Update manual

This commit is contained in:
Simon Giraudot 2017-01-11 08:23:43 +01:00
parent d7368d1f44
commit 962f856d7f
3 changed files with 33 additions and 5 deletions

View File

@ -74,20 +74,44 @@ the triangulation using a sparse linear solver. Eventually, the \cgal
surface mesh generator extracts an isosurface with function value set
by default to be the median value of \f$ f\f$ at all input points.
\subsection Poisson_surface_reconstruction_3Interface Interface
\section Poisson_surface_reconstruction_3Function Reconstruction Function
The class template declaration is `template<class Gt> class Poisson_reconstruction_function` wher
A global function `poisson_surface_reconstruction_delaunay()` is
provided. It takes points with normals as input and handles the whole
reconstruction pipeline :
- it computes the implicit function
- it reconstructs the surface with a given precision using the \cgal
surface mesh generator based on Delaunay refinement
\cgalCite{cgal:ry-gsddrm-06} \cgalCite{cgal:bo-pgsms-05}
- it outputs the result in a polygon mesh.
This function aims at providing a quick and user-friendly API for
Poisson reconstruction. Advanced users may be interested in using the
class (see \ref Poisson_surface_reconstruction_3Class) which allows
them, for example, to use another surface mesher or a different output
structure.
\subsection Poisson_surface_reconstruction_3Example_function Example
The following example reads a point set and reconstructs a surface using Poisson reconstruction.
\cgalExample{Poisson_surface_reconstruction_3/poisson_reconstruction_function.cpp}
\section Poisson_surface_reconstruction_3Class Reconstruction Class
The class template declaration is `template<class Gt> class Poisson_reconstruction_function` where
`Gt` is a geometric traits class.
For details see: `Poisson_reconstruction_function<GeomTraits>`
\subsection Poisson_surface_reconstruction_3Example Example
\subsection Poisson_surface_reconstruction_3Example_class Example
The following example reads a point set, creates a Poisson implicit function and reconstructs a surface.
\cgalExample{Poisson_surface_reconstruction_3/poisson_reconstruction_example.cpp}
\section Poisson_surface_reconstruction_3Contouring Contouring
\subsection Poisson_surface_reconstruction_3Contouring Contouring
The computed implicit functions can be iso-contoured to reconstruct a
@ -101,7 +125,7 @@ The parameter `Tag` affects the behavior of `make_surface_mesh()`:
- `Manifold_with_boundary_tag`: the output mesh is guaranteed to be manifold and may have boundaries.
- `Non_manifold_tag`: the output mesh has no guarantee and hence is outputted as a polygon soup.
\section Poisson_surface_reconstruction_3Output Output
\subsection Poisson_surface_reconstruction_3Output Output
The surface reconstructed by `make_surface_mesh()` is required to be a
model of the concept `SurfaceMeshComplex_2InTriangulation_3`, a data

View File

@ -1 +1,3 @@
/// \example Poisson_surface_reconstruction_3/poisson_reconstruction_function.cpp
/// \example Poisson_surface_reconstruction_3/poisson_reconstruction_example.cpp

View File

@ -67,10 +67,12 @@ namespace CGAL {
\param end past the end iterator of the point sequence.
\param point_map property map: value_type of `InputIterator` -> Point_3.
\param normal_map property map: value_type of `InputIterator` -> Vector_3.
\param output_mesh where the reconstruction is stored.
\param spacing size parameter.
\param sm_angle bound for the minimum facet angle in degrees.
\param sm_radius bound for the radius of the surface Delaunay balls (relatively to the `average_spacing`).
\param sm_distance bound for the center-center distances (relatively to the `average_spacing`).
\param tag surface mesher tag.
*/
template <typename PointInputIterator,
typename PointMap,