diff --git a/Envelope_3/doc/Envelope_3/Envelope_3.txt b/Envelope_3/doc/Envelope_3/Envelope_3.txt index d2b112aca0c..33de50b86b4 100644 --- a/Envelope_3/doc/Envelope_3/Envelope_3.txt +++ b/Envelope_3/doc/Envelope_3/Envelope_3.txt @@ -57,7 +57,7 @@ defined for upper envelopes. In the rest of this chapter, we refer to both these diagrams as envelope diagrams. It is easy to see that an envelope diagram is no more than a planar -arrangement (see Chapter \ref chapterArrangement_on_surface_2 ), represented +arrangement (see Chapter \ref chapterArrangement_on_surface_2 "2D Arrangements"), represented using an extended \sc{Dcel} structure, such that every \sc{Dcel} record (namely each face, halfedge and vertex) stores an additional container of it originators: the \f$ xy\f$-monotone surfaces that induce diff --git a/Kernel_23/doc/Kernel_23/CGAL/global_functions.h b/Kernel_23/doc/Kernel_23/CGAL/global_functions.h index d5923d47713..fdc2ea3f9b2 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/global_functions.h +++ b/Kernel_23/doc/Kernel_23/CGAL/global_functions.h @@ -933,7 +933,7 @@ Comparison_result compare_x(const CGAL::Line_2 &l1, /*! \defgroup compare_x_circular compare_x (2D Circular Kernel) \ingroup compare_x -\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel. +\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \code #include @@ -961,7 +961,7 @@ Comparison_result /*! \defgroup compare_x_spherical compare_x (3D Spherical Kernel) \ingroup compare_x -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel. +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \code #include @@ -1036,7 +1036,7 @@ compare_xy(const CGAL::Point_3& p, const CGAL::Point_3& q); /*! \defgroup compare_xy_circular compare_xy (2D Circular Kernel) \ingroup compare_xy -\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel. +\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \code #include @@ -1067,7 +1067,7 @@ compare_xy(const CGAL::Circular_arc_point_2 &p, /*! \defgroup compare_xy_spherical compare_xy (3D Spherical Kernel) \ingroup compare_xy -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel. +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \code #include @@ -1254,7 +1254,7 @@ Comparison_result compare_y_at_x(const CGAL::Point_2 &p, /*! \name With the 2D Circular Kernel - See \ref Chapter_2D_Circular_Geometry_Kernel. + See \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \code #include @@ -1299,7 +1299,7 @@ global function are available. /*! \defgroup compary_y_linear compare_y (2D/3D Linear Kernel) \ingroup compare_y -\details See Chapter \ref chapterkernel23 +\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" \anchor figcompare13 \image html compare1.gif @@ -1354,7 +1354,7 @@ Comparison_result compare_y(const CGAL::Line_2 &l1, /*! \defgroup compare_y_circular compare_y (2D Circular Kernel) \ingroup compare_y -\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel. +\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \code #include @@ -1381,7 +1381,7 @@ compare_y(const CGAL::Circular_arc_point_2 &p, /*! \defgroup compare_y_spherical compare_y (3D Spherical Kernel) \ingroup compare_y -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel. +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \code #include @@ -1444,7 +1444,7 @@ compare_xyz(const CGAL::Point_3& p, const CGAL::Point_3& q); /*! \defgroup compare_xyz_spherical compare_xyz (3D Spherical Kernel) \ingroup compare_xyz -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" \code #include @@ -1505,7 +1505,7 @@ Comparison_result compare_z(const CGAL::Point_3 &p, const CGAL::Point_3< \defgroup compare_z_spherical compare_z (3D Spherical Kernel) \ingroup compare_z -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" \code #include diff --git a/Kernel_23/doc/Kernel_23/CGAL/intersections.h b/Kernel_23/doc/Kernel_23/CGAL/intersections.h index d19ecc14972..b48721658f1 100644 --- a/Kernel_23/doc/Kernel_23/CGAL/intersections.h +++ b/Kernel_23/doc/Kernel_23/CGAL/intersections.h @@ -20,7 +20,7 @@ function are available. \sa \ref do_intersect_spherical \sa `intersection` -\details See Chapter \ref chapterkernel23 for details on a linear kernel instantiation. +\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation. */ /// @{ /*! @@ -79,7 +79,7 @@ bool do_intersect(Type1 obj1, Type2 obj2); \sa \ref do_intersect_spherical \sa `intersection` -\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel for details on a circular kernel