>` class. It is of interest here for its
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>` class. It is of interest here for its
|
||||
declaration of the `Point` type.
|
||||
|
||||
\tparam Data is an optional type of data to be stored in the vertex class. The
|
||||
|
|
@ -22,22 +22,22 @@ this case, `Data` defaults to `CGAL::No_vertex_data`.
|
|||
`CGAL::No_vertex_data` can be explicitely specified to allow to access the
|
||||
third parameter.
|
||||
|
||||
\tparam TriangulationDSVertex must be a model of the concept `TriangulationDSVertex`. The
|
||||
\tparam `TriangulationDSVertex_` must be a model of the concept `TriangulationDSVertex`. The
|
||||
class template `Triangulation_vertex` accepts that no third parameter be specified. It
|
||||
also accepts the tag `CGAL::Default` as third parameter. In both cases,
|
||||
`TriangulationDSVertex` defaults to `CGAL::Triangulation_ds_vertex<>`.
|
||||
`TriangulationDSVertex_` defaults to `CGAL::Triangulation_ds_vertex<>`.
|
||||
|
||||
\cgalModels `TriangulationVertex` Additionally, the class
|
||||
`Triangulation_vertex` provides the following types, constructors
|
||||
and methods:
|
||||
|
||||
\sa `Triangulation_full_cell<TriangulationTraits, Data, TriangulationDSFullCell>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
\sa `Triangulation<TriangulationTraits,TriangulationDataStructure>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
\sa `Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>`
|
||||
\sa `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
\sa `Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
\sa `Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
*/
|
||||
template< typename TriangulationTraits, typename Data, typename TriangulationDSVertex >
|
||||
class Triangulation_vertex {
|
||||
template< typename TriangulationTraits_, typename Data, typename TriangulationDSVertex_ >
|
||||
class Triangulation_vertex {
|
||||
public:
|
||||
|
||||
/// \name Types
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
|
||||
This concept describes the geometric types and predicates required to build
|
||||
a Delaunay triangulation. It corresponds to the first template parameter of the class
|
||||
`CGAL::Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`.
|
||||
`CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`.
|
||||
|
||||
\cgalRefines `TriangulationTraits`
|
||||
|
||||
|
|
@ -32,7 +32,7 @@ defined by the points in range `[start,end)`.
|
|||
If the simplex is positively
|
||||
oriented, then the positive side of sphere corresponds geometrically
|
||||
to its bounded side.
|
||||
\pre If `Dimension`=`CGAL::``Dimension_tag<D>`,
|
||||
\pre If `Dimension`=`CGAL::Dimension_tag<D>`,
|
||||
then `std::distance(start,end)=D+1`.
|
||||
The points in range
|
||||
`[start,end)` must be affinely independent, i.e., the simplex must
|
||||
|
|
@ -70,14 +70,16 @@ typedef unspecified_type In_flat_side_of_oriented_sphere_d;
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
The default constructor.
|
||||
The default constructor (optional).
|
||||
This is not required if an instance of the traits will be provided
|
||||
to the constructor of `CGAL::Delaunay_triangulation`.
|
||||
*/
|
||||
DelaunayTriangulationTraits();
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Operations
|
||||
/// The following methods permit access to the traits class's predicates:
|
||||
/// The following methods permit access to the traits class's predicates and functors:
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
|
|
|
|||
|
|
@ -0,0 +1,130 @@
|
|||
|
||||
/*!
|
||||
\ingroup PkgTriangulationsConcepts
|
||||
\cgalConcept
|
||||
|
||||
This concept describes the geometric types and predicates required to build
|
||||
a regular triangulation. It corresponds to the first template parameter of the class
|
||||
`CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`.
|
||||
|
||||
\cgalRefines ::TriangulationTraits.
|
||||
|
||||
\cgalHasModel `CGAL::Epick_d<Dim>`
|
||||
*/
|
||||
class RegularTriangulationTraits {
|
||||
public:
|
||||
|
||||
/// \name Types
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
A number type that is a model for `RingNumberType`.
|
||||
*/
|
||||
typedef unspecified_type RT;
|
||||
|
||||
/*!
|
||||
The weighted point type.
|
||||
*/
|
||||
typedef unspecified_type Weighted_point_d;
|
||||
|
||||
/*!
|
||||
A function object that must provide the operator
|
||||
`Point_d operator()(const Weighted_point & wp)`, returning
|
||||
`wp` without its weight.
|
||||
*/
|
||||
typedef unspecified_type Point_drop_weight_d;
|
||||
|
||||
/*!
|
||||
A function object that must provide the operator
|
||||
`RT operator()(const Weighted_point & wp)`, returning
|
||||
the weight of `wp`.
|
||||
*/
|
||||
typedef unspecified_type Point_weight_d;
|
||||
|
||||
/*!
|
||||
A predicate object that must provide the templated operator
|
||||
`template<typename ForwardIterator> Oriented_side operator()(ForwardIterator start, ForwardIterator end, const Weighted_point_d & p)`.
|
||||
Let \f$ S \f$ be the power sphere of the weighted points in range `[start,end)`.
|
||||
The operator returns:
|
||||
- `ON_ORIENTED_BOUNDARY` if `p` is orthogonal to
|
||||
\f$ S \f$,
|
||||
|
||||
- `ON_NEGATIVE_SIDE` if the power distance between `p` and \f$ S \f$ is
|
||||
positive.
|
||||
|
||||
- `ON_POSITIVE_SIDE` otherwise.
|
||||
|
||||
\pre If `Dimension` is `CGAL::Dimension_tag<D>`,
|
||||
then `std::distance(start,end)=D+1`.
|
||||
The weighted points in range
|
||||
`[start,end)` must be affinely independent, i.e., the simplex must
|
||||
not be flat.
|
||||
*/
|
||||
typedef unspecified_type Power_test_d;
|
||||
|
||||
/*!
|
||||
A predicate object that must provide the templated operator
|
||||
`template<typename ForwardIterator> Oriented_side operator()(Flat_orientation_d orient, ForwardIterator start, ForwardIterator end, const Weighted_point_d & p)`.
|
||||
|
||||
The points in range `[start,end)` and `p` are supposed to belong to the lower-dimensional flat
|
||||
whose orientation is given by `orient`.
|
||||
|
||||
Let \f$ S \f$ be the power sphere of the weighted points in range `[start,end)`
|
||||
in this lower dimensional flat.
|
||||
The operator returns:
|
||||
- `ON_ORIENTED_BOUNDARY` if `p` is orthogonal to
|
||||
\f$ S \f$,
|
||||
|
||||
- `ON_NEGATIVE_SIDE` if the power distance between `p` and \f$ S \f$ is
|
||||
positive.
|
||||
|
||||
- `ON_POSITIVE_SIDE` otherwise.
|
||||
|
||||
\pre `std::distance(start,end)=k+1` where \f$ k\f$ is the number of
|
||||
points used to construct `orient` (dimension of the flat).
|
||||
The points in range `[start,end)` must be affinely independent.
|
||||
`p` must be in the flat generated by these points.
|
||||
*/
|
||||
typedef unspecified_type In_flat_power_test_d;
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Creation
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
The default constructor (optional).
|
||||
This is not required if an instance of the traits will be provided
|
||||
to the constructor of `CGAL::Regular_triangulation`.
|
||||
*/
|
||||
RegularTriangulationTraits();
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Operations
|
||||
/// The following methods permit access to the traits class's predicates and functors:
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
|
||||
*/
|
||||
Point_drop_weight_d point_drop_weight_d_object() const;
|
||||
|
||||
/*!
|
||||
|
||||
*/
|
||||
Point_weight_d point_weight_d_object() const;
|
||||
|
||||
/*!
|
||||
|
||||
*/
|
||||
Power_test_d power_test_d_object() const;
|
||||
|
||||
/*!
|
||||
|
||||
*/
|
||||
In_flat_power_test_d in_flat_power_test_d_object() const;
|
||||
|
||||
/// @}
|
||||
|
||||
}; /* end RegularTriangulationTraits */
|
||||
|
|
@ -15,7 +15,7 @@ The dimension of a face is implicitely set when
|
|||
`TriangulationDSFace::set_index` is called two times to set the
|
||||
first two vertices (`i = 0` and `i = 1`), then the dimension is 1.
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_face<TriangulationDataStructure>`
|
||||
\cgalHasModel `CGAL::Triangulation_face<TriangulationDataStructure_>`
|
||||
|
||||
\sa `TriangulationDSFullCell`
|
||||
\sa `TriangulationDSVertex`
|
||||
|
|
|
|||
|
|
@ -36,8 +36,8 @@ of `CGAL::Triangulation_data_structure::Vertex`.
|
|||
|
||||
\cgalRefines `TriangulationDataStructure::FullCell`
|
||||
|
||||
\cgalHasModel ` CGAL::Triangulation_ds_full_cell<TriangulationDataStructure,DSFullCellStoragePolicy>`
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits, Data, TriangulationDSFullCell>`
|
||||
\cgalHasModel `CGAL::Triangulation_ds_full_cell<TriangulationDataStructure_, DSFullCellStoragePolicy>`
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>`
|
||||
|
||||
\sa `TriangulationDSVertex`
|
||||
\sa `TriangulationDSFace`
|
||||
|
|
|
|||
|
|
@ -36,8 +36,8 @@ of `CGAL::Triangulation_data_structure::Vertex`.
|
|||
|
||||
\cgalRefines `TriangulationDataStructure::Vertex`
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_ds_vertex<TriangulationDataStructure>`
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex>`
|
||||
\cgalHasModel `CGAL::Triangulation_ds_vertex<TriangulationDataStructure_>`
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
|
||||
\sa `TriangulationDSFullCell`
|
||||
\sa `TriangulationDSFace`
|
||||
|
|
|
|||
|
|
@ -26,8 +26,8 @@ which is also the unique vertex and the unique full cell in the
|
|||
`TriangulationDataStructure`.
|
||||
In a
|
||||
geometric realization of the `TriangulationDataStructure` (<I>e.g.</I>, in a
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>` or a
|
||||
`Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`), this vertex
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>` or a
|
||||
`Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`), this vertex
|
||||
corresponds to <I>the vertex at infinity</I>.
|
||||
|
||||
<DT><B>0</B><DD> This corresponds to two vertices, each incident to one \f$ 0\f$-face;
|
||||
|
|
@ -70,7 +70,7 @@ The classes `Vertex` and
|
|||
`Full_cell` have to provide the relevant I/O operators
|
||||
(possibly empty).
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
\cgalHasModel `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
|
||||
\sa `TriangulationDataStructure::Vertex`
|
||||
\sa `TriangulationDataStructure::FullCell`
|
||||
|
|
@ -257,11 +257,13 @@ The predicate must return `true`
|
|||
if the traversal of that `Facet` leads to a good full cell.
|
||||
|
||||
All the good full cells are output into the last argument `out`.
|
||||
\pre `start != Full_cell_handle()` and `start` is a good cell.
|
||||
|
||||
Returns a facet on the boundary of the set of cells.
|
||||
|
||||
\pre `start != Full_cell_handle()` and `start` is a good cell.
|
||||
*/
|
||||
template< typename TraversalPredicate, typename OutputIterator >
|
||||
void gather_full_cells(Full_cell_handle start, TraversalPredicate & tp,
|
||||
Facet gather_full_cells(Full_cell_handle start, TraversalPredicate & tp,
|
||||
OutputIterator & out) const;
|
||||
|
||||
/*!
|
||||
|
|
@ -656,8 +658,8 @@ It sets requirements of combinatorial nature
|
|||
only, as geometry is not concerned here. In particular, we only require that
|
||||
the vertex holds a handle to a full cell incident to it in the triangulation.
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_ds_vertex<TriangulationDataStructure>`
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex>`
|
||||
\cgalHasModel `CGAL::Triangulation_ds_vertex<TriangulationDataStructure_>`
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
|
||||
\sa `TriangulationDataStructure::FullCell`
|
||||
\sa `TriangulationDataStructure::Face`
|
||||
|
|
@ -763,8 +765,8 @@ full cell as well as handles to the adjacent full cells. Two full cells
|
|||
are said to be adjacent when they share a facet. Adjacent full cells are
|
||||
called hereafter neighbors.
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_ds_full_cell<TriangulationDataStructure,DSFullCellStoragePolicy>`
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits, Data, TriangulationDSFullCell>`
|
||||
\cgalHasModel `CGAL::Triangulation_ds_full_cell<TriangulationDataStructure_, DSFullCellStoragePolicy>`
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>`
|
||||
|
||||
\sa `TriangulationDataStructure::FullCell`
|
||||
\sa `TriangulationDataStructure::Face`
|
||||
|
|
|
|||
|
|
@ -4,17 +4,17 @@
|
|||
\cgalConcept
|
||||
|
||||
The concept `TriangulationFullCell` describes the requirements on the type used by the
|
||||
class `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`, and its derived classes, to
|
||||
class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`, and its derived classes, to
|
||||
represent a full cell.
|
||||
|
||||
\cgalRefines `TriangulationDSFullCell` We only list below the
|
||||
additional specific requirements of `TriangulationFullCell`.
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits, TriangulationDSFullCell>`
|
||||
\cgalHasModel `CGAL::Triangulation_full_cell<TriangulationTraits_, TriangulationDSFullCell_>`
|
||||
|
||||
\sa `CGAL::Triangulation_full_cell<TriangulationTraits, Data, TriangulationDSFullCell>`
|
||||
\sa `CGAL::Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>`
|
||||
\sa `TriangulationVertex`
|
||||
\sa `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
\sa `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
|
||||
This concept describes the geometric types and predicates required to build
|
||||
a triangulation. It corresponds to the first template parameter of the class
|
||||
`CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`.
|
||||
`CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`.
|
||||
|
||||
\cgalRefines `SpatialSortingTraits_d`
|
||||
|
||||
|
|
@ -30,8 +30,8 @@ A type representing the dimension of the predicates
|
|||
(but not necessarily the one of `Point_d`). If \f$ n \f$ is the number of
|
||||
points required by the `Orientation_d` predicate, then
|
||||
`Dimension` \f$ = n - 1\f$.
|
||||
It can be static (`Dimension`=`CGAL::``Dimension_tag<int dim>`) or
|
||||
dynamic (`Dimension`=`CGAL::``Dynamic_dimension_tag`).
|
||||
It can be static (`Dimension`=`CGAL::Dimension_tag<int dim>`) or
|
||||
dynamic (`Dimension`=`CGAL::Dynamic_dimension_tag`).
|
||||
*/
|
||||
typedef unspecified_type Dimension;
|
||||
|
||||
|
|
@ -48,7 +48,7 @@ templated operator
|
|||
The operator returns the orientation of the simplex defined by the points
|
||||
in the range `[start, end)`; the value can be
|
||||
`CGAL::POSITIVE`, `CGAL::NEGATIVE` or `CGAL::COPLANAR`.
|
||||
\pre If `Dimension`=`CGAL::``Dimension_tag<D>`, then `std::distance(start,end)=D+1`.
|
||||
\pre If `Dimension`=`CGAL::Dimension_tag<D>`, then `std::distance(start,end)=D+1`.
|
||||
*/
|
||||
typedef unspecified_type Orientation_d;
|
||||
|
||||
|
|
@ -59,7 +59,7 @@ the templated operator
|
|||
The operator returns `true` if and only if point `p` is
|
||||
contained in the affine space spanned by the points in the range `[start, end)`. That affine space is also called the <I>affine hull</I> of the points
|
||||
in the range.
|
||||
\pre If `Dimension`=`CGAL::``Dimension_tag<D>`,
|
||||
\pre If `Dimension`=`CGAL::Dimension_tag<D>`,
|
||||
then `std::distance(start,end)=D+1`.
|
||||
The points in the range
|
||||
must be affinely independent. Note that in the CGAL kernels, this predicate
|
||||
|
|
@ -97,7 +97,7 @@ the range `R=[start, end)` can be oriented in two different ways,
|
|||
the operator
|
||||
returns an object that allow to orient that flat so that `R=[start, end)`
|
||||
defines a positive simplex.
|
||||
\pre If `Dimension`=`CGAL::``Dimension_tag<D>`,
|
||||
\pre If `Dimension`=`CGAL::Dimension_tag<D>`,
|
||||
then `std::distance(start,end)=D+1`.
|
||||
The points in range
|
||||
`[start,end)` must be affinely independent.
|
||||
|
|
@ -137,7 +137,9 @@ typedef unspecified_type Compare_lexicographically_d;
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
The default constructor.
|
||||
The default constructor (optional).
|
||||
This is not required if an instance of the traits will be provided
|
||||
to the constructor of `CGAL::Triangulation`.
|
||||
*/
|
||||
TriangulationTraits();
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
\cgalConcept
|
||||
|
||||
The concept `TriangulationVertex` describes the requirements on the type used by the
|
||||
class `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`, and its derived classes, to
|
||||
class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`, and its derived classes, to
|
||||
represent a vertex.
|
||||
|
||||
\cgalRefines `TriangulationDSVertex`
|
||||
|
|
@ -12,7 +12,7 @@ We only list below the additional specific requirements of ::TriangulationVertex
|
|||
Compared to ::TriangulationDSVertex, the main difference is the addition of
|
||||
an association of the vertex with a geometric point.
|
||||
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex> `
|
||||
\cgalHasModel `CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
|
||||
Input/Output
|
||||
--------------
|
||||
|
|
@ -20,9 +20,9 @@ Input/Output
|
|||
These operators can be used directly and are called by the I/O
|
||||
operator of class `Triangulation`.
|
||||
|
||||
\sa `CGAL::Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex>`
|
||||
\sa `CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
\sa `TriangulationFullCell`
|
||||
\sa `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
\sa `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
|
||||
*/
|
||||
|
||||
|
|
@ -36,7 +36,7 @@ public:
|
|||
The type of the point stored in the vertex. It must be
|
||||
the same as the point type `TriangulationTraits::Point` (or its refined
|
||||
concepts) when the `TriangulationVertex` is used in the class
|
||||
`Triangulation<TriangulationTraits, TriangulationDataStructure>` (or its derived classes).
|
||||
`Triangulation<TriangulationTraits_, TriangulationDataStructure_>` (or its derived classes).
|
||||
*/
|
||||
typedef unspecified_type Point;
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
\cgalPkgDescriptionBegin{dD Triangulations,PkgTriangulationsSummary}
|
||||
\cgalPkgPicture{Hypertriangle.png}
|
||||
\cgalPkgSummaryBegin
|
||||
\cgalPkgAuthors{Samuel Hornus, Olivier Devillers and Clément Jamin}
|
||||
\cgalPkgAuthors{Olivier Devillers, Samuel Hornus, and Clément Jamin}
|
||||
\cgalPkgDesc{This package provides classes for manipulating
|
||||
triangulations (pure simplicial complexes) in Euclidean spaces whose dimension
|
||||
can be specified at compile-time or at run-time. Specifically, it provides a
|
||||
|
|
@ -84,6 +84,7 @@ is opposite to the vertex with the same index.
|
|||
|
||||
- `TriangulationTraits`
|
||||
- `DelaunayTriangulationTraits`
|
||||
- `RegularTriangulationTraits`
|
||||
- `TriangulationVertex`
|
||||
- `TriangulationFullCell`
|
||||
|
||||
|
|
@ -93,17 +94,18 @@ The latter two concepts are also abbreviated respectively as `TrVertex` and `TrF
|
|||
|
||||
## Triangulation Data Structure ##
|
||||
|
||||
- `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
- `CGAL::Triangulation_ds_vertex<TriangulationDataStructure>`
|
||||
- `CGAL::Triangulation_ds_full_cell<TriangulationDataStructure, TriangulationDSFullCellStoragePolicy>`
|
||||
- `CGAL::Triangulation_face<TriangulationDataStructure>`
|
||||
- `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
- `CGAL::Triangulation_ds_vertex<TriangulationDataStructure_>`
|
||||
- `CGAL::Triangulation_ds_full_cell<TriangulationDataStructure_, TriangulationDSFullCellStoragePolicy>`
|
||||
- `CGAL::Triangulation_face<TriangulationDataStructure_>`
|
||||
|
||||
## (Geometric) Triangulations ##
|
||||
|
||||
- `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
- `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
- `CGAL::Triangulation_vertex<TriangulationTraits, Data, TriangulationDSVertex>`
|
||||
- `CGAL::Triangulation_full_cell<TriangulationTraits, Data, TriangulationDSFullCell>`
|
||||
- `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
- `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
- `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`
|
||||
- `CGAL::Triangulation_vertex<TriangulationTraits_, Data, TriangulationDSVertex_>`
|
||||
- `CGAL::Triangulation_full_cell<TriangulationTraits_, Data, TriangulationDSFullCell_>`
|
||||
|
||||
## Enums ##
|
||||
|
||||
|
|
|
|||
|
|
@ -6,17 +6,17 @@ namespace CGAL {
|
|||
\anchor Chapter_Triangulations
|
||||
|
||||
\cgalAutoToc
|
||||
\authors Samuel Hornus, Olivier Devillers and Clément Jamin.
|
||||
\authors Olivier Devillers, Samuel Hornus, and Clément Jamin.
|
||||
|
||||
This package proposes data structures and algorithms to compute
|
||||
triangulations of points in any dimensions.
|
||||
The `Triangulation_data_structure` handles the
|
||||
combinatorial aspect of triangulations while the geometric classes
|
||||
`Triangulation` and `Delaunay_triangulation` allows to
|
||||
compute and maintain triangulations and Delaunay triangulations of
|
||||
sets of points.
|
||||
`Triangulation`, `Delaunay_triangulation` and `Regular_triangulation` allow to
|
||||
compute and maintain triangulations, Delaunay triangulations, and
|
||||
regular triangulations of sets of points.
|
||||
|
||||
# Introduction #
|
||||
\section TriangulationSecIntro Introduction
|
||||
|
||||
## Some Definitions ##
|
||||
|
||||
|
|
@ -30,64 +30,28 @@ The sets in \f$ S\f$ (which are subsets of \f$ V\f$) are called
|
|||
singular of which is <I>simplex</I>).
|
||||
A simplex \f$ s\in S\f$ is <I>maximal</I> if it is not a proper subset of some other
|
||||
set in \f$ S\f$.
|
||||
A simplex having \f$ d+1 \f$ vertices is said of dimension \f$ d \f$.
|
||||
A simplex having \f$ k+1 \f$ vertices is said of dimension \f$ k \f$.
|
||||
An \f$ k\f$-face denotes a \f$ k\f$-dimensional simplex, i.e., a simplex with \f$ k+1\f$
|
||||
vertices.
|
||||
The simplicial complex is <I>pure</I> if all the maximal simplices
|
||||
have the same dimension.
|
||||
|
||||
A <i>triangulation</i> is a simplicial complex
|
||||
that is pure, connected and without boundaries nor singularities. The
|
||||
<i>dimension</i> of the triangulation is the dimension of its maximal
|
||||
simplices.
|
||||
|
||||
<!--- cardinality, i.e., they have the same number of vertices.--->
|
||||
In the sequel, we will call these maximal simplices <I>full cells</I>.
|
||||
A <I>face</I> of a simplex is a subset of this simplex.
|
||||
A <I>proper face</I> of a simplex is a strict subset of this simplex.
|
||||
Two faces \f$ \sigma\f$ and \f$ \sigma'\f$ are <I>incident</I> if and only if
|
||||
\f$ \sigma'\f$ is a proper face of \f$ \sigma\f$ or <I>vice versa</I>.
|
||||
|
||||
A complex has <i>no boundaries</i> if any proper face of a simplex is also a
|
||||
proper face of another simplex.
|
||||
|
||||
If the vertices are embedded into Euclidean space \f$ \mathbb{R}^d\f$,
|
||||
we deal with
|
||||
<I>finite simplicial complexes</I> which have slightly different simplices
|
||||
and additional requirements:
|
||||
<UL>
|
||||
<LI>vertices corresponds to points in space.
|
||||
<LI>a simplex \f$ s\in S\f$ is the convex hull of its vertices.
|
||||
<LI>the vertices of a simplex \f$ s\in S\f$ are affinely independent.
|
||||
<LI>the intersection of any two simplices of \f$ S\f$ is a proper face of both
|
||||
simplices (the empty set counts).
|
||||
</UL>
|
||||
See the <A HREF="http://en.wikipedia.org/wiki/Simplicial_complex">wikipedia
|
||||
entry</A> for more about simplicial complexes.
|
||||
|
||||
## What's in this Package? ##
|
||||
|
||||
This \cgal package provides three main classes
|
||||
for creating and manipulating triangulations.
|
||||
|
||||
The class `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
models an <I>abstract triangulation</I>: vertices in this
|
||||
class are not embedded in Euclidean space but are only of combinatorial
|
||||
nature. It deals with simplicial complexes
|
||||
which are pure, connected and without boundaries nor singularities.
|
||||
|
||||
The class `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
describes an embedded triangulation that has as vertices a given set of points.
|
||||
Methods are provided for the insertion of points in the triangulation, the
|
||||
traversal of various elements of the triangulation, as well as the localization of a
|
||||
query point inside the triangulation.
|
||||
The triangulation covers the convex hull of the set of points.
|
||||
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
builds the Delaunay triangulation of a set of points.
|
||||
In a Delaunay triangulation, each face has the so-called
|
||||
<I>Delaunay</I> or <I>empty-ball</I> property: there exists a
|
||||
circumscribing ball whose interior does not contain
|
||||
any vertex of the triangulation.
|
||||
|
||||
## Further Definitions ##
|
||||
|
||||
An \f$ i\f$-face denotes an \f$ i\f$-dimensional simplex, or a simplex with \f$ i+1\f$
|
||||
vertices. When these vertices are embedded in Euclidean space, they must be
|
||||
affinely independent.
|
||||
|
||||
If the maximal dimension of a simplex in the triangulation is
|
||||
\f$ d\f$, we use the following terminology:<UL>
|
||||
If the triangulation is of dimension \f$ d \f$, we use the following terminology:<UL>
|
||||
<LI><I>face</I>: an \f$ i\f$-face for some \f$ i\in[0,d]\f$;
|
||||
<LI><I>vertex</I>: a \f$ 0\f$-face;
|
||||
<LI><I>edge</I>: a \f$ 1\f$-face;
|
||||
|
|
@ -96,32 +60,69 @@ If the maximal dimension of a simplex in the triangulation is
|
|||
<LI><I>full cell</I>: a \f$ d\f$-face.
|
||||
</UL>
|
||||
|
||||
Two faces \f$ \sigma\f$ and \f$ \sigma'\f$ are <I>incident</I> if and only if
|
||||
\f$ \sigma'\f$ is a proper sub-face of \f$ \sigma\f$ or <I>vice versa</I>.
|
||||
If the vertices are embedded into Euclidean space \f$ \mathbb{R}^n\f$,
|
||||
we deal with
|
||||
<I>finite simplicial complexes</I>, which have slightly different simplices
|
||||
and additional requirements:
|
||||
<UL>
|
||||
<LI>vertices correspond to points in space.
|
||||
<LI>a simplex \f$ s\in S\f$ is the convex hull of its vertices.
|
||||
<LI>the vertices of a simplex \f$ s\in S\f$ are affinely independent.
|
||||
<LI>the intersection of any two simplices of \f$ S\f$ is a proper face of both
|
||||
simplices (the empty set counts).
|
||||
</UL>
|
||||
|
||||
# %Triangulation Data Structure #
|
||||
## What's in this Package? ##
|
||||
|
||||
This \cgal package provides four main classes
|
||||
for creating and manipulating triangulations.
|
||||
|
||||
The class `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
models an <I>abstract triangulation</I>: vertices in this
|
||||
class are not embedded in Euclidean space but are only of combinatorial
|
||||
nature.
|
||||
|
||||
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
describes an embedded triangulation that has as vertices a given set of points.
|
||||
Methods are provided for the insertion of points in the triangulation, the
|
||||
traversal of various elements of the triangulation, as well as the location of a
|
||||
query point inside the triangulation.
|
||||
The triangulation covers the convex hull of the set of points.
|
||||
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
builds the Delaunay triangulation of a set of points.
|
||||
In a Delaunay triangulation, each face has the so-called
|
||||
<I>Delaunay</I> or <I>empty-ball</I> property: there exists a
|
||||
circumscribing ball whose interior does not contain
|
||||
any vertex of the triangulation.
|
||||
|
||||
The class `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`
|
||||
builds the regular triangulation
|
||||
-- also known as weighted Delaunay triangulation -- of a set of points.
|
||||
A detailed definition of such a triangulation is available in section
|
||||
\ref TriangulationSecRT.
|
||||
|
||||
\section TriangulationSecTDS Triangulation Data Structure
|
||||
|
||||
In this section, we describe the concept `TriangulationDataStructure` for
|
||||
which \cgal provides one model class:
|
||||
`CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`.
|
||||
`CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`.
|
||||
|
||||
A `TriangulationDataStructure` can represent an abstract pure complex
|
||||
such that any facet is incident to exactly two full cells.
|
||||
A triangulation data structure can represent an abstract triangulation.
|
||||
|
||||
A `TriangulationDataStructure` has a <!--- property called the --->
|
||||
<I>maximal dimension</I> which is a
|
||||
The <I>maximal dimension</I> of a triangulation data structure is a
|
||||
positive integer equal to the maximum dimension a full cell can have.
|
||||
This maximal dimension can be chosen by the user at the creation of a
|
||||
`TriangulationDataStructure` and can then be queried using the method `tds.maximal_dimension()`.
|
||||
A `TriangulationDataStructure` also knows the <I>current dimension</I> of its full cells,
|
||||
which can be queried with `tds.current_dimension()`. In the sequel, let
|
||||
This maximal dimension can be chosen by the user at the creation of the
|
||||
triangulation data structure and can then be obtained using the method `tds.maximal_dimension()`.
|
||||
A triangulation data structure also knows the <I>current dimension</I> of its full cells,
|
||||
which can be obtained using `tds.current_dimension()`. In the sequel, let
|
||||
us denote the maximal dimension with \f$ D \f$ and the current dimension with \f$ d \f$.
|
||||
The inequalities \f$ -2 \leq d \leq D\f$ and \f$ 0 \le D\f$ always hold.
|
||||
The special meaning of negative values for \f$d\f$ is explained below.
|
||||
|
||||
### The Set of Faces ###
|
||||
## The Set of Faces ##
|
||||
|
||||
The set of faces of a `TriangulationDataStructure` with
|
||||
The set of faces of a triangulation data structure with
|
||||
current dimension \f$ d \f$ forms a triangulation of the
|
||||
topological sphere \f$ \mathbb{S}^d\f$.
|
||||
|
||||
|
|
@ -132,7 +133,7 @@ Possible values of \f$d\f$ (the <I>current dimension</I> of the triangulation) i
|
|||
<BLOCKQUOTE>
|
||||
<DL>
|
||||
<DT><B>\f$d=-2\f$</B><DD> This corresponds to an empty
|
||||
`TriangulationDataStructure`.
|
||||
triangulation data structure.
|
||||
<DT><B>\f$d=-1\f$</B><DD> This corresponds to an abstract simplicial
|
||||
complex reduced to a single vertex.
|
||||
<!--- and a single full cell. In a geometric triangulation, this vertex corresponds to the vertex at infinity.--->
|
||||
|
|
@ -149,16 +150,16 @@ the sphere \f$ \mathbb{S}^d\f$.
|
|||
## The `Triangulation_data_structure` Class ##
|
||||
|
||||
We give here some details about the class
|
||||
`Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
`Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
implementing the concept `TriangulationDataStructure`.
|
||||
|
||||
### Storage ###
|
||||
|
||||
A `TriangulationDataStructure` explicitly stores its vertices and full cells.
|
||||
A triangulation data structure explicitly stores its vertices and full cells.
|
||||
|
||||
Each vertex stores a reference to one of its incident full cells.
|
||||
|
||||
Each full cell stores references to its \f$ d+1\f$ vertices and
|
||||
Each full cell \f$ \sigma \f$ stores references to its \f$ d+1\f$ vertices and
|
||||
neighbors. Its vertices and neighbors are indexed from \f$ 0\f$ to \f$ d \f$. The indices
|
||||
of its neighbors have the following meaning: the \f$ i\f$-th neighbor of \f$ \sigma\f$
|
||||
is the unique neighbor of \f$ \sigma\f$ that does not contain the \f$ i\f$-th vertex of
|
||||
|
|
@ -190,7 +191,7 @@ indices alongside the references to the vertices and neighbors in a
|
|||
full cell. This improves speed a little, but requires more memory.
|
||||
|
||||
\cgalAdvanced \cgal provides the class template
|
||||
`Triangulation_ds_full_cell<TriangulationDataStructure,
|
||||
`Triangulation_ds_full_cell<TriangulationDataStructure_,
|
||||
TriangulationDSFullCellStoragePolicy>` for representing full cells in a
|
||||
triangulation. Its second template parameter is used to specify wether
|
||||
or not the mirror indices should be kept in memory or computed
|
||||
|
|
@ -200,41 +201,41 @@ documentation of that class template for specific details.
|
|||
|
||||
###Template Parameters###
|
||||
|
||||
The `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
The `Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
|
||||
class is designed in such a way that its user can choose
|
||||
<UL>
|
||||
<LI>the maximal dimension of the triangulation data structure by specifying the `Dimensionality` template parameter,
|
||||
<LI>the type used to represent vertices by specifying the `TriangulationDSVertex`
|
||||
<LI>the type used to represent vertices by specifying the `TriangulationDSVertex_`
|
||||
template parameter and
|
||||
<LI>the type used to represent full cells by specifying the
|
||||
`TriangulationDSFullCell` template parameter.
|
||||
`TriangulationDSFullCell_` template parameter.
|
||||
</UL>
|
||||
|
||||
The last two parameters have default values and are thus not necessary, unless
|
||||
the user needs custom types (see the reference manual page for this class
|
||||
template). The first template parameter, `Dimensionality`, must be
|
||||
one of the following:
|
||||
the user needs custom types (see `Triangulation_data_structure`).
