diff --git a/Algebraic_foundations/doc/Algebraic_foundations/CGAL/number_utils.h b/Algebraic_foundations/doc/Algebraic_foundations/CGAL/number_utils.h
index 95da8f04182..ee13e024624 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/CGAL/number_utils.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/CGAL/number_utils.h
@@ -22,7 +22,7 @@ namespace CGAL {
\ingroup PkgAlgebraicFoundations
The template function `compare` compares the first argument with respect to
-the second, i.e. it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
+the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
In case the argument types `NT1` and `NT2` differ,
`compare` is performed with the semantic of the type determined via
@@ -138,9 +138,9 @@ namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
-The function `integral_division` (a.k.a. exact division or division without remainder)
+The function `integral_division` (a.k.a.\ exact division or division without remainder)
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
-exists (i.e. if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of invoking
+exists (i.e.\ if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of invoking
this operation is undefined. Since the ring represented is an integral domain,
\f$ z\f$ is uniquely defined if it exists.
diff --git a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--Gcd.h b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--Gcd.h
index 403b80b16d9..acbc12ada90 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--Gcd.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--Gcd.h
@@ -9,7 +9,7 @@ The greatest common divisor (\f$ gcd\f$) of ring elements \f$ x\f$ and \f$ y\f$
ring element \f$ d\f$ (up to a unit) with the property that any common divisor of
\f$ x\f$ and \f$ y\f$ also divides \f$ d\f$. (In other words: \f$ d\f$ is the greatest lower bound
of \f$ x\f$ and \f$ y\f$ in the partial order of divisibility.) We demand the \f$ gcd\f$ to be
-unit-normal (i.e. have unit part 1).
+unit-normal (i.e.\ have unit part 1).
\f$ gcd(0,0)\f$ is defined as \f$ 0\f$, since \f$ 0\f$ is the greatest element with respect
to the partial order of divisibility. This is because an element \f$ a \in R\f$ is said to divide \f$ b \in R\f$, iff \f$ \exists r \in R\f$ such that \f$ a \cdot r = b\f$.
diff --git a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IntegralDivision.h b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IntegralDivision.h
index d3e153331b5..9fa38872fa7 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IntegralDivision.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IntegralDivision.h
@@ -7,7 +7,7 @@
Integral division (a.k.a. exact division or division without remainder) maps
ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
-exists (i.e. if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of invoking
+exists (i.e.\ if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of invoking
this operation is undefined. Since the ring represented is an integral domain,
\f$ z\f$ is uniquely defined if it exists.
diff --git a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IsSquare.h b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IsSquare.h
index edc6438ace9..b4388a5208a 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IsSquare.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--IsSquare.h
@@ -44,7 +44,7 @@ typedef Hidden_type second_argument;
/// @{
/*!
-returns true in case \f$ x\f$ is a square, i.e. \f$ x = y*y\f$.
+returns true in case \f$ x\f$ is a square, i.e.\ \f$ x = y*y\f$.
\post \f$ unit\_part(y) == 1\f$.
*/
diff --git a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--UnitPart.h b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--UnitPart.h
index dae09367e66..cffc3ed7288 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--UnitPart.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/AlgebraicStructureTraits--UnitPart.h
@@ -8,7 +8,7 @@ element.
The mathematical definition of unit part is as follows: Two ring elements \f$ a\f$
and \f$ b\f$ are said to be associate if there exists an invertible ring element
-(i.e. a unit) \f$ u\f$ such that \f$ a = ub\f$. This defines an equivalence relation.
+(i.e.\ a unit) \f$ u\f$ such that \f$ a = ub\f$. This defines an equivalence relation.
We can distinguish exactly one element of every equivalence class as being
unit normal. Then each element of a ring possesses a factorization into a unit
(called its unit part) and a unit-normal ring element
diff --git a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/IntegralDomainWithoutDivision.h b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/IntegralDomainWithoutDivision.h
index 3f13d2ca5df..ec744adc011 100644
--- a/Algebraic_foundations/doc/Algebraic_foundations/Concepts/IntegralDomainWithoutDivision.h
+++ b/Algebraic_foundations/doc/Algebraic_foundations/Concepts/IntegralDomainWithoutDivision.h
@@ -6,7 +6,7 @@
This is the most basic concept for algebraic structures considered within CGAL.
A model `IntegralDomainWithoutDivision` represents an integral domain,
-i.e. commutative ring with 0, 1, +, * and unity free of zero divisors.
+i.e.\ commutative ring with 0, 1, +, * and unity free of zero divisors.
Note: A model is not required to offer the always well defined integral division.