instantiation. +\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation. When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here", @@ -105,7 +105,7 @@ the following: - `Circular_arc_2` An example illustrating this is presented in -Chapter \ref Chapter_2D_Circular_Geometry_Kernel. +Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". */ bool do_intersect(Type1 obj1, Type2 obj2); /// @} @@ -123,7 +123,7 @@ bool do_intersect(Type1 obj1, Type2 obj2); \sa \ref do_intersect_circular \sa `intersection` -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel for details on a spherical kernel instantiation. +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation. When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here", @@ -151,7 +151,7 @@ the following: - `Circular_arc_3` An example illustrating this is presented in -Chapter \ref Chapter_3D_Spherical_Geometry_Kernel. +Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". */ bool do_intersect(Type1 obj1, Type2 obj2); @@ -190,7 +190,7 @@ function are available. \sa `CGAL::do_intersect` \sa `CGAL::Object` -\details See Chapter \ref chapterkernel23 for details on a linear kernel instantiation. +\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation. */ /// @{ @@ -433,7 +433,7 @@ Object intersection(const Plane_3& pl1, \sa `CGAL::do_intersect` \sa `CGAL::Object` -\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel for details on a circular kernel instantiation. +\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation. When using a circular kernel, in addition to the function overloads documented \ref intersection_linear "here", the following function overloads are also available. @@ -492,7 +492,7 @@ intersection(const Type1 &obj1, const Type2 &obj2, \sa `CGAL::do_intersect` \sa `CGAL::Object` -\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel for details on a spherical kernel instantiation. +\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation. When using a spherical kernel, in addition to the function overloads documented \ref intersection_linear "here", the following function overloads are also available. diff --git a/Kinetic_data_structures/doc/Kinetic_data_structures/Kinetic_data_structures.txt b/Kinetic_data_structures/doc/Kinetic_data_structures/Kinetic_data_structures.txt index 2f09ac959ba..0854c8a5a6b 100644 --- a/Kinetic_data_structures/doc/Kinetic_data_structures/Kinetic_data_structures.txt +++ b/Kinetic_data_structures/doc/Kinetic_data_structures/Kinetic_data_structures.txt @@ -21,7 +21,7 @@ though the basic building blocks are changing continuously. This chapter describes a number of such kinetic data structures implemented using the Kinetic framework described in -Chapter \ref chapterkinetic. We first, in +Chapter \ref chapterkinetic "Kinetic Framework". We first, in Section \ref seckds_intro introduce kinetic data structures and sweepline algorithms. This section can be skipped if the reader is already familiar with the area. The next sections, @@ -165,7 +165,7 @@ combinatorial structure needs to be updated. \section seckds_overview An Overview of the Kinetic Framework The provided kinetic data structures are implemented on top of the -Kinetic framework presented in Chapter \ref chapterkinetic. It is +Kinetic framework presented in Chapter \ref chapterkinetic "Kinetic Framework". It is not necessary to know the details of the framework, but some familiarity is useful. Here we presented a quick overview of the framework. diff --git a/Kinetic_data_structures/doc/Kinetic_framework/Kinetic_framework.txt b/Kinetic_data_structures/doc/Kinetic_framework/Kinetic_framework.txt index 6f97df7a168..656a71be3d5 100644 --- a/Kinetic_data_structures/doc/Kinetic_framework/Kinetic_framework.txt +++ b/Kinetic_data_structures/doc/Kinetic_framework/Kinetic_framework.txt @@ -10,7 +10,7 @@ namespace CGAL { This chapter describes a framework for implementing kinetic data structures and sweepline algorithms. If you just would like to use existing kinetic data structures, please read -Chapter \ref chapterkds instead. Readers wishing to brush up on +Chapter \ref chapterkds "Kinetic Data Structures" instead. Readers wishing to brush up on their familiarity with kinetic data structures or better understand the terminology we use should read Section \ref seckds_intro of that chapter. A brief overview of the framework can be found in diff --git a/Periodic_3_triangulation_3/doc/Periodic_3_triangulation_3/Periodic_3_triangulation_3.txt