|
||||
The first template parameter, `Dimensionality`, must be one of the following:
|
||||
<UL>
|
||||
<LI>CGAL::`Dimension_tag<D>` for some integer \f$ D \f$. This
|
||||
<LI>`CGAL::Dimension_tag<D>` for some integer \f$ D \f$. This
|
||||
indicates that the triangulation can store full cells of dimension at most
|
||||
\f$ D \f$. The maximum dimension \f$ D \f$ is known by the compiler, which
|
||||
triggers some optimizations.
|
||||
<LI>CGAL::`Dynamic_dimension_tag`. In this case, the maximum
|
||||
<LI>`CGAL::Dynamic_dimension_tag`. In this case, the maximum
|
||||
dimension of the full cells must be passed as an integer argument to an instance
|
||||
constructor (see `TriangulationDataStructure`).
|
||||
</UL>
|
||||
|
||||
The `TriangulationDSVertex` and `TriangulationDSFullCell` parameters to the class template
|
||||
The `TriangulationDSVertex_` and `TriangulationDSFullCell_` parameters to the class template
|
||||
must be models of the concepts `TriangulationDSVertex` and
|
||||
`TriangulationDSFullCell` respectively. \cgal provides models for these
|
||||
concepts: `Triangulation_ds_vertex<TriangulationDataStructure>` and
|
||||
`Triangulation_ds_full_cell<TriangulationDataStructure, TriangulationDSFullCellStoragePolicy>`, which, as one
|
||||
can see, take the `TriangulationDataStructure` as a template parameter in order to get access to
|
||||
some nested types in `TriangulationDataStructure`.
|
||||
concepts: `Triangulation_ds_vertex<TriangulationDataStructure_>` and
|
||||
`Triangulation_ds_full_cell<TriangulationDataStructure_, TriangulationDSFullCellStoragePolicy>`, which, as one
|
||||
can see, take the triangulation data structure as a template parameter in order to get access to
|
||||
some nested types in `TriangulationDataStructure_`.
|
||||
|
||||
The default values are `CGAL::Triangulation_ds_vertex<TDS>`
|
||||
and `CGAL::Triangulation_ds_full_cell<TDS>`
|
||||
where `TDS` is the current class `Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>`
|
||||
where `TDS` is the current class
|
||||
`Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`.
|
||||
<I>This creates a circular dependency</I>, which we resolve in the same way
|
||||
as in the \cgal `Triangulation_2` and `Triangulation_3` packages (see
|
||||
Chapters \ref Chapter_2D_Triangulation_Data_Structure, \ref Chapter_2D_Triangulations,
|
||||
|
|
@ -276,8 +277,7 @@ full cells adjacent to `c` are automatically subdivided to match the
|
|||
subdivision of the full cell `c`. The barycentric subdivision of `c` is
|
||||
obtained by enumerating all the faces of `c` in order of decreasing
|
||||
dimension, from the dimension of `c` to dimension 1, and inserting a new
|
||||
vertex in each face. For the enumeration, we use a combination enumerator,
|
||||
which is not documented, but provided in \cgal.
|
||||
vertex in each face.
|
||||
|
||||
\cgalFigureBegin{triangulationfigbarycentric,barycentric-subdivision.png}
|
||||
Barycentric subdivision in dimension \f$ d=2\f$.
|
||||
|
|
@ -285,9 +285,9 @@ Barycentric subdivision in dimension \f$ d=2\f$.
|
|||
|
||||
\cgalExample{barycentric_subdivision.cpp}
|
||||
|
||||
# Triangulations #
|
||||
\section TriangulationSecTriangulations Triangulations
|
||||
|
||||
The class `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
maintains a triangulation embedded in Euclidean space. The triangulation
|
||||
covers the convex hull of the input points (the embedded vertices of the
|
||||
triangulation).
|
||||
|
|
@ -300,39 +300,39 @@ Each infinite \f$ i\f$-simplex is
|
|||
incident to the infinite vertex and to an \f$ (i-1)\f$-simplex of the
|
||||
convex hull boundary.
|
||||
|
||||
See Chapters \ref Chapter_2D_Triangulations "2D Triangulations" and
|
||||
See Chapters \ref Chapter_2D_Triangulations "2D Triangulations" or
|
||||
\ref Chapter_3D_Triangulations "3D Triangulations" for more details
|
||||
about infinite vertices and cells.
|
||||
|
||||
Methods are provided for the insertion of points in the triangulation, the
|
||||
contraction of faces, the traversal of various elements of the triangulation
|
||||
as well as the localization of a query point inside the triangulation.
|
||||
as well as the location of a query point inside the triangulation.
|
||||
|
||||
The ordering of the vertices of a full cell defines an orientation of
|
||||
that full cell.
|
||||
As long as no <I>advanced</I> class method is called, it is guaranteed
|
||||
that all finite full cells have positive orientation. The infinite full
|
||||
cells are oriented as if the infinite vertex was on the other side
|
||||
of the hyperplane supported by the convex hull facets that the other points.
|
||||
that all finite full cells have positive orientation. Each infinite full
|
||||
cell is oriented as if its infinite vertex was on the side of
|
||||
the hyperplane supported by its finite facet where there is no other point.
|
||||
|
||||
## Implementation ##
|
||||
|
||||
The class `CGAL::Triangulation<TriangulationTraits, TriangulationDataStructure>`
|
||||
stores a model of the concept `TriangulationDataStructure` which is
|
||||
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
|
||||
stores a model of the concept `TriangulationDataStructure` that is
|
||||
instantiated with a vertex type that stores a point.
|
||||
|
||||
The template parameter `TriangulationTraits` must be a model of the concept
|
||||
`TriangulationTraits` which provides the `Point` type as well
|
||||
The template parameter `TriangulationTraits_` must be a model of the concept
|
||||
`TriangulationTraits`, which provides the point type as well
|
||||
as various geometric predicates used by the `Triangulation` class.
|
||||
|
||||
The `TriangulationTraits` concept includes a nested type
|
||||
`TriangulationTraits::Dimension` which is the dimension of the predicates.
|
||||
This dimension governs the number of points given as arguments to the
|
||||
predicates. This type is either `CGAL::Dimension_tag<D>` or
|
||||
`CGAL::Dynamic_dimension_tag`. In any case, the dimension of the traits
|
||||
must match the maximal dimension of the `TriangulationDataStructure`.
|
||||
`TriangulationTraits::Dimension`. This dimension governs the number of points
|
||||
given as arguments to the predicates. This type is either
|
||||
`CGAL::Dimension_tag<D>` or `CGAL::Dynamic_dimension_tag`.
|
||||
In any case, the dimension of the traits
|
||||
must match the maximal dimension of the triangulation data structure.
|
||||
|
||||
The template parameter `TriangulationDataStructure` must be a model of the concept
|
||||
The template parameter `TriangulationDataStructure_` must be a model of the concept
|
||||
`TriangulationDataStructure` which provides the triangulation data
|
||||
structure as described in the previous section.
|
||||
|
||||
|
|
@ -382,11 +382,11 @@ One important difference between the two examples above is that the first uses
|
|||
visits <I>only</I> the infinite full cells but stores handles to them into the
|
||||
<I>potentially big</I> array <tt>infinite_full_cells</tt>.
|
||||
|
||||
# Delaunay Triangulations #
|
||||
\section TriangulationSecDT Delaunay Triangulations
|
||||
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>` derives from
|
||||
`CGAL::Triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`
|
||||
and represent Delaunay triangulations.
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>` derives from
|
||||
`CGAL::Triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
|
||||
and represents Delaunay triangulations.
|
||||
|
||||
A <I>circumscribing ball</I> of a simplex is a ball
|
||||
having all vertices of the simplex on its boundary.
|
||||
|
|
@ -396,8 +396,11 @@ circumscribing ball whose interior does not contain
|
|||
any vertex of the triangulation.
|
||||
|
||||
In case of degeneracies (co-spherical points) the triangulation is not
|
||||
uniquely defined. Note however that the \cgal implementation computes a unique
|
||||
triangulation even in these cases.
|
||||
uniquely defined. Note however that the \cgal implementation computes
|
||||
one of the possible Delaunay triangulations.
|
||||
The computed triangulation is uniquely defined for a given insertion
|
||||
order of the points (which is always the same if inserted using
|
||||
`CGAL::Delaunay_triangulation::insert(ForwardIterator s, ForwardIterator e)`).
|
||||
|
||||
When a new point `p` is inserted into a Delaunay triangulation, the
|
||||
full cells whose circumscribing ball contains `p` are said to
|
||||
|
|
@ -409,20 +412,23 @@ in the conflict zone are removed, leaving a hole that contains `p`. That
|
|||
hole is ``star shaped'' around `p` and thus is re-triangulated using
|
||||
`p` as a center vertex.
|
||||
|
||||
Delaunay triangulations also support vertex removal.
|
||||
Delaunay triangulations support insertion of points, removal of vertices,
|
||||
and location of a query point inside the triangulation.
|
||||
Note that inserting a large set of points at once is much faster
|
||||
than inserting the same points one by one.
|
||||
|
||||
## Implementation ##
|
||||
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>` derives from
|
||||
`CGAL::Triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>`. It thus stores a model of
|
||||
the concept `TriangulationDataStructure` which is instantiated with a vertex
|
||||
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>` derives from
|
||||
`CGAL::Triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`. It thus stores a model of
|
||||
the concept `TriangulationDataStructure`, which is instantiated with a vertex
|
||||
type that stores a geometric point and allows its retrieval.
|
||||
|
||||
The template parameter `DelaunayTriangulationTraits` must be a model of the concept
|
||||
The template parameter `DelaunayTriangulationTraits_` must be a model of the concept
|
||||
`DelaunayTriangulationTraits` which provides the geometric `Point` type as
|
||||
well as various geometric predicates used by the `Delaunay_triangulation` class.
|
||||
The concept `DelaunayTriangulationTraits` refines the concept
|
||||
`TriangulationTraits` by requiring a few other geometric predicates, necessary
|
||||
`TriangulationTraits` by requiring a few additional geometric predicates, necessary
|
||||
for the computation of Delaunay triangulations.
|
||||
|
||||
## Examples ##
|
||||
|
|
@ -438,45 +444,129 @@ retaining an efficient update of the Delaunay triangulation.
|
|||
|
||||
\cgalExample{delaunay_triangulation.cpp}
|
||||
|
||||
# Complexity and Performances #
|
||||
\section TriangulationSecRT Regular Triangulations
|
||||
|
||||
The class `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>` derives from
|
||||
`CGAL::Triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`
|
||||
and represents regular triangulations.
|
||||
|
||||
Regular triangulations are similar to Delaunay triangulations, but
|
||||
with weighted points.
|
||||
|
||||
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^D\f$. Let
|
||||
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^D, w_p\in\mathbb{R}\f$ and
|
||||
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^D, w_z\in\mathbb{R}\f$
|
||||
be two weighted points.
|
||||
If all weights are positive, a weighted point
|
||||
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
|
||||
radius \f$ \sqrt{w_p}\f$.
|
||||
The <I>power product</I> (or <I>power distance</I> )
|
||||
between \f$ {p}^{(w)}\f$ and \f$ {z}^{(w)}\f$ is
|
||||
defined as
|
||||
\f[ \Pi({p}^{(w)},{z}^{(w)}) = {\|{p-z}\|^2-w_p-w_z} \f]
|
||||
where \f$ \|{p-z}\|\f$ is the Euclidean distance between \f$ p\f$ and \f$ z\f$.
|
||||
\f$ {p}^{(w)}\f$ and \f$ {z}^{(w)}\f$
|
||||
are said to be <I>orthogonal</I> if \f$ \Pi{({p}^{(w)}-{z}^{(w)})}
|
||||
= 0\f$.
|
||||
|
||||
\f$D + 1\f$ weighted points have a unique common orthogonal weighted point
|
||||
called the <I>power sphere</I>. A sphere \f$ {z}^{(w)}\f$ is said to be
|
||||
<I>regular</I> if \f$ \forall {p}^{(w)}\in{S}^{(w)},
|
||||
\Pi{({p}^{(w)}-{z}^{(w)})}\geq 0\f$.
|
||||
|
||||
A triangulation of \f$ {S}^{(w)}\f$ is <I>regular</I> if the power spheres
|
||||
of all simplices are regular.
|
||||
|
||||
Regular triangulations support insertion of weighted points,
|
||||
and location of a query point inside the triangulation.
|
||||
Note that inserting a large set of points at once is much faster
|
||||
than inserting the same points one by one.
|
||||
\warning The removal of vertices is not supported yet.
|
||||
|
||||
|
||||
## Implementation ##
|
||||
|
||||
The class `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>` derives from
|
||||
`CGAL::Triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`. It thus stores a model of
|
||||
the concept `TriangulationDataStructure_` which is instantiated with a vertex
|
||||
type that stores a weighted point and allows its retrieval.
|
||||
|
||||
The template parameter `RegularTriangulationTraits_` must be a model of the concept
|
||||
`RegularTriangulationTraits`. It must provide the `%Weighted_point`
|
||||
type as well as various geometric predicates used by the
|
||||
`Regular_triangulation` class.
|
||||
The concept `RegularTriangulationTraits` refines the concept
|
||||
`TriangulationTraits`.
|
||||
|
||||
## Example ##
|
||||
|
||||
This simple example shows how to create a regular triangulation.
|
||||
|
||||
\cgalExample{regular_triangulation.cpp}
|
||||
|
||||
\section TriangulationSecPerf Complexity and Performances
|
||||
|
||||
The current implementation locates points by walking in the
|
||||
triangulation, and sorts the points with spatial sort to insert a
|
||||
set of points. Thus the theoretical complexity are
|
||||
\f$ O(n\log n)\f$ for inserting \f$ n\f$ random points and \f$ O(n^{\frac{1}{d}})\f$
|
||||
for inserting one point in a triangulation of \f$ n\f$ random points.
|
||||
In the worst case, the expected complexity is
|
||||
\f$ O(n^{\lceil\frac{d}{2}\rceil}+n\log n)\f$.
|
||||
set of points. In the worst case, the expected complexity is
|
||||
\f$ O(n^{\lceil\frac{d}{2}\rceil}+n\log n)\f$. When the algorithm is
|
||||
run on \f$ n \f$ random points, the cost of inserting one point is
|
||||
\f$ O(n^{1/d}) \f$.
|
||||
|
||||
We provide below (Figure \cgalFigureRef{Triangulationfigbenchmarks}) the
|
||||
We provide below (Figure \cgalFigureRef{Triangulationfigbenchmarks100},
|
||||
\cgalFigureRef{Triangulationfigbenchmarks1000} and
|
||||
\cgalFigureRef{triangulationfigbenchmarkchart}) the
|
||||
performance of the Delaunay triangulation on randomly distributed points.
|
||||
The machine used is a PC running
|
||||
Windows 7 64-bits with an Intel Xeon CPU clocked at 2.80 GHz with 32GB of RAM.
|
||||
The program has been compiled with Microsoft Visual C++ 2012 in Release mode.
|
||||
|
||||
\cgalFigureAnchor{Triangulationfigbenchmarks}
|
||||
The program has been compiled with Microsoft Visual C++ 2013 in Release mode.
|
||||
|
||||
\cgalFigureAnchor{Triangulationfigbenchmarks100}
|
||||
<CENTER>
|
||||
<TABLE CELLSPACING=15>
|
||||
<TABLE CELLSPACING=15 align=center>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=13><HR></td></tr>
|
||||
<tr><th ALIGN=RIGHT NOWRAP>Dimension</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10</th><th>11</th><th>12</th></tr>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=13><HR></td></tr>
|
||||
<tr align=center><td align=right>Time (s)</td><td>0.003</td><td>0.007</td><td>0.03</td><td>0.14</td><td>0.56</td><td>2.7</td><td>11.3</td><td>45</td><td>185</td><td>686</td><td>2390</td></tr>
|
||||
<tr align=center><td align=right>Memory (MB)</td><td>< 1</td><td>< 1</td><td>< 1</td><td>1</td><td>3</td><td>13</td><td>53</td><td>182</td><td>662</td><td>2187</td><td>7156</td></tr>
|
||||
<tr align=center><td align=right>Number of maximal simplices</td><td>184</td><td>487</td><td>1,548</td><td>5,548</td><td>19,598</td><td>67,102</td><td>230,375</td><td>715,984</td><td>2,570,623</td><td>7,293,293</td><td>21,235,615</td></tr>
|
||||
<tr align=center><td align=right>Number of convex hull facets</td><td>14</td><td>66</td><td>308</td><td>1,164</td><td>4,410</td><td>16,974</td><td>57,589</td><td>238,406</td><td>670,545</td><td>2,574,326</td><td>8,603,589</td></tr></td><td>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=13><HR></td></tr>
|
||||
</TABLE>
|
||||
</CENTER>
|
||||
\cgalFigureCaptionBegin{Triangulationfigbenchmarks100}
|
||||
Performance of the insertion of 100 points in a Delaunay triangulation.
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
\cgalFigureAnchor{Triangulationfigbenchmarks1000}
|
||||
<CENTER>
|
||||
<TABLE CELLSPACING=15 align=center>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=9><HR></td></tr>
|
||||
<tr><th ALIGN=RIGHT NOWRAP>Dimension</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th></tr>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=9><HR></td></tr>
|
||||
<tr><td>Inserting 100 points</td><td>0.003</td><td>0.007</td><td>0.03</td><td>0.14</td><td>0.56</td><td>2.7</td><td>11.3</td></tr>
|
||||
<tr><td>Inserting 1000 points</td><td>0.015</td><td>0.056</td><td>0.52</td><td>3.5</td><td>26.2</td><td>185</td><td>1385</td></tr>
|
||||
<tr align=center><td align=right>Time (s)</td><td>0.01</td><td>0.05</td><td>0.5</td><td>3.4</td><td>24</td><td>183</td><td>1365</td></tr>
|
||||
<tr align=center><td align=right>Memory (MB)</td><td>< 1</td><td>< 1</td><td>2.7</td><td>14</td><td>81</td><td>483</td><td>2827</td></tr>
|
||||
<tr align=center><td align=right>Number of maximal simplices</td><td>1,979</td><td>6,315</td><td>25,845</td><td>122,116</td><td>596,927</td><td>3,133,318</td><td>16,403,337</td></tr>
|
||||
<tr align=center><td align=right>Number of convex hull facets</td><td>19</td><td>138</td><td>963</td><td>6,184</td><td>41,135</td><td>241,540</td><td>1,406,797</td></tr></td><td>
|
||||
<tr><td ALIGN=LEFT NOWRAP COLSPAN=9><HR></td></tr>
|
||||
</TABLE>
|
||||
</CENTER>
|
||||
\cgalFigureCaptionBegin{Triangulationfigbenchmarks}
|
||||
Running times in seconds for algorithms on Delaunay triangulations.
|
||||
\cgalFigureCaptionBegin{Triangulationfigbenchmarks1000}
|
||||
Performance of the insertion of 1000 points in a Delaunay triangulation.
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
# Design and Implementation History #
|
||||
\cgalFigureBegin{triangulationfigbenchmarkchart,benchmark_DTd.png}
|
||||
Running time wrt. number of maximal simplices, for dimensions for 2 to 12.
|
||||
\cgalFigureEnd
|
||||
|
||||
\section TriangulationSecDesign Design and Implementation History
|
||||
|
||||
This package is heavily inspired by the works of
|
||||
Monique Teillaud and Sylvain Pion (`Triangulation_3`)
|
||||
and Mariette Yvinec (`Triangulation_2`).
|
||||
The first version was written by Samuel Hornus. The final version is a joint
|
||||
work by Samuel Hornus, Olivier Devillers and Clément Jamin.
|
||||
work by Samuel Hornus, Olivier Devillers and Clément Jamin. In 2015, Clément
|
||||
Jamin added the regular triangulations.
|
||||
|
||||
Clément Jamin's work was supported by the
|
||||
<a href="http://cordis.europa.eu/project/rcn/111529_en.html">Advanced Grant of the European Research Council GUDHI</a>
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
/*!
|
||||
\example barycentric_subdivision.cpp
|
||||
\example delaunay_triangulation.cpp
|
||||
\example regular_triangulation.cpp
|
||||
\example triangulation.cpp
|
||||
\example triangulation1.cpp
|
||||
\example triangulation2.cpp
|
||||
|
|
|
|||
Binary file not shown.
|
After Width: | Height: | Size: 112 KiB |
|
|
@ -1,3 +1,2 @@
|
|||
TODO
|
||||
include/CGAL/Convex_hull.h
|
||||
include/CGAL/Regular_triangulation.h
|
||||
|
|
|
|||
|
|
@ -22,6 +22,8 @@ if ( CGAL_FOUND )
|
|||
|
||||
create_single_source_cgal_program( "barycentric_subdivision.cpp" )
|
||||
create_single_source_cgal_program( "delaunay_triangulation.cpp" )
|
||||
create_single_source_cgal_program( "convex_hull.cpp" )
|
||||
create_single_source_cgal_program( "regular_triangulation.cpp" )
|
||||
create_single_source_cgal_program( "triangulation.cpp" )
|
||||
create_single_source_cgal_program( "triangulation_data_structure_dynamic.cpp" )
|
||||
create_single_source_cgal_program( "triangulation_data_structure_static.cpp" )
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
#include <CGAL/Triangulation_data_structure.h>
|
||||
#include <CGAL/internal/Combination_enumerator.h>
|
||||
#include <CGAL/Combination_enumerator.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <iostream>
|
||||
|
|
@ -34,8 +34,8 @@ void barycentric_subdivide(TDS & tds, typename TDS::Full_cell_handle fc)
|
|||
face_vertices.resize(d+1);
|
||||
// The following class
|
||||
// enumerates all (d+1)-tuple of the set {0, 1, ..., dim}
|
||||
CGAL::internal::Combination_enumerator combi(d+1, 0, dim);
|
||||
while( ! combi.end() )
|
||||
CGAL::Combination_enumerator<unsigned int> combi(d+1, 0, dim);
|
||||
while ( !combi.finished() )
|
||||
{
|
||||
for( int i = 0; i <= d; ++i )
|
||||
face_vertices[i] = vertices[combi[i]];
|
||||
|
|
|
|||
|
|
@ -0,0 +1,70 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/Timer.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
|
||||
const int D = 10;
|
||||
typedef CGAL::Epick_d< CGAL::Dimension_tag<D> > K;
|
||||
typedef CGAL::Delaunay_triangulation<K> T;
|
||||
// The triangulation uses the default instanciation of the
|
||||
// TriangulationDataStructure template parameter
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int N = 100; // number of points
|
||||
if (argc > 1)
|
||||
N = atoi(argv[1]);
|
||||
|
||||
CGAL::Timer cost; // timer
|
||||
|
||||
// Generate N random points
|
||||
typedef CGAL::Random_points_in_cube_d<T::Point> Random_points_iterator;
|
||||
Random_points_iterator rand_it(D, 1.0, CGAL::get_default_random());
|
||||
std::vector<T::Point> points;
|
||||
CGAL::cpp11::copy_n(rand_it, N, std::back_inserter(points));
|
||||
|
||||
T t(D);
|
||||
CGAL_assertion(t.empty());
|
||||
|
||||
// insert the points in the triangulation, only if they are outside the
|
||||
// convex hull
|
||||
std::cout << " Convex hull of "<<N<<" points in dim " << D << std::flush;
|
||||
|
||||
cost.reset();
|
||||
cost.start();
|
||||
|
||||
// Spatial sort points to speed-up localization
|
||||
CGAL::spatial_sort(points.begin(), points.end(), t.geom_traits());
|
||||
|
||||
int c = 0;
|
||||
T::Full_cell_handle hint;
|
||||
for (std::vector<T::Point>::iterator it_p = points.begin() ;
|
||||
it_p != points.end() ; ++it_p)
|
||||
{
|
||||
T::Locate_type lt;
|
||||
T::Face f(t.maximal_dimension());
|
||||
T::Facet ft;
|
||||
T::Full_cell_handle fch = t.locate(*it_p, lt, f, ft, hint);
|
||||
if (lt == T::OUTSIDE_CONVEX_HULL || lt == T::OUTSIDE_AFFINE_HULL)
|
||||
{
|
||||
hint = t.insert(*it_p, lt, f, ft, fch)->full_cell();
|
||||
++c;
|
||||
}
|
||||
else
|
||||
{
|
||||
hint = fch;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << " done in " << cost.time() << " seconds.\n";
|
||||
std::cout << c << " points where actually inserted.\n";
|
||||
CGAL_assertion( t.is_valid() );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -9,69 +9,42 @@ int main()
|
|||
#else
|
||||
|
||||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/Timer.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
|
||||
const int D=5;
|
||||
typedef CGAL::Epick_d< CGAL::Dimension_tag<D> > K;
|
||||
typedef CGAL::Delaunay_triangulation<K> T;
|
||||
// The triangulation uses the default instanciation of the
|
||||
// TriangulationDataStructure template parameter
|
||||
|
||||
int main(int argc, char **argv)
|
||||
int main()
|
||||
{
|
||||
int N = 100; if( argc > 2 )N = atoi(argv[1]); // number of points
|
||||
CGAL::Timer cost; // timer
|
||||
double pointsIn[][7] = {
|
||||
{ 42.89, 0, 60.55, 30.72, 0, 0, 0 },
|
||||
{ 45.65, 50.83, 50.37, 16.13, 0, 0, 0 },
|
||||
{ 79.06, 57.84, 61.59, 2.52, 0, 0, 0 },
|
||||
{ 44.47, 39.46, 39.53, 28.72, 0, 0, 0 },
|
||||
{ 0, 100, 0, 0, 100, 0, 53.47 },
|
||||
{ 66.95, 100, 33.6, 0, 0, 0, 0 },
|
||||
{ 42.89, 0, 0, 30.72, 100, 0, 53.47 },
|
||||
{ 100, 100, 100, 100, 100, 100, 100 }
|
||||
};
|
||||
|
||||
typedef CGAL::Triangulation<CGAL::Epick_d< CGAL::Dimension_tag<7> > > T;
|
||||
T dt(7);
|
||||
|
||||
// Instanciate a random point generator
|
||||
CGAL::Random rng(0);
|
||||
typedef CGAL::Random_points_in_cube_d<T::Point> Random_points_iterator;
|
||||
Random_points_iterator rand_it(D, 1.0, rng);
|
||||
// Generate N random points
|
||||
std::vector<T::Point> points;
|
||||
CGAL::cpp11::copy_n(rand_it, N, std::back_inserter(points));
|
||||
|
||||
T t(D);
|
||||
CGAL_assertion(t.empty());
|
||||
|
||||
// insert the points in the triangulation
|
||||
cost.reset();cost.start();
|
||||
std::cout << " Delaunay triangulation of "<<N<<" points in dim "<<D<< std::flush;
|
||||
t.insert(points.begin(), points.end());
|
||||
std::cout << " done in "<<cost.time()<<" seconds." << std::endl;
|
||||
CGAL_assertion( t.is_valid() );
|
||||
|
||||
// insert with special operations in conflict zone and new created cells
|
||||
cost.reset();
|
||||
std::cout << " adding "<<N<<" other points "<< std::endl;
|
||||
for(int i=0; i<N; ++i)
|
||||
{
|
||||
T::Vertex_handle v;
|
||||
T::Face f(t.current_dimension());
|
||||
T::Facet ft;
|
||||
T::Full_cell_handle c;
|
||||
T::Locate_type lt;
|
||||
typedef std::vector<T::Full_cell_handle> Full_cells;
|
||||
Full_cells zone, new_full_cells;
|
||||
std::back_insert_iterator<Full_cells> out(zone);
|
||||
c = t.locate(*++rand_it, lt, f, ft, v);
|
||||
// previously inserted vertex v is used as hint for point location (if defined)
|
||||
T::Facet ftc = t.compute_conflict_zone(*rand_it, c, out);
|
||||
std::cout<<i<<" conflict zone of size "<<zone.size()<<" -> "<<std::flush;
|
||||
out = std::back_inserter(new_full_cells);
|
||||
CGAL_assertion( t.is_valid() );
|
||||
v = t.insert_in_hole(*rand_it, zone.begin(), zone.end(), ftc, out);
|
||||
std::cout<<new_full_cells.size()<<" new cells"<<std::endl;
|
||||
points.reserve(8);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
T::Point p(&pointsIn[j][0], &pointsIn[j][7]);
|
||||
points.push_back(p);
|
||||
}
|
||||
|
||||
std::cout << " done in "<<cost.time()<<" seconds." << std::endl;
|
||||
T::Vertex_handle hint;
|
||||
int i = 0;
|
||||
for (std::vector<T::Point>::iterator it = points.begin(); it != points.end(); ++it) {
|
||||
if (T::Vertex_handle() != hint) {
|
||||
hint = dt.insert(*it, hint);
|
||||
}
|
||||
else {
|
||||
hint = dt.insert(*it);
|
||||
}
|
||||
printf("Processing: %d/%d\n", ++i, (int)points.size());
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,42 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
|
||||
const int D = 5; // Dimension
|
||||
const int N = 100; // Number of points
|
||||
typedef CGAL::Epick_d< CGAL::Dimension_tag<D> > K;
|
||||
typedef CGAL::Regular_triangulation<
|
||||
CGAL::Regular_triangulation_euclidean_traits<K> > T;
|
||||
typedef T::Bare_point Bare_point;
|
||||
typedef T::Weighted_point Weighted_point;
|
||||
|
||||
int main()
|
||||
{
|
||||
// Instanciate a random point generator
|
||||
CGAL::Random rng(0);
|
||||
typedef CGAL::Random_points_in_cube_d<Bare_point> Random_points_iterator;
|
||||
Random_points_iterator rand_it(D, 1.0, rng);
|
||||
|
||||
// Generate N random points
|
||||
std::vector<Weighted_point> points;
|
||||
for (int i = 0; i < N; ++i)
|
||||
points.push_back(Weighted_point(*rand_it++, rng.get_double(0., 10.)));
|
||||
|
||||
T t(D);
|
||||
CGAL_assertion(t.empty());
|
||||
|
||||
// Insert the points in the triangulation
|
||||
t.insert(points.begin(), points.end());
|
||||
CGAL_assertion( t.is_valid() );
|
||||
std::cout << "Regular triangulation successfully computed: "
|
||||
<< t.number_of_vertices() << " vertices, "
|
||||
<< t.number_of_finite_full_cells() << " finite cells."
|
||||
<< std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -76,17 +76,23 @@ public: // PUBLIC NESTED TYPES
|
|||
typedef typename Base::Full_cell_iterator Full_cell_iterator;
|
||||
typedef typename Base::Full_cell_const_handle Full_cell_const_handle;
|
||||
typedef typename Base::Full_cell_const_iterator Full_cell_const_iterator;
|
||||
typedef typename Base::Finite_full_cell_const_iterator
|
||||
Finite_full_cell_const_iterator;
|
||||
|
||||
typedef typename Base::size_type size_type;
|
||||
typedef typename Base::difference_type difference_type;
|
||||
|
||||
typedef typename Base::Locate_type Locate_type;
|
||||
|
||||
//Tag to distinguish triangulations with weighted_points
|
||||
typedef Tag_false Weighted_tag;
|
||||
|
||||
protected: // DATA MEMBERS
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
using typename Base::Rotor;
|
||||
using Base::maximal_dimension;
|
||||
using Base::are_incident_full_cells_valid;
|
||||
using Base::coaffine_orientation_predicate;
|
||||
|
|
@ -96,11 +102,12 @@ public:
|
|||
//using Base::incident_full_cells;
|
||||
using Base::geom_traits;
|
||||
using Base::index_of_covertex;
|
||||
//using Base::index_of_second_covertex;
|
||||
using Base::infinite_vertex;
|
||||
using Base::rotate_rotor;
|
||||
using Base::insert_in_hole;
|
||||
using Base::insert_outside_convex_hull_1;
|
||||
using Base::is_infinite;
|
||||
using Base::is_valid;
|
||||
using Base::locate;
|
||||
using Base::points_begin;
|
||||
using Base::set_neighbors;
|
||||
|
|
@ -112,6 +119,8 @@ public:
|
|||
using Base::full_cell;
|
||||
using Base::full_cells_begin;
|
||||
using Base::full_cells_end;
|
||||
using Base::finite_full_cells_begin;
|
||||
using Base::finite_full_cells_end;
|
||||
using Base::vertices_begin;
|
||||
using Base::vertices_end;
|
||||
// using Base::
|
||||
|
|
@ -144,36 +153,9 @@ private:
|
|||
};
|
||||
public:
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UTILITIES
|
||||
|
||||
// A co-dimension 2 sub-simplex. called a Rotor because we can rotate
|
||||
// the two "covertices" around the sub-simplex. Useful for traversing the
|
||||
// boundary of a hole. NOT DOCUMENTED
|
||||
typedef cpp11::tuple<Full_cell_handle, int, int> Rotor;
|
||||
|
||||
/*Full_cell_handle full_cell(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<0>(r);
|
||||
}
|
||||
int index_of_covertex(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<1>(r);
|
||||
}
|
||||
int index_of_second_covertex(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<2>(r);
|
||||
}*/
|
||||
Rotor rotate_rotor(Rotor & r) // NOT DOCUMENTED...
|
||||
{
|
||||
int opposite = cpp11::get<0>(r)->mirror_index(cpp11::get<1>(r));
|
||||
Full_cell_handle s = cpp11::get<0>(r)->neighbor(cpp11::get<1>(r));
|
||||
int new_second = s->index(cpp11::get<0>(r)->vertex(cpp11::get<2>(r)));
|
||||
return Rotor(s, new_second, opposite);
|
||||
}
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
|
||||
|
||||
Delaunay_triangulation(int dim, const Geom_traits k = Geom_traits())
|
||||
Delaunay_triangulation(int dim, const Geom_traits &k = Geom_traits())
|
||||
: Base(dim, k)
|
||||
{
|
||||
}
|
||||
|
|
@ -186,7 +168,7 @@ public:
|
|||
Delaunay_triangulation(
|
||||
int dim,
|
||||
const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
|
||||
const Geom_traits k = Geom_traits())
|
||||
const Geom_traits &k = Geom_traits())
|
||||
: Base(dim, preset_flat_orientation, k)
|
||||
{
|
||||
}
|
||||
|
|
@ -341,6 +323,10 @@ public:
|
|||
return pred_(dc_.full_cell(f)->neighbor(dc_.index_of_covertex(f)));
|
||||
}
|
||||
};
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
|
||||
|
||||
bool is_valid(bool verbose = false, int level = 0) const;
|
||||
|
||||
private:
|
||||
// Some internal types to shorten notation
|
||||
|
|
@ -354,27 +340,6 @@ private:
|
|||
Conflict_traversal_pred_in_subspace;
|
||||
typedef Conflict_traversal_predicate<Conflict_pred_in_fullspace>
|
||||
Conflict_traversal_pred_in_fullspace;
|
||||
|
||||
// This is used in the |remove(v)| member function to manage sets of Full_cell_handles
|
||||
template< typename FCH >
|
||||
struct Full_cell_set : public std::vector<FCH>
|
||||
{
|
||||
typedef std::vector<FCH> Base_set;
|
||||
using Base_set::begin;
|
||||
using Base_set::end;
|
||||
void make_searchable()
|
||||
{ // sort the full cell handles
|
||||
std::sort(begin(), end());
|
||||
}
|
||||
bool contains(const FCH & fch) const
|
||||
{
|
||||
return std::binary_search(begin(), end(), fch);
|
||||
}
|
||||
bool contains_1st_and_not_2nd(const FCH & fst, const FCH & snd) const
|
||||
{
|
||||
return ( ! contains(snd) ) && ( contains(fst) );
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
|
@ -404,24 +369,14 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
return Full_cell_handle();
|
||||
}
|
||||
Full_cell_handle left = v->full_cell();
|
||||
if( is_infinite(left) && left->neighbor(0)->index(left) == 0 ) // we are on the infinite right.
|
||||
left = left->neighbor(0);
|
||||
if( 0 == left->index(v) )
|
||||
left = left->neighbor(1);
|
||||
CGAL_assertion( 1 == left->index(v) );
|
||||
Full_cell_handle right = left->neighbor(0);
|
||||
if( ! is_infinite(right) )
|
||||
{
|
||||
|
||||
tds().associate_vertex_with_full_cell(left, 1, right->vertex(1));
|
||||
set_neighbors(left, 0, right->neighbor(0), right->mirror_index(0));
|
||||
}
|
||||
else
|
||||
{
|
||||
tds().associate_vertex_with_full_cell(left, 1, left->vertex(0));
|
||||
tds().associate_vertex_with_full_cell(left, 0, infinite_vertex());
|
||||
set_neighbors(left, 0, left->neighbor(1), left->mirror_index(1));
|
||||
set_neighbors(left, 1, right->neighbor(1), right->mirror_index(1));
|
||||
}
|
||||
|
||||
tds().delete_vertex(v);
|
||||
tds().delete_full_cell(right);
|
||||
return left;
|
||||
|
|
@ -429,7 +384,7 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
|
||||
// THE CASE cur_dim >= 2
|
||||
// Gather the finite vertices sharing an edge with |v|
|
||||
typedef Full_cell_set<Full_cell_handle> Simplices;
|
||||
typedef typename Base::template Full_cell_set<Full_cell_handle> Simplices;
|
||||
Simplices simps;
|
||||
std::back_insert_iterator<Simplices> out(simps);
|
||||
tds().incident_full_cells(v, out);
|
||||
|
|
@ -510,24 +465,16 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
{
|
||||
int v_idx = (*it)->index(v);
|
||||
tds().associate_vertex_with_full_cell(*it, v_idx, infinite_vertex());
|
||||
if( v_idx != 0 )
|
||||
{
|
||||
// we must put the infinite vertex at index 0.
|
||||
// OK, now with the new convention that the infinite vertex
|
||||
// does not have to be at index 0, this is not necessary,
|
||||
// but still, I prefer to keep this piece of code here. [-- Samuel Hornus]
|
||||
(*it)->swap_vertices(0, v_idx);
|
||||
// Now, we preserve the positive orientation of the full_cell
|
||||
(*it)->swap_vertices(current_dimension() - 1, current_dimension());
|
||||
}
|
||||
}
|
||||
// Make the handles to infinite full cells searchable
|
||||
infinite_simps.make_searchable();
|
||||
// Then, modify the neighboring relation
|
||||
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
|
||||
{
|
||||
for( int i = 1; i <= current_dimension(); ++i )
|
||||
for( int i = 0; i <= current_dimension(); ++i )
|
||||
{
|
||||
if (is_infinite((*it)->vertex(i)))
|
||||
continue;
|
||||
(*it)->vertex(i)->set_full_cell(*it);
|
||||
Full_cell_handle n = (*it)->neighbor(i);
|
||||
// Was |n| a finite full cell prior to removing |v| ?
|
||||
|
|
@ -565,7 +512,7 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
Dark_s_handle dark_ret_s = dark_s;
|
||||
Full_cell_handle ret_s;
|
||||
|
||||
typedef Full_cell_set<Dark_s_handle> Dark_full_cells;
|
||||
typedef typename Base::template Full_cell_set<Dark_s_handle> Dark_full_cells;
|
||||
Dark_full_cells conflict_zone;
|
||||
std::back_insert_iterator<Dark_full_cells> dark_out(conflict_zone);
|
||||
|
||||
|
|
@ -771,6 +718,35 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
CGAL_assertion( ZERO != o );
|
||||
if( NEGATIVE == o )
|
||||
reorient_full_cells();
|
||||
|
||||
// We just inserted the second finite point and the right infinite
|
||||
// cell is like : (inf_v, v), but we want it to be (v, inf_v) to be
|
||||
// consistent with the rest of the cells
|
||||
if (current_dimension() == 1)
|
||||
{
|
||||
// Is "inf_v_cell" the right infinite cell?
|
||||
// Then inf_v_index should be 1
|
||||
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
|
||||
&& inf_v_index == 0)
|
||||
{
|
||||
inf_v_cell->swap_vertices(
|
||||
current_dimension() - 1, current_dimension());
|
||||
}
|
||||
// Otherwise, let's find the right infinite cell
|
||||
else
|
||||
{
|
||||
inf_v_cell = inf_v_cell->neighbor((inf_v_index + 1) % 2);
|
||||
inf_v_index = inf_v_cell->index(infinite_vertex());
|
||||
// Is "inf_v_cell" the right infinite cell?
|
||||
// Then inf_v_index should be 1
|
||||
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
|
||||
&& inf_v_index == 0)
|
||||
{
|
||||
inf_v_cell->swap_vertices(
|
||||
current_dimension() - 1, current_dimension());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
|
@ -892,6 +868,48 @@ Delaunay_triangulation<DCTraits, TDS>
|
|||
}
|
||||
}
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
|
||||
|
||||
template< typename DCTraits, typename TDS >
|
||||
bool
|
||||
Delaunay_triangulation<DCTraits, TDS>
|
||||
::is_valid(bool verbose, int level) const
|
||||
{
|
||||
if (!Base::is_valid(verbose, level))
|
||||
return false;
|
||||
|
||||
int dim = current_dimension();
|
||||
if (dim == maximal_dimension())
|
||||
{
|
||||
for (Finite_full_cell_const_iterator cit = finite_full_cells_begin() ;
|
||||
cit != finite_full_cells_end() ; ++cit )
|
||||
{
|
||||
Full_cell_const_handle ch = cit.base();
|
||||
for(int i = 0; i < dim+1 ; ++i )
|
||||
{
|
||||
// If the i-th neighbor is not an infinite cell
|
||||
Vertex_handle opposite_vh =
|
||||
ch->neighbor(i)->vertex(ch->neighbor(i)->index(ch));
|
||||
if (!is_infinite(opposite_vh))
|
||||
{
|
||||
Side_of_oriented_sphere_d side =
|
||||
geom_traits().side_of_oriented_sphere_d_object();
|
||||
if (side(Point_const_iterator(ch->vertices_begin()),
|
||||
Point_const_iterator(ch->vertices_end()),
|
||||
opposite_vh->point()) == ON_BOUNDED_SIDE)
|
||||
{
|
||||
if (verbose)
|
||||
CGAL_warning_msg(false, "Non-empty sphere");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_DELAUNAY_COMPLEX_H
|
||||
|
|
|
|||
|
|
@ -0,0 +1,296 @@
|
|||
// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL: $
|
||||
// $Id: $
|
||||
//
|
||||
// Author(s) : Clement Jamin
|
||||
|
||||
|
||||
#ifndef CGAL_TRIANGULATION_IO_H
|
||||
#define CGAL_TRIANGULATION_IO_H
|
||||
|
||||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/Triangulation.h>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
namespace Triangulation_IO
|
||||
{
|
||||
// TODO: test if the stream is binary or text?
|
||||
template<typename Traits, typename P>
|
||||
int
|
||||
output_point(std::ostream & os, const Traits &traits, const P & p)
|
||||
{
|
||||
typedef typename Traits::Compute_coordinate_d Ccd;
|
||||
const Ccd ccd = traits.compute_coordinate_d_object();
|
||||
const int dim = traits.point_dimension_d_object()(p);
|
||||
if (dim > 0)
|
||||
{
|
||||
os << ccd(p, 0);
|
||||
for (int i = 1 ; i < dim ; ++i)
|
||||
os << " " << CGAL::to_double(ccd(p, i));
|
||||
}
|
||||
return dim;
|
||||
}
|
||||
|
||||
// TODO: test if the stream is binary or text?
|
||||
template<typename Traits, typename P>
|
||||
int
|
||||
output_weighted_point(std::ostream & os, const Traits &traits, const P & p,
|
||||
bool output_weight = true)
|
||||
{
|
||||
typedef typename Traits::Compute_coordinate_d Ccd;
|
||||
typename Traits::Point_drop_weight_d drop_w =
|
||||
traits.point_drop_weight_d_object();
|
||||
typename Traits::Point_weight_d pt_weight = traits.point_weight_d_object();
|
||||
const Ccd ccd = traits.compute_coordinate_d_object();
|
||||
const int dim = traits.point_dimension_d_object()(p);
|
||||
if (dim > 0)
|
||||
{
|
||||
output_point(os, traits, p);
|
||||
if (output_weight)
|
||||
os << " " << pt_weight(p);
|
||||
}
|
||||
return dim;
|
||||
}
|
||||
|
||||
// TODO: test if the stream is binary or text?
|
||||
template<typename Traits, typename FCH>
|
||||
void
|
||||
output_full_cell(std::ostream & os, const Traits &traits, const FCH & fch,
|
||||
bool output_weights = false)
|
||||
{
|
||||
typename FCH::value_type::Vertex_handle_iterator vit = fch->vertices_begin();
|
||||
for( ; vit != fch->vertices_end(); ++vit )
|
||||
{
|
||||
int dim;
|
||||
if (output_weights)
|
||||
dim = output_weighted_point(os, traits, (*vit)->point());
|
||||
else
|
||||
dim = output_point(os, traits, (*vit)->point());
|
||||
if (dim > 0)
|
||||
os << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: test if the stream is binary or text?
|
||||
/*template<typename Traits, typename P>
|
||||
void
|
||||
input_point(std::istream & is, const Traits &traits, P & p)
|
||||
{
|
||||
typedef typename Traits::FT FT;
|
||||
std::vector<FT> coords;
|
||||
|
||||
std::string line;
|
||||
for(;;)
|
||||
{
|
||||
if (!std::getline(is, line))
|
||||
return is;
|
||||
if (line != "")
|
||||
break;
|
||||
}
|
||||
std::stringstream line_sstr(line);
|
||||
FT temp;
|
||||
while (line_sstr >> temp)
|
||||
coords.push_back(temp);
|
||||
|
||||
p = traits.construct_point_d_object()(coords.begin(), coords.end());
|
||||
}*/
|
||||
|
||||
} // namespace Triangulation_IO
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// TODO: replace these operator>> by an "input_point" function
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
// TODO: test if the stream is binary or text?
|
||||
template<typename K>
|
||||
std::istream &
|
||||
operator>>(std::istream &is, typename Wrap::Point_d<K> & p)
|
||||
{
|
||||
typedef typename Wrap::Point_d<K> P;
|
||||
typedef typename K::FT FT;
|
||||
std::vector<FT> coords;
|
||||
|
||||
std::string line;
|
||||
for(;;)
|
||||
{
|
||||
if (!std::getline(is, line))
|
||||
return is;
|
||||
if (line != "")
|
||||
break;
|
||||
}
|
||||
std::stringstream line_sstr(line);
|
||||
FT temp;
|
||||
while (line_sstr >> temp)
|
||||
coords.push_back(temp);
|
||||
|
||||
p = P(coords.begin(), coords.end());
|
||||
return is;
|
||||
}
|
||||
|
||||
// TODO: test if the stream is binary or text?
|
||||
template<typename K>
|
||||
std::istream &
|
||||
operator>>(std::istream &is, typename Wrap::Weighted_point_d<K> & wp)
|
||||
{
|
||||
typedef typename Wrap::Point_d<K> P;
|
||||
typedef typename Wrap::Weighted_point_d<K> WP;
|
||||
typedef typename K::FT FT;
|
||||
|
||||
std::string line;
|
||||
for(;;)
|
||||
{
|
||||
if (!std::getline(is, line))
|
||||
return is;
|
||||
if (line != "")
|
||||
break;
|
||||
}
|
||||
std::stringstream line_sstr(line);
|
||||
FT temp;
|
||||
std::vector<FT> coords;
|
||||
while (line_sstr >> temp)
|
||||
coords.push_back(temp);
|
||||
|
||||
typename std::vector<FT>::iterator last = coords.end() - 1;
|
||||
P p = P(coords.begin(), last);
|
||||
wp = WP(p, *last);
|
||||
|
||||
return is;
|
||||
}
|
||||
|
||||
template < class GT, class TDS >
|
||||
std::ostream &
|
||||
export_triangulation_to_off(std::ostream & os,
|
||||
const Triangulation<GT,TDS> & tr,
|
||||
bool in_3D_export_surface_only = false)
|
||||
{
|
||||
typedef Triangulation<GT,TDS> Tr;
|
||||
typedef typename Tr::Vertex_const_handle Vertex_handle;
|
||||
typedef typename Tr::Vertex_const_iterator Vertex_iterator;
|
||||
typedef typename Tr::Finite_vertex_const_iterator Finite_vertex_iterator;
|
||||
typedef typename Tr::Full_cell_const_handle Full_cell_handle;
|
||||
typedef typename Tr::Finite_full_cell_const_iterator Finite_full_cell_iterator;
|
||||
typedef typename Tr::Full_cell_const_iterator Full_cell_iterator;
|
||||
typedef typename Tr::Full_cell Full_cell;
|
||||
typedef typename Full_cell::Vertex_handle_const_iterator Full_cell_vertex_iterator;
|
||||
|
||||
if (tr.maximal_dimension() < 2 || tr.maximal_dimension() > 3)
|
||||
{
|
||||
std::cerr << "Warning: export_tds_to_off => dimension should be 2 or 3.";
|
||||
os << "Warning: export_tds_to_off => dimension should be 2 or 3.";
|
||||
return os;
|
||||
}
|
||||
|
||||
size_t n = tr.number_of_vertices();
|
||||
|
||||
std::stringstream output;
|
||||
|
||||
// write the vertices
|
||||
std::map<Vertex_handle, int> index_of_vertex;
|
||||
int i = 0;
|
||||
for(Finite_vertex_iterator it = tr.finite_vertices_begin();
|
||||
it != tr.finite_vertices_end(); ++it, ++i)
|
||||
{
|
||||
Triangulation_IO::output_point(output, tr.geom_traits(), it->point());
|
||||
if (tr.maximal_dimension() == 2)
|
||||
output << " 0";
|
||||
output << std::endl;
|
||||
index_of_vertex[it.base()] = i;
|
||||
}
|
||||
CGAL_assertion( i == n );
|
||||
|
||||
size_t number_of_triangles = 0;
|
||||
if (tr.maximal_dimension() == 2)
|
||||
{
|
||||
for (Finite_full_cell_iterator fch = tr.finite_full_cells_begin() ;
|
||||
fch != tr.finite_full_cells_end() ; ++fch)
|
||||
{
|
||||
output << "3 ";
|
||||
for (Full_cell_vertex_iterator vit = fch->vertices_begin() ;
|
||||
vit != fch->vertices_end() ; ++vit)
|
||||
{
|
||||
output << index_of_vertex[*vit] << " ";
|
||||
}
|
||||
output << std::endl;
|
||||
++number_of_triangles;
|
||||
}
|
||||
}
|
||||
else if (tr.maximal_dimension() == 3)
|
||||
{
|
||||
if (in_3D_export_surface_only)
|
||||
{
|
||||
// Parse boundary facets
|
||||
for (Full_cell_iterator fch = tr.full_cells_begin() ;
|
||||
fch != tr.full_cells_end() ; ++fch)
|
||||
{
|
||||
if (tr.is_infinite(fch))
|
||||
{
|
||||
output << "3 ";
|
||||
for (Full_cell_vertex_iterator vit = fch->vertices_begin() ;
|
||||
vit != fch->vertices_end() ; ++vit)
|
||||
{
|
||||
if (!tr.is_infinite(*vit))
|
||||
output << index_of_vertex[*vit] << " ";
|
||||
}
|
||||
output << std::endl;
|
||||
++number_of_triangles;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Parse finite cells
|
||||
for (Finite_full_cell_iterator fch = tr.finite_full_cells_begin() ;
|
||||
fch != tr.finite_full_cells_end() ; ++fch)
|
||||
{
|
||||
output << "3 "
|
||||
<< index_of_vertex[fch->vertex(0)] << " "
|
||||
<< index_of_vertex[fch->vertex(1)] << " "
|
||||
<< index_of_vertex[fch->vertex(2)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[fch->vertex(0)] << " "
|
||||
<< index_of_vertex[fch->vertex(2)] << " "
|
||||
<< index_of_vertex[fch->vertex(3)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[fch->vertex(1)] << " "
|
||||
<< index_of_vertex[fch->vertex(2)] << " "
|
||||
<< index_of_vertex[fch->vertex(3)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[fch->vertex(0)] << " "
|
||||
<< index_of_vertex[fch->vertex(1)] << " "
|
||||
<< index_of_vertex[fch->vertex(3)]
|
||||
<< std::endl;
|
||||
number_of_triangles += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
os << "OFF \n"
|
||||
<< n << " "
|
||||
<< number_of_triangles << " 0\n"
|
||||
<< output.str();
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_TRIANGULATION_IO_H
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,279 @@
|
|||
// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
// You can redistribute it and/or modify it under the terms of the GNU
|
||||
// General Public License as published by the Free Software Foundation,
|
||||
// either version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author(s) : Clement Jamin
|
||||
|
||||
#ifndef CGAL_REGULAR_TRIANGULATION_EUCLIDEAN_TRAITS_H
|
||||
#define CGAL_REGULAR_TRIANGULATION_EUCLIDEAN_TRAITS_H
|
||||
|
||||
#include <CGAL/basic.h>
|
||||
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
template <class K>
|
||||
class Regular_triangulation_euclidean_traits
|
||||
: public K
|
||||
{
|
||||
public:
|
||||
typedef K Base;
|
||||
|
||||
// Required by TriangulationTraits
|
||||
typedef typename K::Dimension Dimension;
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Flat_orientation_d Flat_orientation_d;
|
||||
typedef typename K::Weighted_point_d Point_d;
|
||||
|
||||
// Required by RegularTriangulationTraits
|
||||
typedef typename K::Point_d Bare_point;
|
||||
typedef typename K::Weighted_point_d Weighted_point;
|
||||
typedef typename K::Point_drop_weight_d Point_drop_weight_d;
|
||||
typedef typename K::Point_weight_d Point_weight_d;
|
||||
typedef typename K::Power_test_d Power_test_d;
|
||||
typedef typename K::In_flat_power_test_d In_flat_power_test_d;
|
||||
|
||||
//===========================================================================
|
||||
// Custom types
|
||||
//===========================================================================
|
||||
|
||||
// Required by SpatialSortingTraits_d
|
||||
class Less_coordinate_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef bool result_type;
|
||||
|
||||
Less_coordinate_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
result_type operator()(
|
||||
Weighted_point const& p, Weighted_point const& q, int i) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.less_coordinate_d_object() (pdw(p), pdw(q), i);
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Required by TriangulationTraits
|
||||
class Orientation_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef Orientation result_type;
|
||||
|
||||
Orientation_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
template <typename ForwardIterator>
|
||||
result_type operator()(ForwardIterator start, ForwardIterator end) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.orientation_d_object() (
|
||||
boost::make_transform_iterator(start, pdw),
|
||||
boost::make_transform_iterator(end, pdw)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Required by TriangulationTraits
|
||||
class Construct_flat_orientation_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef Flat_orientation_d result_type;
|
||||
|
||||
Construct_flat_orientation_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
template <typename ForwardIterator>
|
||||
result_type operator()(ForwardIterator start, ForwardIterator end) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.construct_flat_orientation_d_object() (
|
||||
boost::make_transform_iterator(start, pdw),
|
||||
boost::make_transform_iterator(end, pdw)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Required by TriangulationTraits
|
||||
class In_flat_orientation_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef Orientation result_type;
|
||||
|
||||
In_flat_orientation_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
template <typename ForwardIterator>
|
||||
result_type operator()(Flat_orientation_d orient,
|
||||
ForwardIterator start, ForwardIterator end) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.in_flat_orientation_d_object() (
|
||||
orient,
|
||||
boost::make_transform_iterator(start, pdw),
|
||||
boost::make_transform_iterator(end, pdw)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Required by TriangulationTraits
|
||||
class Contained_in_affine_hull_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef bool result_type;
|
||||
|
||||
Contained_in_affine_hull_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
template <typename ForwardIterator>
|
||||
result_type operator()(ForwardIterator start, ForwardIterator end,
|
||||
const Weighted_point & p) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.contained_in_affine_hull_d_object() (
|
||||
boost::make_transform_iterator(start, pdw),
|
||||
boost::make_transform_iterator(end, pdw),
|
||||
pdw(p)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Required by TriangulationTraits
|
||||
class Compare_lexicographically_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef Comparison_result result_type;
|
||||
|
||||
Compare_lexicographically_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
result_type operator()(
|
||||
const Weighted_point & p, const Weighted_point & q) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.compare_lexicographically_d_object()(pdw(p), pdw(q));
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// Only for Triangulation_off_ostream.h (undocumented)
|
||||
class Compute_coordinate_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef FT result_type;
|
||||
|
||||
Compute_coordinate_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
result_type operator()(
|
||||
const Weighted_point & p, const int i) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.compute_coordinate_d_object()(pdw(p), i);
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
|
||||
// To satisfy SpatialSortingTraits_d
|
||||
// and also for Triangulation_off_ostream.h (undocumented)
|
||||
class Point_dimension_d
|
||||
{
|
||||
const K &m_kernel;
|
||||
|
||||
public:
|
||||
typedef int result_type;
|
||||
|
||||
Point_dimension_d(const K &kernel)
|
||||
: m_kernel(kernel) {}
|
||||
|
||||
result_type operator()(
|
||||
const Weighted_point & p) const
|
||||
{
|
||||
Point_drop_weight_d pdw = m_kernel.point_drop_weight_d_object();
|
||||
return m_kernel.point_dimension_d_object()(pdw(p));
|
||||
}
|
||||
};
|
||||
|
||||
//===========================================================================
|
||||
// Object creation
|
||||
//===========================================================================
|
||||
|
||||
Less_coordinate_d less_coordinate_d_object() const
|
||||
{
|
||||
return Less_coordinate_d(*this);
|
||||
}
|
||||
Contained_in_affine_hull_d contained_in_affine_hull_d_object() const
|
||||
{
|
||||
return Contained_in_affine_hull_d(*this);
|
||||
}
|
||||
Orientation_d orientation_d_object() const
|
||||
{
|
||||
return Orientation_d(*this);
|
||||
}
|
||||
Construct_flat_orientation_d construct_flat_orientation_d_object() const
|
||||
{
|
||||
return Construct_flat_orientation_d(*this);
|
||||
}
|
||||
In_flat_orientation_d in_flat_orientation_d_object() const
|
||||
{
|
||||
return In_flat_orientation_d(*this);
|
||||
}
|
||||
Compare_lexicographically_d compare_lexicographically_d_object() const
|
||||
{
|
||||
return Compare_lexicographically_d(*this);
|
||||
}
|
||||
Compute_coordinate_d compute_coordinate_d_object() const
|
||||
{
|
||||
return Compute_coordinate_d(*this);
|
||||
}
|
||||
Point_dimension_d point_dimension_d_object() const
|
||||
{
|
||||
return Point_dimension_d(*this);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_REGULAR_TRIANGULATION_EUCLIDEAN_TRAITS_H
|
||||
|
|
@ -29,6 +29,7 @@
|
|||
#include <CGAL/Dimension.h>
|
||||
#include <CGAL/iterator.h>
|
||||
#include <CGAL/Default.h>
|
||||
#include <CGAL/Random.h>
|
||||
|
||||
#include <boost/iterator/filter_iterator.hpp>
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
|
|
@ -226,7 +227,35 @@ public:
|
|||
{
|
||||
return tds().index_of_covertex(f);
|
||||
}
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UTILITIES
|
||||
|
||||
// A co-dimension 2 sub-simplex. called a Rotor because we can rotate
|
||||
// the two "covertices" around the sub-simplex. Useful for traversing the
|
||||
// boundary of a hole. NOT DOCUMENTED
|
||||
typedef cpp11::tuple<Full_cell_handle, int, int> Rotor;
|
||||
|
||||
// Commented out because it was causing "internal compiler error" in MSVC
|
||||
/*Full_cell_handle full_cell(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<0>(r);
|
||||
}
|
||||
int index_of_covertex(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<1>(r);
|
||||
}
|
||||
int index_of_second_covertex(const Rotor & r) const // NOT DOCUMENTED
|
||||
{
|
||||
return cpp11::get<2>(r);
|
||||
}*/
|
||||
Rotor rotate_rotor(Rotor & r) // NOT DOCUMENTED...
|
||||
{
|
||||
int opposite = cpp11::get<0>(r)->mirror_index(cpp11::get<1>(r));
|
||||
Full_cell_handle s = cpp11::get<0>(r)->neighbor(cpp11::get<1>(r));
|
||||
int new_second = s->index(cpp11::get<0>(r)->vertex(cpp11::get<2>(r)));
|
||||
return Rotor(s, new_second, opposite);
|
||||
}
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
|
||||
|
||||
Triangulation(int dim, const Geom_traits k = Geom_traits())
|
||||
|
|
@ -539,7 +568,7 @@ public:
|
|||
}
|
||||
|
||||
template< typename OutputIterator >
|
||||
OutputIterator incident_faces(Vertex_const_handle v, int d, OutputIterator out)
|
||||
OutputIterator incident_faces(Vertex_const_handle v, int d, OutputIterator out) const
|
||||
{
|
||||
return tds().incident_faces(v, d, out);
|
||||
}
|
||||
|
|
@ -601,7 +630,12 @@ public:
|
|||
return tds().new_full_cell();
|
||||
}
|
||||
|
||||
Vertex_handle new_vertex(const Point & p)
|
||||
Vertex_handle new_vertex()
|
||||
{
|
||||
return tds().new_vertex();
|
||||
}
|
||||
|
||||
Vertex_handle new_vertex(const Point & p)
|
||||
{
|
||||
return tds().new_vertex(p);
|
||||
}
|
||||
|
|
@ -706,6 +740,43 @@ public:
|
|||
// make sure all full_cells have positive orientation
|
||||
void reorient_full_cells();
|
||||
|
||||
protected:
|
||||
// This is used in the |remove(v)| member function to manage sets of Full_cell_handles
|
||||
template< typename FCH >
|
||||
struct Full_cell_set : public std::vector<FCH>
|
||||
{
|
||||
typedef std::vector<FCH> Base_set;
|
||||
using Base_set::begin;
|
||||
using Base_set::end;
|
||||
void make_searchable()
|
||||
{ // sort the full cell handles
|
||||
std::sort(begin(), end());
|
||||
}
|
||||
bool contains(const FCH & fch) const
|
||||
{
|
||||
return std::binary_search(begin(), end(), fch);
|
||||
}
|
||||
bool contains_1st_and_not_2nd(const FCH & fst, const FCH & snd) const
|
||||
{
|
||||
return ( ! contains(snd) ) && ( contains(fst) );
|
||||
}
|
||||
};
|
||||
|
||||
void display_all_full_cells__debugging() const
|
||||
{
|
||||
std::cerr << "ALL FULL CELLS:" << std::endl;
|
||||
for (Full_cell_const_iterator cit = full_cells_begin() ;
|
||||
cit != full_cells_end() ; ++cit )
|
||||
{
|
||||
std::cerr << std::hex << &*cit << ": ";
|
||||
for (int jj = 0 ; jj <= current_dimension() ; ++jj)
|
||||
std::cerr << (is_infinite(cit->vertex(jj)) ? 0xFFFFFFFF : (unsigned int)&*cit->vertex(jj)) << " - ";
|
||||
std::cerr << std::dec << std::endl;
|
||||
}
|
||||
std::cerr << std::endl;
|
||||
}
|
||||
|
||||
|
||||
}; // Triangulation<...>
|
||||
|
||||
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
|
@ -719,17 +790,15 @@ Triangulation<TT, TDS>
|
|||
{
|
||||
if( current_dimension() < 1 )
|
||||
return;
|
||||
|
||||
Full_cell_iterator sit = full_cells_begin();
|
||||
Full_cell_iterator send = full_cells_end();
|
||||
while( sit != send )
|
||||
for ( ; sit != send ; ++sit)
|
||||
{
|
||||
if( is_infinite(sit) && (1 == current_dimension()) )
|
||||
if( ! (is_infinite(sit) && (1 == current_dimension())) )
|
||||
{
|
||||
++sit;
|
||||
continue;
|
||||
sit->swap_vertices(current_dimension() - 1, current_dimension());
|
||||
}
|
||||
sit->swap_vertices(current_dimension() - 1, current_dimension());
|
||||
++sit;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -851,13 +920,8 @@ Triangulation<TT, TDS>
|
|||
CGAL_precondition( is_infinite(s) );
|
||||
CGAL_precondition( 1 == current_dimension() );
|
||||
int inf_v_index = s->index(infinite_vertex());
|
||||
bool swap = (0 == s->neighbor(inf_v_index)->index(s));
|
||||
Vertex_handle v = tds().insert_in_full_cell(s);
|
||||
v->set_point(p);
|
||||
if( swap )
|
||||
{
|
||||
s->swap_vertices(0, 1);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
|
|
@ -914,6 +978,36 @@ Triangulation<TT, TDS>
|
|||
CGAL_assertion( COPLANAR != o );
|
||||
if( NEGATIVE == o )
|
||||
reorient_full_cells();
|
||||
|
||||
|
||||
// We just inserted the second finite point and the right infinite
|
||||
// cell is like : (inf_v, v), but we want it to be (v, inf_v) to be
|
||||
// consistent with the rest of the cells
|
||||
if (current_dimension() == 1)
|
||||
{
|
||||
// Is "inf_v_cell" the right infinite cell?
|
||||
// Then inf_v_index should be 1
|
||||
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
|
||||
&& inf_v_index == 0)
|
||||
{
|
||||
inf_v_cell->swap_vertices(
|
||||
current_dimension() - 1, current_dimension());
|
||||
}
|
||||
// Otherwise, let's find the right infinite cell
|
||||
else
|
||||
{
|
||||
inf_v_cell = inf_v_cell->neighbor((inf_v_index + 1) % 2);
|
||||
inf_v_index = inf_v_cell->index(infinite_vertex());
|
||||
// Is "inf_v_cell" the right infinite cell?
|
||||
// Then inf_v_index should be 1
|
||||
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
|
||||
&& inf_v_index == 0)
|
||||
{
|
||||
inf_v_cell->swap_vertices(
|
||||
current_dimension() - 1, current_dimension());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -417,7 +417,6 @@ private:
|
|||
void clear_visited_marks(Full_cell_handle) const;
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DANGEROUS UPDATE OPERATIONS
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DANGEROUS UPDATE OPERATIONS
|
||||
|
||||
private:
|
||||
|
||||
|
|
@ -612,7 +611,7 @@ public:
|
|||
return incident_faces(v, dim, out, cmp, true);
|
||||
}
|
||||
template< typename OutputIterator, typename Comparator = std::less<Vertex_const_handle> >
|
||||
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false);
|
||||
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false) const;
|
||||
#else
|
||||
template< typename OutputIterator, typename Comparator >
|
||||
OutputIterator incident_upper_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp = Comparator())
|
||||
|
|
@ -625,10 +624,10 @@ public:
|
|||
return incident_faces(v, dim, out, std::less<Vertex_const_handle>(), true);
|
||||
}
|
||||
template< typename OutputIterator, typename Comparator >
|
||||
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false);
|
||||
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator, Comparator = Comparator(), bool = false) const;
|
||||
template< typename OutputIterator >
|
||||
OutputIterator incident_faces(Vertex_const_handle, const int, OutputIterator,
|
||||
std::less<Vertex_const_handle> = std::less<Vertex_const_handle>(), bool = false);
|
||||
std::less<Vertex_const_handle> = std::less<Vertex_const_handle>(), bool = false) const;
|
||||
#endif
|
||||
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INPUT / OUTPUT
|
||||
|
|
@ -724,7 +723,7 @@ template< typename OutputIterator >
|
|||
OutputIterator
|
||||
Triangulation_data_structure<Dim, Vb, Fcb>
|
||||
::incident_faces(Vertex_const_handle v, const int dim, OutputIterator out,
|
||||
std::less<Vertex_const_handle> cmp, bool upper_faces)
|
||||
std::less<Vertex_const_handle> cmp, bool upper_faces) const
|
||||
{
|
||||
return incident_faces<OutputIterator, std::less<Vertex_const_handle> >(v, dim, out, cmp, upper_faces);
|
||||
}
|
||||
|
|
@ -734,7 +733,7 @@ template< class Dim, class Vb, class Fcb >
|
|||
template< typename OutputIterator, typename Comparator >
|
||||
OutputIterator
|
||||
Triangulation_data_structure<Dim, Vb, Fcb>
|
||||
::incident_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp, bool upper_faces)
|
||||
::incident_faces(Vertex_const_handle v, const int dim, OutputIterator out, Comparator cmp, bool upper_faces) const
|
||||
{
|
||||
CGAL_precondition( 0 < dim );
|
||||
if( dim >= current_dimension() )
|
||||
|
|
@ -788,13 +787,13 @@ Triangulation_data_structure<Dim, Vb, Fcb>
|
|||
// init state for enumerating all candidate faces:
|
||||
internal::Combination_enumerator f_idx(dim, v_idx + 1, current_dimension());
|
||||
Face f(*s);
|
||||
f.set_index(0, v_idx);
|
||||
f.set_index(0, sorted_idx[v_idx]);
|
||||
while( ! f_idx.end() )
|
||||
{
|
||||
// check if face has already been found
|
||||
for( int i = 0; i < dim; ++i )
|
||||
f.set_index(1 + i, sorted_idx[f_idx[i]]);
|
||||
face_set.insert(f);
|
||||
face_set.insert(f); // checks if face has already been found
|
||||
|
||||
// compute next sorted face (lexicographic enumeration)
|
||||
++f_idx;
|
||||
}
|
||||
|
|
@ -889,8 +888,7 @@ Triangulation_data_structure<Dim, Vb, Fcb>
|
|||
if( v_idx != current_dimension() )
|
||||
{
|
||||
(*it)->swap_vertices(v_idx, current_dimension());
|
||||
if( ( ! (*it)->has_vertex(star) ) || (current_dimension() > 2) )
|
||||
(*it)->swap_vertices(current_dimension() - 2, current_dimension() - 1);
|
||||
(*it)->swap_vertices(current_dimension() - 2, current_dimension() - 1);
|
||||
}
|
||||
(*it)->set_vertex(current_dimension(), Vertex_handle());
|
||||
(*it)->set_neighbor(current_dimension(), Full_cell_handle());
|
||||
|
|
@ -1000,7 +998,7 @@ Triangulation_data_structure<Dim, Vb, Fcb>
|
|||
associate_vertex_with_full_cell(new_s, facet_index, v);
|
||||
set_neighbors(new_s,
|
||||
facet_index,
|
||||
neighbor(old_s, facet_index),
|
||||
outside_neighbor,
|
||||
mirror_index(old_s, facet_index));
|
||||
|
||||
// add the new full_cell to the list of new full_cells
|
||||
|
|
@ -1139,11 +1137,6 @@ void Triangulation_data_structure<Dim, Vb, Fcb>
|
|||
for( int k = 1; k <= cur_dim; ++k )
|
||||
associate_vertex_with_full_cell(S_new, k, vertex(S, k - 1));
|
||||
}
|
||||
else if( cur_dim == 2 )
|
||||
{ // if cur. dim. is 2, we must take care of the 'rightmost' infinite vertex.
|
||||
if( S->mirror_index(S->index(star)) == 0 )
|
||||
swap_me = S;
|
||||
}
|
||||
}
|
||||
// now we setup the neighbors
|
||||
set_visited(start, false);
|
||||
|
|
@ -1523,7 +1516,9 @@ operator>>(std::istream & is, Triangulation_data_structure<Dimen, Vb, Fcb> & tr)
|
|||
// - the neighbors of each full_cell by their index in the preceding list
|
||||
{
|
||||
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
|
||||
typedef typename TDS::Vertex_handle Vertex_handle;
|
||||
typedef typename TDS::Full_cell_handle Full_cell_handle;
|
||||
typedef typename TDS::Full_cell_iterator Full_cell_iterator;
|
||||
typedef typename TDS::Vertex_handle Vertex_handle;
|
||||
|
||||
// read current dimension and number of vertices
|
||||
std::size_t n;
|
||||
|
|
@ -1573,8 +1568,10 @@ operator<<(std::ostream & os, const Triangulation_data_structure<Dimen, Vb, Fcb>
|
|||
// - the neighbors of each full_cell by their index in the preceding list
|
||||
{
|
||||
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
|
||||
typedef typename TDS::Vertex_const_handle Vertex_handle;
|
||||
typedef typename TDS::Vertex_const_iterator Vertex_iterator;
|
||||
typedef typename TDS::Full_cell_const_handle Full_cell_handle;
|
||||
typedef typename TDS::Full_cell_const_iterator Full_cell_iterator;
|
||||
typedef typename TDS::Vertex_const_handle Vertex_handle;
|
||||
typedef typename TDS::Vertex_const_iterator Vertex_iterator;
|
||||
|
||||
// outputs dimension and number of vertices
|
||||
std::size_t n = tr.number_of_vertices();
|
||||
|
|
@ -1594,7 +1591,7 @@ operator<<(std::ostream & os, const Triangulation_data_structure<Dimen, Vb, Fcb>
|
|||
int i = 0;
|
||||
for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it, ++i )
|
||||
{
|
||||
os << *it; // write the vertex
|
||||
os << *it << std::endl; // write the vertex
|
||||
index_of_vertex[it] = i;
|
||||
}
|
||||
CGAL_assertion( (std::size_t) i == n );
|
||||
|
|
|
|||
|
|
@ -61,7 +61,6 @@ public:
|
|||
/// Set 's' as an incident full_cell
|
||||
void set_full_cell(Full_cell_handle s) /* Concept */
|
||||
{
|
||||
CGAL_precondition( Full_cell_handle() != s );
|
||||
full_cell_ = s;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -22,7 +22,6 @@
|
|||
|
||||
#include <CGAL/Triangulation_ds_vertex.h>
|
||||
#include <CGAL/Default.h>
|
||||
#include <CGAL/Random.h>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
|
|
|
|||
|
|
@ -98,7 +98,7 @@ public:
|
|||
template< class T >
|
||||
struct Compare_points_for_perturbation
|
||||
{
|
||||
typedef typename T::Point_d Point;
|
||||
typedef typename T::Geom_traits::Point_d Point;
|
||||
|
||||
const T & t_;
|
||||
|
||||
|
|
@ -119,8 +119,8 @@ public:
|
|||
template< class T >
|
||||
struct Point_from_pointer
|
||||
{
|
||||
typedef const typename T::Point_d * argument_type;
|
||||
typedef const typename T::Point_d result_type;
|
||||
typedef const typename T::Geom_traits::Point_d * argument_type;
|
||||
typedef const typename T::Geom_traits::Point_d result_type;
|
||||
result_type & operator()(argument_type & x) const
|
||||
{
|
||||
return (*x);
|
||||
|
|
|
|||
|
|
@ -1,7 +1,6 @@
|
|||
# Created by the script cgal_create_cmake_script
|
||||
# This is the CMake script for compiling a CGAL application.
|
||||
|
||||
|
||||
project( Triangulation_test )
|
||||
|
||||
cmake_minimum_required(VERSION 2.8.11)
|
||||
|
|
@ -21,18 +20,18 @@ if ( CGAL_FOUND )
|
|||
include_directories (BEFORE "../../include")
|
||||
include_directories (BEFORE "include")
|
||||
|
||||
create_single_source_cgal_program( "test_triangulation.cpp" )
|
||||
create_single_source_cgal_program( "test_delaunay.cpp" )
|
||||
create_single_source_cgal_program( "test_regular.cpp" )
|
||||
create_single_source_cgal_program( "test_tds.cpp" )
|
||||
create_single_source_cgal_program( "test_torture.cpp" )
|
||||
create_single_source_cgal_program( "test_triangulation.cpp" )
|
||||
create_single_source_cgal_program( "test_insert_if_in_star.cpp" )
|
||||
|
||||
else()
|
||||
message(STATUS "NOTICE: Some of the executables in this directory need Eigen 3.1 (or greater) and will not be compiled.")
|
||||
endif()
|
||||
|
||||
else()
|
||||
|
||||
message(STATUS "This program requires the CGAL library, and will not be compiled.")
|
||||
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -34,79 +34,80 @@ void test(const int d, const string & type, const int N)
|
|||
|
||||
typedef CGAL::Random_points_in_cube_d<Point> Random_points_iterator;
|
||||
|
||||
DC pc(d);
|
||||
DC dt(d);
|
||||
cerr << "\nBuilding Delaunay triangulation of (" << type << d << ") dimension with " << N << " points";
|
||||
assert(pc.empty());
|
||||
assert(dt.empty());
|
||||
|
||||
vector<Point> points;
|
||||
CGAL::Random rng;
|
||||
Random_points_iterator rand_it(d, 2.0, rng);
|
||||
//CGAL::Random rng;
|
||||
//Random_points_iterator rand_it(d, 2.0, rng);
|
||||
//CGAL::cpp11::copy_n(rand_it, N, back_inserter(points));
|
||||
|
||||
vector<int> coords(d);
|
||||
srand(10);
|
||||
for( int i = 0; i < N; ++i )
|
||||
{
|
||||
vector<double> coords(d);
|
||||
for( int j = 0; j < d; ++j )
|
||||
coords[j] = rand() % 100000;
|
||||
coords[j] = static_cast<double>(rand() % 100000)/10000;
|
||||
points.push_back(Point(d, coords.begin(), coords.end()));
|
||||
}
|
||||
pc.insert(points.begin(), points.end());
|
||||
dt.insert(points.begin(), points.end());
|
||||
cerr << "\nChecking topology and geometry...";
|
||||
assert( pc.is_valid() );
|
||||
assert( dt.is_valid() );
|
||||
|
||||
cerr << "\nTraversing finite full_cells... ";
|
||||
size_t nbfs(0), nbis(0);
|
||||
Finite_full_cell_const_iterator fsit = pc.finite_full_cells_begin();
|
||||
while( fsit != pc.finite_full_cells_end() )
|
||||
Finite_full_cell_const_iterator fsit = dt.finite_full_cells_begin();
|
||||
while( fsit != dt.finite_full_cells_end() )
|
||||
++fsit, ++nbfs;
|
||||
cerr << nbfs << " + ";
|
||||
vector<Full_cell_handle> infinite_full_cells;
|
||||
pc.tds().incident_full_cells(pc.infinite_vertex(), back_inserter(infinite_full_cells));
|
||||
dt.tds().incident_full_cells(dt.infinite_vertex(), back_inserter(infinite_full_cells));
|
||||
nbis = infinite_full_cells.size();
|
||||
cerr << nbis << " = " << (nbis+nbfs)
|
||||
<< " = " << pc.number_of_full_cells();
|
||||
cerr << "\nThe triangulation has current dimension " << pc.current_dimension();
|
||||
CGAL_assertion( pc.number_of_full_cells() == nbis+nbfs);
|
||||
<< " = " << dt.number_of_full_cells();
|
||||
cerr << "\nThe triangulation has current dimension " << dt.current_dimension();
|
||||
CGAL_assertion( dt.number_of_full_cells() == nbis+nbfs);
|
||||
|
||||
cerr << "\nTraversing finite vertices... ";
|
||||
size_t nbfv(0);
|
||||
Finite_vertex_iterator fvit = pc.finite_vertices_begin();
|
||||
while( fvit != pc.finite_vertices_end() )
|
||||
Finite_vertex_iterator fvit = dt.finite_vertices_begin();
|
||||
while( fvit != dt.finite_vertices_end() )
|
||||
++fvit, ++nbfv;
|
||||
cerr << nbfv <<endl;
|
||||
|
||||
// Count convex hull vertices:
|
||||
if( pc.maximal_dimension() > 1 )
|
||||
if( dt.maximal_dimension() > 1 )
|
||||
{
|
||||
typedef vector<Face> Faces;
|
||||
Faces edges;
|
||||
back_insert_iterator<Faces> out(edges);
|
||||
pc.tds().incident_faces(pc.infinite_vertex(), 1, out);
|
||||
dt.tds().incident_faces(dt.infinite_vertex(), 1, out);
|
||||
cout << "\nThere are " << edges.size() << " vertices on the convex hull.";
|
||||
edges.clear();
|
||||
}
|
||||
else // pc.maximal_dimension() == 1
|
||||
else // dt.maximal_dimension() == 1
|
||||
{
|
||||
typedef vector<Full_cell_handle> Cells;
|
||||
Cells cells;
|
||||
back_insert_iterator<Cells> out(cells);
|
||||
pc.tds().incident_full_cells(pc.infinite_vertex(), out);
|
||||
dt.tds().incident_full_cells(dt.infinite_vertex(), out);
|
||||
cout << "\nThere are " << cells.size() << " vertices on the convex hull.";
|
||||
cells.clear();
|
||||
}
|
||||
|
||||
// Remove all !
|
||||
cerr << "\nBefore removal: " << pc.number_of_vertices() << " vertices. After: ";
|
||||
cerr << "\nBefore removal: " << dt.number_of_vertices() << " vertices. After: ";
|
||||
random_shuffle(points.begin(), points.end());
|
||||
pc.remove(points.begin(), points.end());
|
||||
assert( pc.is_valid() );
|
||||
cerr << pc.number_of_vertices() << " vertices.";
|
||||
// assert( pc.empty() ); NOT YET !
|
||||
dt.remove(points.begin(), points.end());
|
||||
assert( dt.is_valid() );
|
||||
cerr << dt.number_of_vertices() << " vertices.";
|
||||
// assert( dt.empty() ); NOT YET !
|
||||
// CLEAR
|
||||
pc.clear();
|
||||
assert( -1 == pc.current_dimension() );
|
||||
assert( pc.empty() );
|
||||
assert( pc.is_valid() );
|
||||
dt.clear();
|
||||
assert( -1 == dt.current_dimension() );
|
||||
assert( dt.empty() );
|
||||
assert( dt.is_valid() );
|
||||
}
|
||||
|
||||
template< int D >
|
||||
|
|
@ -122,14 +123,14 @@ void go(const int N)
|
|||
int main(int argc, char **argv)
|
||||
{
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
int N = 100;
|
||||
int N = 10;
|
||||
if( argc > 1 )
|
||||
N = atoi(argv[1]);
|
||||
go<5>(N);
|
||||
go<4>(N);
|
||||
go<3>(N);
|
||||
go<2>(N);
|
||||
go<1>(N);
|
||||
//go<5>(N);
|
||||
go<4>(N);
|
||||
go<3>(N);
|
||||
go<2>(N);
|
||||
go<1>(N);
|
||||
|
||||
cerr << endl;
|
||||
return 0;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,92 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
|
||||
using namespace std;
|
||||
|
||||
template<typename RTri>
|
||||
void test(const int d, const string & type, const int N)
|
||||
{
|
||||
typedef typename RTri::Vertex_handle Vertex_handle;
|
||||
typedef typename RTri::Point Point;
|
||||
typedef typename RTri::Bare_point Bare_point;
|
||||
|
||||
typedef CGAL::Random_points_in_cube_d<Bare_point> Random_points_iterator;
|
||||
|
||||
RTri rt(d);
|
||||
RTri rt_star_only(d);
|
||||
cerr << "\nBuilding Regular triangulation of (" << type << d
|
||||
<< ") dimension with " << N << " points\n";
|
||||
assert(rt.empty());
|
||||
assert(rt_star_only.empty());
|
||||
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
|
||||
// Insert first point (0, 0...)
|
||||
vector<double> coords(d);
|
||||
for( int j = 0; j < d; ++j )
|
||||
coords[j] = 0;
|
||||
|
||||
Point p = Point(
|
||||
Bare_point(d, coords.begin(), coords.end()),
|
||||
static_cast<double>(rand() % 10000)/100000);
|
||||
|
||||
rt.insert(p);
|
||||
Vertex_handle first_vertex = rt_star_only.insert(p);
|
||||
|
||||
// Insert the other points
|
||||
for( int i = 1 ; i < N ; ++i )
|
||||
{
|
||||
for( int j = 0; j < d; ++j )
|
||||
coords[j] = 10.*(rand() % RAND_MAX)/RAND_MAX - 5.;
|
||||
|
||||
p = Point(
|
||||
Bare_point(d, coords.begin(), coords.end()),
|
||||
static_cast<double>(rand() % 10000)/1000000);
|
||||
|
||||
rt.insert(p);
|
||||
rt_star_only.insert_if_in_star(p, first_vertex);
|
||||
}
|
||||
|
||||
cerr << "\nChecking topology and geometry..."
|
||||
<< (rt.is_valid(true) ? "OK.\n" : "Error.\n");
|
||||
|
||||
cerr << "\nThe triangulation using 'insert' has current dimension " << rt.current_dimension()
|
||||
<< " and " << rt.number_of_full_cells() << " full cells\n";
|
||||
|
||||
cerr << "\nThe triangulation using 'insert_if_in_star' has current dimension " << rt.current_dimension()
|
||||
<< " and " << rt_star_only.number_of_full_cells() << " full cells\n";
|
||||
|
||||
// Export
|
||||
if (d <= 3)
|
||||
{
|
||||
std::ofstream off_stream_all("data/test_insert_all.off");
|
||||
CGAL::export_triangulation_to_off(off_stream_all, rt);
|
||||
std::ofstream off_stream_star_only("data/test_insert_if_in_star.off");
|
||||
CGAL::export_triangulation_to_off(off_stream_star_only, rt_star_only);
|
||||
}
|
||||
}
|
||||
|
||||
template< int D >
|
||||
void go(const int N)
|
||||
{
|
||||
//typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> FK;
|
||||
typedef CGAL::Epick_d<CGAL::Dimension_tag<D> > FK;
|
||||
typedef CGAL::Regular_triangulation<FK> Triangulation;
|
||||
//test<Triangulation>(D, "dynamic", N);
|
||||
test<Triangulation>(D, "static", N);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
go<2>(100);
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,130 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
|
||||
#include <tilted_grid.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
|
||||
using namespace std;
|
||||
|
||||
template<typename RTri>
|
||||
void test(const int d, const string & type, const int N)
|
||||
{
|
||||
typedef typename RTri::Full_cell_handle Full_cell_handle;
|
||||
typedef typename RTri::Face Face;
|
||||
typedef typename RTri::Point Point;
|
||||
typedef typename RTri::Bare_point Bare_point;
|
||||
typedef typename RTri::Finite_full_cell_const_iterator Finite_full_cell_const_iterator;
|
||||
typedef typename RTri::Finite_vertex_iterator Finite_vertex_iterator;
|
||||
|
||||
typedef CGAL::Random_points_in_cube_d<Bare_point> Random_points_iterator;
|
||||
|
||||
RTri rt(d);
|
||||
cerr << "\nBuilding Regular triangulation of (" << type << d << ") dimension with " << N << " points";
|
||||
assert(rt.empty());
|
||||
|
||||
vector<Point> points;
|
||||
|
||||
srand(10);
|
||||
for( int i = 0; i < N; ++i )
|
||||
{
|
||||
vector<double> coords(d);
|
||||
for( int j = 0; j < d; ++j )
|
||||
coords[j] = static_cast<double>(rand() % 100000)/10000;
|
||||
points.push_back(Point(
|
||||
Bare_point(d, coords.begin(), coords.end()),
|
||||
static_cast<double>(rand() % 100000)/100000
|
||||
));
|
||||
}
|
||||
rt.insert(points.begin(), points.end());
|
||||
cerr << "\nChecking topology and geometry...";
|
||||
assert( rt.is_valid(true) );
|
||||
|
||||
cerr << "\nTraversing finite full_cells... ";
|
||||
size_t nbfs(0), nbis(0);
|
||||
Finite_full_cell_const_iterator fsit = rt.finite_full_cells_begin();
|
||||
while( fsit != rt.finite_full_cells_end() )
|
||||
++fsit, ++nbfs;
|
||||
cerr << nbfs << " + ";
|
||||
vector<Full_cell_handle> infinite_full_cells;
|
||||
rt.tds().incident_full_cells(rt.infinite_vertex(), back_inserter(infinite_full_cells));
|
||||
nbis = infinite_full_cells.size();
|
||||
cerr << nbis << " = " << (nbis+nbfs)
|
||||
<< " = " << rt.number_of_full_cells();
|
||||
cerr << "\nThe triangulation has current dimension " << rt.current_dimension();
|
||||
CGAL_assertion( rt.number_of_full_cells() == nbis+nbfs);
|
||||
|
||||
cerr << "\nTraversing finite vertices... ";
|
||||
size_t nbfv(0);
|
||||
Finite_vertex_iterator fvit = rt.finite_vertices_begin();
|
||||
while( fvit != rt.finite_vertices_end() )
|
||||
++fvit, ++nbfv;
|
||||
cerr << nbfv <<endl;
|
||||
|
||||
// Count convex hull vertices:
|
||||
if( rt.maximal_dimension() > 1 )
|
||||
{
|
||||
typedef vector<Face> Faces;
|
||||
Faces edges;
|
||||
back_insert_iterator<Faces> out(edges);
|
||||
rt.tds().incident_faces(rt.infinite_vertex(), 1, out);
|
||||
cout << "\nThere are " << edges.size() << " vertices on the convex hull.";
|
||||
edges.clear();
|
||||
}
|
||||
else // rt.maximal_dimension() == 1
|
||||
{
|
||||
typedef vector<Full_cell_handle> Cells;
|
||||
Cells cells;
|
||||
back_insert_iterator<Cells> out(cells);
|
||||
rt.tds().incident_full_cells(rt.infinite_vertex(), out);
|
||||
cout << "\nThere are " << cells.size() << " vertices on the convex hull.";
|
||||
cells.clear();
|
||||
}
|
||||
|
||||
// Remove all !
|
||||
cerr << "\nBefore removal: " << rt.number_of_vertices() << " vertices. After: ";
|
||||
random_shuffle(points.begin(), points.end());
|
||||
rt.remove(points.begin(), points.end());
|
||||
assert( rt.is_valid() );
|
||||
//std::cerr << ((rt.is_valid(true)) ? "VALID!" : "NOT VALID :(") << std::endl;
|
||||
cerr << rt.number_of_vertices() << " vertices.";
|
||||
// assert( rt.empty() ); NOT YET !
|
||||
// CLEAR
|
||||
rt.clear();
|
||||
assert( -1 == rt.current_dimension() );
|
||||
assert( rt.empty() );
|
||||
assert( rt.is_valid() );
|
||||
//std::cerr << ((rt.is_valid(true)) ? "VALID!" : "NOT VALID :(") << std::endl;
|
||||
}
|
||||
|
||||
template< int D >
|
||||
void go(const int N)
|
||||
{
|
||||
//typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> FK;
|
||||
typedef CGAL::Epick_d<CGAL::Dimension_tag<D> > FK;
|
||||
typedef CGAL::Regular_triangulation<
|
||||
CGAL::Regular_triangulation_euclidean_traits<FK> > Triangulation;
|
||||
//test<Triangulation>(D, "dynamic", N);
|
||||
test<Triangulation>(D, "static", N);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
srand(static_cast<unsigned int>(time(NULL)));
|
||||
int N = 10;
|
||||
if( argc > 1 )
|
||||
N = atoi(argv[1]);
|
||||
//go<5>(N);
|
||||
go<4>(N);
|
||||
go<3>(N);
|
||||
go<2>(N);
|
||||
go<1>(N);
|
||||
|
||||
cerr << endl;
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -124,10 +124,11 @@ int main(int argc, char **argv)
|
|||
int N = 1000;
|
||||
if( argc > 1 )
|
||||
N = atoi(argv[1]);
|
||||
go<5>(N);
|
||||
go<3>(N);
|
||||
go<2>(N);
|
||||
go<1>(N);
|
||||
//go<5>(N);
|
||||
go<4>(N);
|
||||
go<3>(N);
|
||||
go<2>(N);
|
||||
go<1>(N);
|
||||
|
||||
cerr << std::endl;
|
||||
return 0;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
0 0 6.28953
|
||||
-2.85086 -0.471442 6.12896
|
||||
1.90972 0.101219 0.988689
|
||||
0.637771 2.59367 5.80372
|
||||
2.22209 0.903198 2.19478
|
||||
-0.487202 -2.71506 4.90996
|
||||
1.1193 -1.91787 2.99626
|
||||
1.54714 0.109831 0
|
||||
0.44556 -2.73047 4.48142
|
||||
0.427936 1.28495 6.23624
|
||||
-2.67212 0.766674 5.29623
|
||||
1.5763 -1.59828 2.58905
|
||||
-0.476603 2.2546 6.04797
|
||||
1.57172 -0.514711 6.11405
|
||||
1.84528 2.10139 5.53936
|
||||
-2.99827 -0.101677 5.92246
|
||||
-0.482122 -2.39584 4.44264
|
||||
-2.25558 -1.492 6.23448
|
||||
0.128475 -1.75125 3.18916
|
||||
|
|
@ -0,0 +1,28 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Regular_triangulation_euclidean_traits_2.h>
|
||||
#include <CGAL/Regular_triangulation_filtered_traits_2.h>
|
||||
#include <CGAL/Regular_triangulation_2.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream_2.h>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
|
||||
typedef CGAL::Regular_triangulation_filtered_traits_2<K> Traits;
|
||||
typedef CGAL::Regular_triangulation_2<Traits> Regular_triangulation;
|
||||
|
||||
int main()
|
||||
{
|
||||
std::ifstream in("data/points.cin");
|
||||
|
||||
Regular_triangulation::Weighted_point wp;
|
||||
std::vector<Regular_triangulation::Weighted_point> wpoints;
|
||||
|
||||
while(in >> wp)
|
||||
wpoints.push_back(wp);
|
||||
|
||||
Regular_triangulation rt(wpoints.begin(), wpoints.end());
|
||||
CGAL_assertion(rt.is_valid(true));
|
||||
std::ofstream off_stream("data/rt2.off");
|
||||
CGAL::export_triangulation_2_to_off(off_stream, rt);
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,79 @@
|
|||
// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL: $
|
||||
// $Id: $
|
||||
//
|
||||
// Author(s) : Clement Jamin
|
||||
|
||||
|
||||
#ifndef CGAL_TRIANGULATION_OFF_OSTREAM_2_H
|
||||
#define CGAL_TRIANGULATION_OFF_OSTREAM_2_H
|
||||
|
||||
#include <CGAL/Triangulation_2.h>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
template < class GT, class TDS >
|
||||
std::ostream &
|
||||
export_triangulation_2_to_off(std::ostream & os,
|
||||
const Triangulation_2<GT,TDS> & tr)
|
||||
{
|
||||
typedef Triangulation_2<GT,TDS> Tr;
|
||||
typedef typename Tr::Vertex_handle Vertex_handle;
|
||||
typedef typename Tr::Vertex_iterator Vertex_iterator;
|
||||
typedef typename Tr::Finite_vertices_iterator Finite_vertex_iterator;
|
||||
typedef typename Tr::Finite_faces_iterator Finite_faces_iterator;
|
||||
|
||||
size_t n = tr.number_of_vertices();
|
||||
|
||||
std::stringstream output;
|
||||
|
||||
// write the vertices
|
||||
std::map<Vertex_handle, int> index_of_vertex;
|
||||
int i = 0;
|
||||
for(Finite_vertex_iterator it = tr.finite_vertices_begin();
|
||||
it != tr.finite_vertices_end(); ++it, ++i)
|
||||
{
|
||||
output << it->point().x() << " " << it->point().y() << " 0" << std::endl;
|
||||
index_of_vertex[it.base()] = i;
|
||||
}
|
||||
CGAL_assertion( i == n );
|
||||
|
||||
size_t number_of_triangles = 0;
|
||||
|
||||
for (Finite_faces_iterator fit = tr.finite_faces_begin() ;
|
||||
fit != tr.finite_faces_end() ; ++fit)
|
||||
{
|
||||
output << "3 "
|
||||
<< index_of_vertex[fit->vertex(0)] << " "
|
||||
<< index_of_vertex[fit->vertex(1)] << " "
|
||||
<< index_of_vertex[fit->vertex(2)]
|
||||
<< std::endl;
|
||||
++number_of_triangles;
|
||||
}
|
||||
|
||||
os << "OFF \n"
|
||||
<< n << " "
|
||||
<< number_of_triangles << " 0\n"
|
||||
<< output.str();
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_TRIANGULATION_OFF_OSTREAM_2_H
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0.05
|
||||
1.3697 1.8296 2.654 0.1
|
||||
-10.6722 0.3012 0.1548 1000.15
|
||||
1.1726 0.1899 0.3658 0.2
|
||||
0.4374 20.8541 1.45894 2000.25
|
||||
2.5923 0.1904 0.6971 0.3
|
||||
10.3083 2.5462 1.3658 1000.35
|
||||
1.4981 1.3929 2.949 0.4
|
||||
2.1304 2.055 0.6597455 1.45
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0
|
||||
1.3697 1.8296 2.654 0
|
||||
-10.6722 0.3012 0.1548 0
|
||||
1.1726 0.1899 0.3658 0
|
||||
0.4374 20.8541 1.45894 0
|
||||
2.5923 0.1904 0.6971 0
|
||||
10.3083 2.5462 1.3658 0
|
||||
1.4981 1.3929 2.949 0
|
||||
2.1304 2.055 0.6597455 0
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
0.0071 1.6899 2.521 0
|
||||
0.3272 1.3694 3.15 0
|
||||
1.3697 1.8296 2.654 0
|
||||
-10.6722 0.3012 0.1548 0
|
||||
1.1726 0.1899 0.3658 0
|
||||
0.4374 20.8541 1.45894 0
|
||||
2.5923 0.1904 0.6971 0
|
||||
10.3083 2.5462 1.3658 0
|
||||
1.4981 1.3929 2.949 0
|
||||
2.1304 2.055 0.6597455 0
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/Regular_triangulation_3.h>
|
||||
#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
|
||||
#include <CGAL/IO/Triangulation_off_ostream_3.h>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
|
||||
typedef CGAL::Regular_triangulation_euclidean_traits_3<K> Traits;
|
||||
typedef CGAL::Regular_triangulation_3<Traits> Regular_triangulation;
|
||||
|
||||
int main()
|
||||
{
|
||||
std::ifstream in("data/points.cin");
|
||||
|
||||
Regular_triangulation::Weighted_point wp;
|
||||
std::vector<Regular_triangulation::Weighted_point> wpoints;
|
||||
|
||||
while(in >> wp)
|
||||
wpoints.push_back(wp);
|
||||
|
||||
Regular_triangulation rt(wpoints.begin(), wpoints.end());
|
||||
std::ofstream off_stream("data/rt3.off");
|
||||
CGAL::export_triangulation_3_to_off(off_stream, rt);
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,119 @@
|
|||
// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; either version 3 of the License,
|
||||
// or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL: $
|
||||
// $Id: $
|
||||
//
|
||||
// Author(s) : Clement Jamin
|
||||
|
||||
|
||||
#ifndef CGAL_TRIANGULATION_OFF_OSTREAM_3_H
|
||||
#define CGAL_TRIANGULATION_OFF_OSTREAM_3_H
|
||||
|
||||
#include <CGAL/Triangulation_3.h>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
template < class GT, class TDS >
|
||||
std::ostream &
|
||||
export_triangulation_3_to_off(std::ostream & os,
|
||||
const Triangulation_3<GT,TDS> & tr,
|
||||
bool export_surface_only = false)
|
||||
{
|
||||
typedef Triangulation_3<GT,TDS> Tr;
|
||||
typedef typename Tr::Vertex_handle Vertex_handle;
|
||||
typedef typename Tr::Vertex_iterator Vertex_iterator;
|
||||
typedef typename Tr::Finite_vertices_iterator Finite_vertex_iterator;
|
||||
typedef typename Tr::All_cells_iterator Cells_iterator;
|
||||
typedef typename Tr::Finite_cells_iterator Finite_cells_iterator;
|
||||
|
||||
size_t n = tr.number_of_vertices();
|
||||
|
||||
std::stringstream output;
|
||||
|
||||
// write the vertices
|
||||
std::map<Vertex_handle, int> index_of_vertex;
|
||||
int i = 0;
|
||||
for(Finite_vertex_iterator it = tr.finite_vertices_begin();
|
||||
it != tr.finite_vertices_end(); ++it, ++i)
|
||||
{
|
||||
output << it->point().x() << " "
|
||||
<< it->point().y() << " "
|
||||
<< it->point().z() << std::endl;
|
||||
index_of_vertex[it.base()] = i;
|
||||
}
|
||||
CGAL_assertion( i == n );
|
||||
|
||||
size_t number_of_triangles = 0;
|
||||
|
||||
if (export_surface_only)
|
||||
{
|
||||
for (Cells_iterator cit = tr.cells_begin() ;
|
||||
cit != tr.cells_end() ; ++cit)
|
||||
{
|
||||
if (tr.is_infinite(cit))
|
||||
{
|
||||
output << "3 ";
|
||||
for (int i = 0 ; i < 4 ; ++i)
|
||||
{
|
||||
if (!tr.is_infinite(cit->vertex(i)))
|
||||
output << index_of_vertex[cit->vertex(i)] << " ";
|
||||
}
|
||||
output << std::endl;
|
||||
++number_of_triangles;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (Finite_cells_iterator cit = tr.finite_cells_begin() ;
|
||||
cit != tr.finite_cells_end() ; ++cit)
|
||||
{
|
||||
output << "3 "
|
||||
<< index_of_vertex[cit->vertex(0)] << " "
|
||||
<< index_of_vertex[cit->vertex(1)] << " "
|
||||
<< index_of_vertex[cit->vertex(2)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[cit->vertex(0)] << " "
|
||||
<< index_of_vertex[cit->vertex(2)] << " "
|
||||
<< index_of_vertex[cit->vertex(3)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[cit->vertex(1)] << " "
|
||||
<< index_of_vertex[cit->vertex(2)] << " "
|
||||
<< index_of_vertex[cit->vertex(3)]
|
||||
<< std::endl;
|
||||
output << "3 "
|
||||
<< index_of_vertex[cit->vertex(0)] << " "
|
||||
<< index_of_vertex[cit->vertex(1)] << " "
|
||||
<< index_of_vertex[cit->vertex(3)]
|
||||
<< std::endl;
|
||||
number_of_triangles += 4;
|
||||
}
|
||||
}
|
||||
|
||||
os << "OFF \n"
|
||||
<< n << " "
|
||||
<< number_of_triangles << " 0\n"
|
||||
<< output.str();
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
#endif // CGAL_TRIANGULATION_OFF_OSTREAM_3_H
|
||||
Loading…
Reference in New Issue