b/Periodic_3_triangulation_3/doc/Periodic_3_triangulation_3/Periodic_3_triangulation_3.txt index d0726d2f715..654adca6f96 100644 --- a/Periodic_3_triangulation_3/doc/Periodic_3_triangulation_3/Periodic_3_triangulation_3.txt +++ b/Periodic_3_triangulation_3/doc/Periodic_3_triangulation_3/Periodic_3_triangulation_3.txt @@ -81,7 +81,7 @@ Orientation of a cell. \cgalFigureEnd As in the underlying combinatorial triangulation (see -Chapter \ref chapterTDS3), the neighbors of a cell are indexed with +Chapter \ref chapterTDS3 "3D Triangulation Data Structure"), the neighbors of a cell are indexed with 0, 1, 2, 3 in such a way that the neighbor indexed by \f$ i\f$ is opposite to the vertex with the same index. Also edges (\f$ 1\f$-faces) and facets (\f$ 2\f$-faces) are not explicitly represented: a facet is given by a cell @@ -131,7 +131,7 @@ A periodic triangulation is said to be `locally valid` iff (a)-(b) Its underlying combinatorial graph, the triangulation data structure, is `locally valid` -(see Section \ref TDS3secintro of Chapter \ref chapterTDS3) +(see Section \ref TDS3secintro of Chapter \ref chapterTDS3 "3D Triangulation Data Structure") (c) Any cell has its vertices ordered according to positive orientation. See \cgalFigureRef{P3Triangulation3figorient}. @@ -155,7 +155,7 @@ points and vertex removal. The class `Periodic_3_triangulation_hierarchy_3` is the adaptation of the hierarchical structure described in -chapter \ref chapterTriangulation3 to the periodic case. +chapter \ref chapterTriangulation3 "3D Triangulations" to the periodic case. \section P3Triangulation3secdesign Software Design @@ -193,7 +193,7 @@ manual.
  • the triangulation data structure class, which stores the combinatorial structure, described in Section \ref P3Triangulation3sectds and in more detail in -Chapter \ref chapterTDS3. The triangulation data structure needs +Chapter \ref chapterTDS3 "3D Triangulation Data Structure". The triangulation data structure needs models of the concepts `Periodic_3TriangulationDSCellBase_3` and `Periodic_3TriangulationDSVertexBase_3` as template parameters. @@ -205,7 +205,7 @@ The first template parameter of the Delaunay triangulation class is the geometric traits class, described by the concept `Periodic_3DelaunayTriangulationTraits_3`. It is different to the DelaunayTriangulationTraits_3 (see -chapter \ref Triangulation3secTraits) in that it +chapter \ref Triangulation3secTraits "3D Triangulations") in that it implements all objects, predicates and constructions with using offsets. @@ -239,7 +239,7 @@ The second template parameter of the main classes `Periodic_3_Delaunay_triangulation_3` is a triangulation data structure class. This class can be seen as a container for the cells and vertices maintaining incidence and adjacency relations (see -Chapter \ref chapterTDS3). A model of this triangulation data structure is +Chapter \ref chapterTDS3 "3D Triangulation Data Structure"). A model of this triangulation data structure is `Triangulation_data_structure_3`, and it is described by the `TriangulationDataStructure_3` concept. This model is itself parameterized by a vertex base class and a cell base class, which gives the @@ -321,7 +321,7 @@ covering space anymore, so the triangulation is not extensible. For large point sets there are two optimizations available. Firstly, there is spatial sorting that sorts the input points according to a -Hilbert curve, see chapter \ref secspatial_sorting. +Hilbert curve, see chapter \ref secspatial_sorting "Spatial Sorting". The second one inserts 36 appropriately chosen dummy points to avoid the use of a 27-sheeted covering space in the beginning. The 36 dummy points are deleted in the end. If the point set turns out to not have @@ -374,7 +374,7 @@ algorithms \cite cgal:ct-c3pt-09 and on the package with Monique Teillaud. The package follows the design of the 3D Triangulations package -(see Chapter \ref Chapter_3D_Triangulations). +(see Chapter \ref Chapter_3D_Triangulations "3D Triangulations"). */ } /* namespace CGAL */ diff --git a/Polyhedron/doc/Polyhedron/PackageDescription.txt b/Polyhedron/doc/Polyhedron/PackageDescription.txt index d0cd424018c..e39bb1dbcea 100644 --- a/Polyhedron/doc/Polyhedron/PackageDescription.txt +++ b/Polyhedron/doc/Polyhedron/PackageDescription.txt @@ -33,7 +33,7 @@ halfedges and facets are documented separately. A default traits class, a default items class and an incremental builder conclude the references. The polyhedral surface is based on the highly flexible design of the halfedge data structure, see the reference for -`HalfedgeDS` in Chapter \ref PkgHDS +`HalfedgeDS` in Chapter \ref Chapter_Halfedge_Data_Structures "Halfedge Data Structures" or \cite k-ugpdd-99, but the default instantiation of the polyhedral surface can be used without knowing the halfedge data structure. diff --git a/Polyhedron/doc/Polyhedron/Polyhedron.txt b/Polyhedron/doc/Polyhedron/Polyhedron.txt index 20d3b77660f..3fd9146b7bc 100644 --- a/Polyhedron/doc/Polyhedron/Polyhedron.txt +++ b/Polyhedron/doc/Polyhedron/Polyhedron.txt @@ -23,7 +23,7 @@ The polyhedral surface is realized as a container class that manages vertices, halfedges, facets with their incidences, and that maintains the combinatorial integrity of them. It is based on the highly flexible design of the halfedge data structure, see the introduction -in Chapter \ref chapterHalfedgeDS "Halfedge Data Structure" and \cite k-ugpdd-99. However, the +in Chapter \ref chapterHalfedgeDS "Halfedge Data Structures" and \cite k-ugpdd-99. However, the polyhedral surface can be used and understood without knowing the underlying design. Some of the examples in this chapter introduce also gradually into first applications of this flexibility. @@ -453,7 +453,7 @@ attribute is available in the type `Polyhedron_3::Facet`. However, typedef for `My_face`, but it is derived therefrom. Thus, everything that we put in the local face type except constructors is then available in the `Polyhedron_::Facet` type. For more -details, see the Chapter \ref chapterHalfedgeDS "Halfedge Data Structure" +details, see the Chapter \ref chapterHalfedgeDS "Halfedge Data Structures" on the halfedge data structure design. Pulling all pieces together, the full example program illustrates how easy diff --git a/Segment_Delaunay_graph_2/doc/Segment_Delaunay_graph_2/Segment_Delaunay_graph_2.txt b/Segment_Delaunay_graph_2/doc/Segment_Delaunay_graph_2/Segment_Delaunay_graph_2.txt index 725444580b2..6ee02b7cbed 100644 --- a/Segment_Delaunay_graph_2/doc/Segment_Delaunay_graph_2/Segment_Delaunay_graph_2.txt +++ b/Segment_Delaunay_graph_2/doc/Segment_Delaunay_graph_2/Segment_Delaunay_graph_2.txt @@ -167,7 +167,7 @@ The geometric traits for the segment Delaunay graph will be discussed in more detail in the next section.
  • the *segment Delaunay graph data structure*. This is essentially the same as the Apollonius graph data structure (discussed -in Chapter \ref secapollonius2design), augmented with some +in Chapter \ref secapollonius2design of 2D Apollonius Graph), augmented with some additional operations that are specific to segment Voronoi diagrams. The corresponding concept is that of `SegmentDelaunayGraphDataStructure_2`, which in fact is a refinement diff --git a/Triangulation_2/doc/Triangulation_2/PackageDescription.txt b/Triangulation_2/doc/Triangulation_2/PackageDescription.txt index d2ee0d4116f..a548f1c9295 100644 --- a/Triangulation_2/doc/Triangulation_2/PackageDescription.txt +++ b/Triangulation_2/doc/Triangulation_2/PackageDescription.txt @@ -60,6 +60,6 @@ of triangulation data structure acting as a container for faces and vertices while taking care of the combinatorial aspects of the triangulation. The concepts and models relative to the triangulation data structure -are described in Chapter \ref PkgTDS2. +are described in Chapter \ref PkgTDS2 "2D Triangulation Data Structure". */ diff --git a/Triangulation_2/doc/Triangulation_2/Triangulation_2.txt b/Triangulation_2/doc/Triangulation_2/Triangulation_2.txt index be39dedda9b..88db3e1910d 100644 --- a/Triangulation_2/doc/Triangulation_2/Triangulation_2.txt +++ b/Triangulation_2/doc/Triangulation_2/Triangulation_2.txt @@ -1163,7 +1163,7 @@ The new solution to resolve the template dependency is based on a rebind mechanism similar to the mechanism used in the standard allocator class std::allocator. The rebind mechanism is described in Section \ref TDS_2D_default "The Default Triangulation Data Structure" -of Chapter \ref Chapter_2D_Triangulation_Data_Structure "Triangulation Data Structure". +of Chapter \ref Chapter_2D_Triangulation_Data_Structure "2D Triangulation Data Structure". For now, we will just notice that the design requires the existence in the vertex and face base classes diff --git a/Triangulation_3/doc/TDS_3/CGAL/Triangulation_data_structure_3.h b/Triangulation_3/doc/TDS_3/CGAL/Triangulation_data_structure_3.h index f05c983d771..2c8d5dd1867 100644 --- a/Triangulation_3/doc/TDS_3/CGAL/Triangulation_data_structure_3.h +++ b/Triangulation_3/doc/TDS_3/CGAL/Triangulation_data_structure_3.h @@ -7,7 +7,7 @@ namespace CGAL { The class `Triangulation_data_structure_3` stores a 3D-triangulation data structure and provides the optional geometric functionalities to be used as a parameter for a -3D-geometric triangulation (see Chapter \ref chapterTriangulation3). +3D-geometric triangulation (see Chapter \ref chapterTriangulation3 "3D Triangulations"). The vertices and cells are stored in two nested containers, which are implemented using `Compact_container`. The class may offer some diff --git a/Triangulation_3/doc/TDS_3/CGAL/Triangulation_ds_vertex_base_3.h b/Triangulation_3/doc/TDS_3/CGAL/Triangulation_ds_vertex_base_3.h index 587c9f48d29..eefacfe6786 100644 --- a/Triangulation_3/doc/TDS_3/CGAL/Triangulation_ds_vertex_base_3.h +++ b/Triangulation_3/doc/TDS_3/CGAL/Triangulation_ds_vertex_base_3.h @@ -10,7 +10,7 @@ for a 3D-triangulation data structure, it is a model of the concept Note that if the triangulation data structure is used as a parameter of a geometric triangulation (Section \ref TDS3secdesign and -Chapter \ref chapterTriangulation3), then the vertex base class has to +Chapter \ref chapterTriangulation3 "3D Triangulations"), then the vertex base class has to fulfill additional geometric requirements, i.e. it has to be a model of the concept `TriangulationVertexBase_3`. diff --git a/Triangulation_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h b/Triangulation_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h index 74027d59704..a40a469bf46 100644 --- a/Triangulation_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h +++ b/Triangulation_3/doc/TDS_3/Concepts/TriangulationDataStructure_3.h @@ -43,8 +43,7 @@ topological sphere \f$ S^d\f$ of \f$ \R^{d+1}\f$, for any \f$ d \in \{-1,0,1,2,3 The second template parameter of the basic triangulation class -(see Chapter \ref chapterTriangulation3 -) +(see Chapter \ref chapterTriangulation3 "3D Triangulations") `CGAL::Triangulation_3` is a triangulation data structure class. (See Chapter \ref chapterTDS3.) diff --git a/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt b/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt index 7d9b22c42da..fe96337e13e 100644 --- a/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt +++ b/Triangulation_3/doc/TDS_3/TriangulationDS_3.txt @@ -14,7 +14,7 @@ geometric information related to the position of vertices. \cgal provides 3D geometric triangulations in which these two aspects are clearly separated. -As described in Chapter \ref chapterTriangulation3, a geometric +As described in Chapter \ref chapterTriangulation3 "3D Triangulations", a geometric triangulation of a set of points in \f$ \R^d\f$, \f$ d\leq 3\f$ is a partition of the whole space \f$ \R^d\f$ into cells having \f$ d+1\f$ vertices. Some of them are infinite, they are obtained by linking an additional vertex at @@ -27,7 +27,7 @@ topological sphere \f$ S^d\f$ in \f$ \R^{d+1}\f$. This chapter deals with 3D-triangulation data structures, meant to maintain the combinatorial information for 3D-geometric triangulations. The reader interested in geometric triangulations of -\f$ \R^3\f$ is advised to read Chapter \ref chapterTriangulation3 "3D Triangulations. +\f$ \R^3\f$ is advised to read Chapter \ref chapterTriangulation3 "3D Triangulations". \section TDS3secintro Representation @@ -179,7 +179,7 @@ layer upon which a geometric layer can be built \cite k-ddsps-98. This geometric layer is typically one of the 3D-triangulation classes of \cgal: `Triangulation_3`, `Delaunay_triangulation_3` and `Regular_triangulation_3`. This relation is described in more details in -Chapter \ref chapterTriangulation3, where the +Chapter \ref chapterTriangulation3 "3D Triangulations", where the Section \ref Triangulation3secdesign explains other important parts of the design related to the geometry. @@ -209,7 +209,7 @@ or \f$ 2\f$-face. It also allows one, if the dimension of the triangulation is smaller than \f$ 3\f$, to insert a vertex so that the dimension of the triangulation is increased by one. The TDS is responsible for the combinatorial integrity of the eventual geometric triangulation built on top of it (the upper layer, -see Chapter \ref chapterTriangulation3). +see Chapter \ref chapterTriangulation3 "3D Triangulations"). The user has several ways to add his own data in the vertex and cell base classes used by the TDS. He can either: