Merge pull request #3106 from maxGimeno/PMP-Extrude-GF

PMP: extrude_mesh()
This commit is contained in:
Laurent Rineau 2018-07-04 16:49:48 +02:00
commit a2c30daa17
10 changed files with 902 additions and 0 deletions

View File

@ -83,6 +83,8 @@ Release date: September 2018
- Fix a bug in `isotropic_remeshing()` making constrained vertices missing in the output - Fix a bug in `isotropic_remeshing()` making constrained vertices missing in the output
- Guarantee that constrained vertices are kept in the mesh after calling `isotropic_remeshing()` - Guarantee that constrained vertices are kept in the mesh after calling `isotropic_remeshing()`
(and not only the points associated to constrained vertices as it was before). (and not only the points associated to constrained vertices as it was before).
- Added a function in Polygon Mesh Processing to perform an extrusion of an open polygon mesh:
- `CGAL::Polygon_mesh_processing::extrude_mesh()`
### 3D Mesh Generation ### 3D Mesh Generation

View File

@ -100,6 +100,7 @@ and provides a list of the parameters that are used in this package.
- \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::isotropic_remeshing()` \endlink - \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::isotropic_remeshing()` \endlink
- \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::split_long_edges()` \endlink - \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::split_long_edges()` \endlink
- `CGAL::Polygon_mesh_processing::random_perturbation()` - `CGAL::Polygon_mesh_processing::random_perturbation()`
- `CGAL::Polygon_mesh_processing::extrude_mesh()`
## Hole Filling Functions ## ## Hole Filling Functions ##
- `CGAL::Polygon_mesh_processing::triangulate_hole()` - `CGAL::Polygon_mesh_processing::triangulate_hole()`

View File

@ -0,0 +1,323 @@
// Copyright (c) 2018 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Sebastien Loriot, Maxime Gimeno
#ifndef CGAL_POLYGON_MESH_PROCESSING_EXTRUDE_H
#define CGAL_POLYGON_MESH_PROCESSING_EXTRUDE_H
#include <CGAL/license/Polygon_mesh_processing/meshing_hole_filling.h>
#include <CGAL/Polygon_mesh_processing/orientation.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/boost/graph/copy_face_graph.h>
#include <CGAL/Kernel_traits.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <vector>
namespace CGAL {
namespace Polygon_mesh_processing {
namespace extrude_impl{
template<typename BorderHalfedgesRange, class PolygonMesh>
void create_strip(const BorderHalfedgesRange& input_halfedges,
const BorderHalfedgesRange& output_halfedges,
PolygonMesh& mesh)
{
CGAL_assertion(input_halfedges.size() == output_halfedges.size());
typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<PolygonMesh>::face_descriptor face_descriptor;
for(std::size_t i = 0; i < input_halfedges.size(); ++i)
{
halfedge_descriptor h1 = input_halfedges[i], h2=output_halfedges[i],
nh1 = next(h1, mesh), ph2 = prev(h2, mesh);
halfedge_descriptor newh = halfedge(add_edge(mesh), mesh),
newh_opp = opposite(newh, mesh);
// set target vertices of the new halfedges
set_target(newh, target(h1, mesh), mesh);
set_target(newh_opp, target(ph2, mesh), mesh);
// update next/prev pointers
set_next(h1, newh_opp, mesh);
set_next(newh_opp, h2, mesh);
set_next(ph2, newh, mesh);
set_next(newh, nh1, mesh);
}
for(std::size_t i = 0; i < input_halfedges.size(); ++i)
{
halfedge_descriptor h = input_halfedges[i];
face_descriptor nf = add_face(mesh);
CGAL::cpp11::array<halfedge_descriptor, 4> hedges;
for (int k=0; k<4; ++k)
{
hedges[k]=h;
h = next(h, mesh);
}
set_face(hedges[0], nf, mesh);
set_face(hedges[1], nf, mesh);
set_face(hedges[2], nf, mesh);
set_face(hedges[3], nf, mesh);
set_halfedge(nf, hedges[0], mesh);
Euler::split_face(hedges[0], hedges[2], mesh);
}
}
template<typename PMAP, typename Vector>
struct Const_dist_translation{
Const_dist_translation(PMAP map, const Vector& dir)
:map(map), dir(dir){}
template<typename VertexDescriptor, typename U>
void operator()(const VertexDescriptor vd, const U&) const
{
typename boost::property_traits<PMAP>::value_type p = get(map, vd) + dir;
put(map, vd, p);
}
PMAP map;
Vector dir;
};
struct Identity_functor
{
template<typename T, typename U>
void operator()(const T&, const U&) const {}
};
}//end extrude_impl
/**
* \ingroup PMP_meshing_grp
* \brief performs a generalized extrusion of `input` and puts it in `output`.
*
* This function extrudes the open surface mesh `input` and puts the result in `output`. The mesh generated is a closed
* surface mesh with a bottom and top part, both having the same graph combinatorics as `input` (except
* that the orientation of the faces of the bottom part is reversed). The bottom and the top parts are
* connected by a triangle strip between boundary cycles. The coordinates of the points associated to the
* vertices of the bottom and top part are first initialized to the same value as the corresponding
* vertices of `input`. Then for each vertex, a call to `bot` and `top` is done for the vertices of the
* bottom part and the top part, respectively.
* \attention `output` may be self intersecting.
* @tparam InputMesh a model of `FaceListGraph`
* @tparam OutputMesh a model of `FaceListGraph` and `MutableFaceGraph`
* @tparam NamedParameters1 a sequence of \ref pmp_namedparameters "Named Parameters" for `InputMesh`
* @tparam NamedParameters2 a sequence of \ref pmp_namedparameters "Named Parameters" for `OutputMesh`
* @tparam BottomFunctor a functor providing
* \code {.cpp}
* void operator()`(boost::graph_traits<InputMesh>::vertex_descriptor input_v,boost::graph_traits<OutputMesh>::vertex_descriptor output_v)
* \endcode
* where `output_v` is the copy of `input_v` from `input` into the bottom part of `output`.
*
* @tparam TopFunctor a functor providing a similar `operator()` as `BottomFunctor`.
* @param input an open surface mesh to extrude.
* @param output a surface mesh that will contain the result of the extrusion.
* @param bot functor that will transform all points copied from
* `input` in order to shape the bottom part of the extrusion.
* @param top functor that will transform all points copied from
* `input` in order to shape the top part of the extrusion.
* @param np_in an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map that contains the points associated to the vertices of `input`.
* If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* should be available for the vertices of `input` \cgalParamEnd
* \cgalNamedParamsEnd
*
* * @param np_out an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map that will contain the points associated to the vertices of `output`.
* If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* should be available for the vertices of `output` \cgalParamEnd
* \cgalNamedParamsEnd
*/
template <class InputMesh,
class OutputMesh,
class BottomFunctor,
class TopFunctor,
class NamedParameters1,
class NamedParameters2
>
void extrude_mesh(const InputMesh& input,
OutputMesh& output,
const BottomFunctor& bot,
const TopFunctor& top,
const NamedParameters1& np_in,
const NamedParameters2& np_out)
{
typedef typename boost::graph_traits<InputMesh>::vertex_descriptor input_vertex_descriptor;
typedef typename boost::graph_traits<InputMesh>::halfedge_descriptor input_halfedge_descriptor;
typedef typename boost::graph_traits<OutputMesh>::vertex_descriptor output_vertex_descriptor;
typedef typename boost::graph_traits<OutputMesh>::halfedge_descriptor output_halfedge_descriptor;
CGAL_assertion(!CGAL::is_closed(input));
typedef typename GetVertexPointMap < OutputMesh, NamedParameters2>::type VPMap;
typedef typename GetVertexPointMap < InputMesh, NamedParameters1>::const_type IVPMap;
VPMap output_vpm = choose_param(get_param(np_out, internal_np::vertex_point),
get_property_map(vertex_point, output));
IVPMap input_vpm = choose_param(get_param(np_in, internal_np::vertex_point),
get_const_property_map(vertex_point, input));
std::vector<std::pair<input_vertex_descriptor, output_vertex_descriptor> > bottom_v2v;
std::vector<std::pair<input_halfedge_descriptor, output_halfedge_descriptor> > bottom_h2h;
copy_face_graph(input, output, std::back_inserter(bottom_v2v),
std::back_inserter(bottom_h2h), Emptyset_iterator(),
input_vpm, output_vpm);
// create the offset for the other side
for(std::size_t i = 0; i< bottom_v2v.size(); ++i)
{
bot(bottom_v2v[i].first, bottom_v2v[i].second);
}
CGAL::Polygon_mesh_processing::reverse_face_orientations(output);
// collect border halfedges for the creation of the triangle strip
std::vector<std::pair<input_vertex_descriptor, output_vertex_descriptor> > top_v2v;
std::vector<std::pair<input_halfedge_descriptor, output_halfedge_descriptor> > top_h2h;
copy_face_graph(input, output, std::inserter(top_v2v, top_v2v.end()),
std::inserter(top_h2h, top_h2h.end()), Emptyset_iterator(),
input_vpm, output_vpm);
for(std::size_t i = 0; i< top_v2v.size(); ++i)
{
top(top_v2v[i].first, top_v2v[i].second);
}
std::vector<output_halfedge_descriptor> border_hedges;
std::vector<output_halfedge_descriptor> offset_border_hedges;
for(std::size_t i = 0; i< top_h2h.size(); ++i)
{
input_halfedge_descriptor h = top_h2h[i].first;
if( CGAL::is_border(h, input) )
{
border_hedges.push_back(top_h2h[i].second);
offset_border_hedges.push_back(bottom_h2h[i].second);
CGAL_assertion(is_border(border_hedges.back(), output));
CGAL_assertion(is_border(offset_border_hedges.back(), output));
}
}
// now create a triangle strip
extrude_impl::create_strip(border_hedges, offset_border_hedges, output);
}
/**
* \ingroup PMP_meshing_grp
* fills `output` with a closed mesh bounding the volume swept by `input` when translating its
* vertices by `v`. The mesh is oriented so that the faces corresponding to `input`
* in `output` have the same orientation.
* \attention `output` may be self intersecting.
* @tparam InputMesh a model of the concept `FaceListGraph`
* @tparam OutputMesh a model of the concept `FaceListGraph` and `MutableFaceGraph`
* @tparam Vector_3 vector type from the same CGAL kernel as the point of the vertex point map used for `OutputMesh`.
* @tparam NamedParameters1 a sequence of \ref pmp_namedparameters "Named Parameters" for `InputMesh`
* @tparam NamedParameters2 a sequence of \ref pmp_namedparameters "Named Parameters" for `OutputMesh`
* @param input an open surface mesh to extrude.
* @param output a surface mesh that will contain the result of the extrusion.
* @param v the vector defining the direction of the extrusion
* @param np_in an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map that contains the points associated to the vertices of `input`.
* If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* should be available for the vertices of `input` \cgalParamEnd
* \cgalNamedParamsEnd
*
* * @param np_out an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map that will contain the points associated to the vertices of `output`.
* If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* should be available for the vertices of `output` \cgalParamEnd
* \cgalNamedParamsEnd
*/
template <class InputMesh,
class OutputMesh,
class NamedParameters1,
class NamedParameters2>
void extrude_mesh(const InputMesh& input,
OutputMesh& output,
#ifdef DOXYGEN_RUNNING
Vector_3 v,
#else
typename GetGeomTraits<OutputMesh, NamedParameters2>::type::Vector_3 v,
#endif
const NamedParameters1& np_in,
const NamedParameters2& np_out)
{
typedef typename GetVertexPointMap < OutputMesh, NamedParameters2>::type VPMap;
VPMap output_vpm = choose_param(get_param(np_out, internal_np::vertex_point),
get_property_map(vertex_point, output));
extrude_impl::Const_dist_translation<
typename GetVertexPointMap<OutputMesh, NamedParameters2>::type,
typename GetGeomTraits<OutputMesh, NamedParameters2>::type::Vector_3> bot(output_vpm,
v);
extrude_impl::Identity_functor top;
extrude_mesh(input, output, bot,top, np_in, np_out);
}
//convenience overload
template <class InputMesh,
class OutputMesh,
typename Vector>
void extrude_mesh(const InputMesh& input,
OutputMesh& output,
Vector dir)
{
extrude_mesh(input, output, dir,
parameters::all_default(),
parameters::all_default());
}
template <class InputMesh,
class OutputMesh,
typename Vector,
typename CGAL_PMP_NP_TEMPLATE_PARAMETERS>
void extrude_mesh(const InputMesh& input,
OutputMesh& output,
Vector dir,
const CGAL_PMP_NP_CLASS& np)
{
extrude_mesh(input, output, dir,
np,
parameters::all_default());
}
template <class InputMesh,
class OutputMesh,
class BottomFunctor,
class TopFunctor>
void extrude_mesh(const InputMesh& input,
OutputMesh& output,
const BottomFunctor& bot,
const TopFunctor& top)
{
extrude_mesh(input, output, bot, top,
parameters::all_default(), parameters::all_default());
}
}} //end CGAL::PMP
#endif //CGAL_POLYGON_MESH_PROCESSING_EXTRUDE_H

View File

@ -44,6 +44,11 @@
#include <CGAL/Polygon_mesh_processing/remesh.h> #include <CGAL/Polygon_mesh_processing/remesh.h>
#include <CGAL/Polygon_mesh_processing/corefinement.h> #include <CGAL/Polygon_mesh_processing/corefinement.h>
#include <CGAL/Polygon_mesh_processing/detect_features.h> #include <CGAL/Polygon_mesh_processing/detect_features.h>
#include <CGAL/Polygon_mesh_processing/extrude.h>
#include <CGAL/Polygon_mesh_processing/random_perturbation.h>
#include <CGAL/Polygon_mesh_processing/distance.h>
#include <CGAL/Polygon_mesh_processing/intersection.h>
#include <CGAL/Polygon_mesh_processing/transform.h>
// the named parameter header being not documented the doc is put here for now // the named parameter header being not documented the doc is put here for now
#ifdef DOXYGEN_RUNNING #ifdef DOXYGEN_RUNNING

View File

@ -100,6 +100,7 @@ endif()
create_single_source_cgal_program("surface_intersection_sm_poly.cpp" ) create_single_source_cgal_program("surface_intersection_sm_poly.cpp" )
create_single_source_cgal_program("test_orient_cc.cpp") create_single_source_cgal_program("test_orient_cc.cpp")
create_single_source_cgal_program("test_pmp_transform.cpp") create_single_source_cgal_program("test_pmp_transform.cpp")
create_single_source_cgal_program("extrude_test.cpp")
if( TBB_FOUND ) if( TBB_FOUND )
CGAL_target_use_TBB(test_pmp_distance) CGAL_target_use_TBB(test_pmp_distance)

View File

@ -0,0 +1,9 @@
OFF
4 2 0
-0.5 -0.5 0
0.5 -0.5 0
0.5 0.5 0
-0.5 0.5 0
3 0 1 2
3 0 2 3

View File

@ -0,0 +1,74 @@
#include <CGAL/Surface_mesh.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_mesh_processing/extrude.h>
#include <iostream>
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Surface_mesh<Kernel::Point_3> SMesh;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
template<typename MAP>
struct Bot
{
Bot(MAP map):map(map){}
template<typename VD, typename T>
void operator()(const T&,VD vd) const
{
put(map, vd, get(map, vd)+Kernel::Vector_3(-2.0,0.0,1.0));
}
MAP map;
};
template<typename MAP>
struct Top
{
Top(MAP map):map(map){}
template<typename VD, typename T>
void operator()(const T&, VD vd) const
{
put(map, vd, get(map, vd)+Kernel::Vector_3(0.0,2.0,-1.0));
}
MAP map;
};
template <class Mesh>
void test_mesh(const char* filename)
{
Mesh in, out;
std::ifstream input(filename);
if (!input || !(input >> in))
{
std::cerr << "Error: cannot read Surface Mesh : " << filename << "\n";
assert(!CGAL::is_empty(in));
assert(false);
return ;
}
CGAL::Polygon_mesh_processing::extrude_mesh(in, out, Kernel::Vector_3(0.0, 0.0, -1.0));
std::ofstream extruded_off("extruded.off");
extruded_off << out;
extruded_off.close();
out.clear();
typedef typename boost::property_map<Mesh, CGAL::vertex_point_t>::type VPMap;
Bot<VPMap> bot(get(CGAL::vertex_point, out));
Top<VPMap> top(get(CGAL::vertex_point, out));
CGAL::Polygon_mesh_processing::extrude_mesh(in, out, bot, top);
std::ofstream gen_extruded_off("gen_extruded.off");
gen_extruded_off << out;
gen_extruded_off.close();
std::cerr << "All done." << std::endl;
}
int main(int argc, char* argv[])
{
const char* filename = (argc > 1) ? argv[1] : "data/quad.off";
test_mesh<SMesh>(filename);
test_mesh<Polyhedron>(filename);
return 0;
}

View File

@ -163,3 +163,10 @@ polyhedron_demo_plugin(degenerated_faces_sm_plugin Degenerated_faces_plugin)
target_link_libraries(degenerated_faces_sm_plugin PUBLIC scene_surface_mesh_item scene_surface_mesh_selection_item) target_link_libraries(degenerated_faces_sm_plugin PUBLIC scene_surface_mesh_item scene_surface_mesh_selection_item)
target_compile_definitions(degenerated_faces_sm_plugin PUBLIC "-DUSE_SURFACE_MESH" ) target_compile_definitions(degenerated_faces_sm_plugin PUBLIC "-DUSE_SURFACE_MESH" )
polyhedron_demo_plugin(extrude_poly_plugin Extrude_plugin)
target_link_libraries(extrude_poly_plugin PUBLIC scene_polyhedron_item scene_polyhedron_selection_item)
polyhedron_demo_plugin(extrude_sm_plugin Extrude_plugin)
target_link_libraries(extrude_sm_plugin PUBLIC scene_surface_mesh_item scene_surface_mesh_selection_item)
target_compile_definitions(extrude_sm_plugin PUBLIC "-DUSE_SURFACE_MESH" )

View File

@ -0,0 +1,478 @@
#include <CGAL/Three/Polyhedron_demo_plugin_interface.h>
#include <QApplication>
#include <QObject>
#include <QAction>
#include <QMainWindow>
#include <QInputDialog>
#include <QMessageBox>
#include <CGAL/Three/Scene_item.h>
#include <CGAL/Three/Viewer_interface.h>
#include <CGAL/linear_least_squares_fitting_3.h>
#include <CGAL/Polygon_mesh_processing/extrude.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/Qt/manipulatedFrame.h>
#include <CGAL/Qt/constraint.h>
#include <CGAL/number_type_config.h>
#include "Messages_interface.h"
#ifdef USE_SURFACE_MESH
#include "Kernel_type.h"
#include "Scene_surface_mesh_item.h"
#else
#include "Scene_polyhedron_item.h"
#include "Polyhedron_type.h"
#endif
#include "Scene_polyhedron_selection_item.h"
#include "Scene.h"
#ifdef USE_SURFACE_MESH
typedef Scene_surface_mesh_item Scene_face_graph_item;
#else
typedef Scene_polyhedron_item Scene_face_graph_item;
#endif
typedef Scene_face_graph_item::Face_graph Face_graph;
typedef CGAL::qglviewer::Vec Vec;
using namespace CGAL::Three;
//use frame to get dist and dir.
//fix frame in translation and use mousewheel to choose dist
//finding frame's position : first try at the center of the item's bbox
//maybe find intersection between surface and diag bbox.
//orientation : PCA : normal.
typedef Kernel::Plane_3 Plane;
typedef Kernel::Triangle_3 Triangle;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
class Scene_arrow_item : public Scene_item
{
Q_OBJECT
public :
Scene_arrow_item(Vec center_, double r, double length_)
:Scene_item(2, 1), center_(center_), length_(length_), R(r),
frame(new Scene_item::ManipulatedFrame())
{
const CGAL::qglviewer::Vec offset = static_cast<Viewer_interface*>(CGAL::QGLViewer::QGLViewerPool().first())->offset();
frame->setPosition( center_+offset);
nb_pos = 0;
tick = length_/10.0f;
ctrl_pressing = false;
}
// Indicates if rendering mode is supported
bool supportsRenderingMode(RenderingMode m) const Q_DECL_OVERRIDE {
return (m == Gouraud);
}
//Displays the item
void draw(Viewer_interface* viewer) const Q_DECL_OVERRIDE
{
if(!are_buffers_filled)
{
initializeBuffers(viewer);
}
vaos[0]->bind();
program = getShaderProgram(PROGRAM_WITH_LIGHT);
GLdouble d_mat[16];
QMatrix4x4 mvp_mat;
GLdouble matrix[16];
QMatrix4x4 f_matrix;
frame->getMatrix(matrix);
for (int i=0; i<16; ++i)
f_matrix.data()[i] = (float)matrix[i];
viewer->camera()->getModelViewProjectionMatrix(d_mat);
for (int i=0; i<16; ++i)
mvp_mat.data()[i] = GLfloat(d_mat[i]);
mvp_mat = mvp_mat*f_matrix;
QMatrix4x4 mv_mat;
viewer->camera()->getModelViewMatrix(d_mat);
for (int i=0; i<16; ++i)
mv_mat.data()[i] = GLfloat(d_mat[i]);
mv_mat = mv_mat*f_matrix;
attribBuffers(viewer, PROGRAM_WITH_LIGHT);
program->bind();
program->setUniformValue("mvp_matrix", mvp_mat);
program->setUniformValue("mv_matrix", mv_mat);
program->setUniformValue("is_clipbox_on", false);
program->setAttributeValue("radius",0.01*diagonalBbox());
program->setAttributeValue("colors", QColor(Qt::red));
program->setAttributeValue("colors", this->color());
viewer->glDrawArrays(GL_TRIANGLES, 0, static_cast<GLsizei>(nb_pos/3));
vaos[0]->release();
program->release();
}
void invalidateOpenGLBuffers() Q_DECL_OVERRIDE
{
are_buffers_filled = false;
}
Scene_item* clone() const Q_DECL_OVERRIDE {return 0;}
QString toolTip() const Q_DECL_OVERRIDE {return QString();}
Vec center()const { return center_; }
Scene_item::ManipulatedFrame* manipulatedFrame() Q_DECL_OVERRIDE { return frame; }
bool manipulatable() const Q_DECL_OVERRIDE { return true; }
bool eventFilter(QObject *, QEvent *event) Q_DECL_OVERRIDE
{
if(event->type() == QEvent::KeyPress || event->type() == QEvent::KeyRelease)
{
ctrl_pressing = static_cast<QKeyEvent*>(event)->modifiers().testFlag(Qt::ControlModifier);
}
if(event->type() == QEvent::Wheel && ctrl_pressing)
{
QWheelEvent *mouseEvent = static_cast<QWheelEvent*>(event);
int steps = mouseEvent->delta() / 120;
if (steps > 0)
length_+=tick;
else
length_-=tick;
invalidateOpenGLBuffers();
redraw();
return true;
}
return false;
}
double length()const { return length_; }
private:
//make an arrow showing the length and direction of the transformation for the extrusion.
void initializeBuffers(Viewer_interface *viewer)const
{
std::vector<float> vertices;
std::vector<float> normals;
int prec = 60;
//Head
const float Rf = static_cast<float>(R);
for(int d = 0; d<360; d+= 360/prec)
{
float D = (float) (d * CGAL_PI / 180.);
float a = (float) std::atan(Rf / 0.33);
QVector4D pR(0., 1.*length_, 0, 1.);
QVector4D nR(Rf*2.*sin(D), sin(a), Rf*2.*cos(D), 1.);
//point A1
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point B1
pR = QVector4D(Rf*2.*sin(D), 0.66f*length_, Rf*2.* cos(D), 1.f);
nR = QVector4D(sin(D), sin(a), cos(D), 1.);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point C1
D = (d+360/prec)*CGAL_PI/180.0;
pR = QVector4D(Rf*2.* sin(D), 0.66f*length_, Rf *2.* cos(D), 1.f);
nR = QVector4D(sin(D), sin(a), cos(D), 1.0);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
}
//cylinder
//body of the cylinder
for(int d = 0; d<360; d+= 360/prec)
{
//point A1
double D = d*CGAL_PI/180.0;
QVector4D pR(Rf*sin(D), 0.66f*length_, Rf*cos(D), 1.f);
QVector4D nR(sin(D), 0.f, cos(D), 1.f);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point B1
pR = QVector4D(Rf * sin(D),0,Rf*cos(D), 1.0);
nR = QVector4D(sin(D), 0, cos(D), 1.0);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point C1
D = (d+360/prec)*CGAL_PI/180.0;
pR = QVector4D(Rf * sin(D),0,Rf*cos(D), 1.0);
nR = QVector4D(sin(D), 0, cos(D), 1.0);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point A2
D = (d+360/prec)*CGAL_PI/180.0;
pR = QVector4D(Rf * sin(D),0,Rf*cos(D), 1.0);
nR = QVector4D(sin(D), 0, cos(D), 1.0);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point B2
pR = QVector4D(Rf * sin(D), 0.66f*length_, Rf*cos(D), 1.f);
nR = QVector4D(sin(D), 0, cos(D), 1.0);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
//point C2
D = d*CGAL_PI/180.0;
pR = QVector4D(Rf * sin(D), 0.66f*length_, Rf*cos(D), 1.f);
nR = QVector4D(sin(D), 0.f, cos(D), 1.f);
vertices.push_back(pR.x());
vertices.push_back(pR.y());
vertices.push_back(pR.z());
normals.push_back(nR.x());
normals.push_back(nR.y());
normals.push_back(nR.z());
}
//fill buffers
//vao containing the data for the facets
program = getShaderProgram(PROGRAM_WITH_LIGHT, viewer);
program->bind();
vaos[0]->bind();
buffers[0].bind();
buffers[0].allocate(vertices.data(),
static_cast<GLsizei>(vertices.size()*sizeof(float)));
program->enableAttributeArray("vertex");
program->setAttributeBuffer("vertex",GL_FLOAT,0,3);
buffers[0].release();
buffers[1].bind();
buffers[1].allocate(normals.data(),
static_cast<GLsizei>(normals.size()*sizeof(float)));
program->enableAttributeArray("normals");
program->setAttributeBuffer("normals",GL_FLOAT,0,3);
buffers[1].release();
vaos[0]->release();
program->release();
//once the buffers are filled, we can empty the vectors to optimize memory consumption
nb_pos = vertices.size();
_bbox = Bbox(0,0,0,0,0,0);
for(std::size_t i = 0; i< vertices.size(); i+=3)
{
_bbox += Point(vertices[i],
vertices[i+1],
vertices[i+2]).bbox();
}
are_buffers_filled = true;
}
mutable std::size_t nb_pos;
Vec center_;
double length_;
double tick;
double R;
bool ctrl_pressing;
mutable QOpenGLShaderProgram *program;
Scene_item::ManipulatedFrame* frame;
}; //end of class Scene_arrow_item
template <typename TriangleMesh, typename OutputIterator>
CGAL::Bbox_3 triangles(const TriangleMesh& mesh,
OutputIterator out)
{
CGAL::Bbox_3 bb;
typename boost::property_map<TriangleMesh,CGAL::vertex_point_t>::const_type vpm =
get(CGAL::vertex_point, mesh);
BOOST_FOREACH(typename boost::graph_traits<TriangleMesh>::face_descriptor fd, faces(mesh)){
typename boost::graph_traits<TriangleMesh>::halfedge_descriptor hd = halfedge(fd,mesh);
Triangle t(get(vpm,source(hd,mesh)),
get(vpm,target(hd,mesh)),
get(vpm,target(next(hd,mesh),mesh)));
*out++ = t;
bb = bb + t.bbox();
}
return bb;
}
Vector estimate_normals(const std::vector<Triangle>& tris)
{
Vector moy(0,0,0);
BOOST_FOREACH(const Triangle& tri, tris)
{
Vector norm = CGAL::Polygon_mesh_processing::internal::triangle_normal(
tri[0], tri[1], tri[2], Kernel());
norm /= CGAL::sqrt(norm.squared_length());
moy += norm;
}
return moy;
}
class ExtrudePlugin :
public QObject,
public Polyhedron_demo_plugin_interface
{
Q_OBJECT
Q_INTERFACES(CGAL::Three::Polyhedron_demo_plugin_interface)
Q_PLUGIN_METADATA(IID "com.geometryfactory.PolyhedronDemo.PluginInterface/1.0")
public:
bool applicable(QAction* action) const Q_DECL_OVERRIDE
{
if(action == actionCreateItem)
{
return !oliver_queen &&
(qobject_cast<Scene_face_graph_item*>(scene->item(scene->mainSelectionIndex()))
|| qobject_cast<Scene_polyhedron_selection_item*>(scene->item(scene->mainSelectionIndex())));
}
else if(oliver_queen)
return true;
return false;
}
QList<QAction*> actions() const Q_DECL_OVERRIDE
{
return _actions;
}
void init(QMainWindow* mainWindow, Scene_interface* sc, Messages_interface* mi) Q_DECL_OVERRIDE
{
this->messageInterface = mi;
this->scene = sc;
this->mw = mainWindow;
oliver_queen = NULL;
target = NULL;
actionCreateItem = new QAction(QString("Extrude Item"), mw);
actionCreateItem->setProperty("submenuName", "Polygon Mesh Processing");
connect(actionCreateItem, SIGNAL(triggered()),
this, SLOT(createItem()));
_actions << actionCreateItem;
actionExtrude = new QAction(QString("Perform Extrusion"), mw);
actionExtrude->setProperty("submenuName", "Polygon Mesh Processing");
connect(actionExtrude, SIGNAL(triggered()),
this, SLOT(do_extrude()));
_actions << actionExtrude;
}
private Q_SLOTS:
void createItem()
{
Scene_item * item = scene->item(scene->mainSelectionIndex());
Scene_polyhedron_selection_item* sel_item = qobject_cast<Scene_polyhedron_selection_item*>(scene->item(scene->mainSelectionIndex()));
Scene_face_graph_item* fg_item = qobject_cast<Scene_face_graph_item*>(item);
Face_graph* pMesh = NULL;
if(sel_item)
{
pMesh = new Face_graph();
if(!sel_item->export_selected_facets_as_polyhedron(pMesh))
{
messageInterface->error("Face selection is not valid. Aborting.");
return;
}
fg_item = new Scene_facegraph_item(pMesh);
fg_item->setName(QString("%1 selection").arg(sel_item->polyhedron_item()->name()));
scene->addItem(fg_item);
sel_item->polyhedron_item()->setWireframeMode();
sel_item->polyhedron_item()->redraw();
}
if(fg_item)
pMesh = fg_item->face_graph();
else
return;
if(CGAL::is_closed(*pMesh))
{
messageInterface->error("The face graph must be open. Aborting.");
return;
}
std::vector<Triangle> triangles;
::triangles(*pMesh,std::back_inserter(triangles));
Plane plane;
CGAL::linear_least_squares_fitting_3(triangles.begin(),triangles.end(),plane,CGAL::Dimension_tag<2>());
// compute centroid
Point c = CGAL::centroid(triangles.begin(),triangles.end());
oliver_queen = new Scene_arrow_item(Vec(c.x(),c.y(),c.z()), fg_item->diagonalBbox() / 50.0f,
fg_item->diagonalBbox()/3.0f);
Vec dir(plane.orthogonal_vector().x(),
plane.orthogonal_vector().y(),
plane.orthogonal_vector().z());
if(CGAL::scalar_product(Vector(dir.x, dir.y, dir.z), estimate_normals(triangles)) > 0)
dir = -dir;
CGAL::qglviewer::Quaternion orientation(CGAL::qglviewer::Vec(0,1,0), dir);
oliver_queen->manipulatedFrame()->setOrientation(orientation);
constraint.setRotationConstraintType(CGAL::qglviewer::AxisPlaneConstraint::FREE);
constraint.setTranslationConstraintType(CGAL::qglviewer::AxisPlaneConstraint::FORBIDDEN);
oliver_queen->manipulatedFrame()->setConstraint(&constraint);
oliver_queen->setColor(QColor(Qt::green));
oliver_queen->setName("Extrude item");
CGAL::QGLViewer* viewer = *CGAL::QGLViewer::QGLViewerPool().begin();
viewer->installEventFilter(oliver_queen);
mw->installEventFilter(oliver_queen);
scene->addItem(oliver_queen);
target = fg_item;
connect(oliver_queen, &Scene_arrow_item::aboutToBeDestroyed,
[this](){
oliver_queen = NULL;
});
//!@todo : add a way to track scene's bbox recomputation and reset frame's position when triggered.
}
void do_extrude()
{
if(!target)
return;
Face_graph pMesh = *target->face_graph();
target->face_graph()->clear();
double length = oliver_queen->length();
double matrix[16];
oliver_queen->manipulatedFrame()->getMatrix(matrix);
QMatrix4x4 rotate_matrix;
QMatrix4x4 transform_matrix;
for(int i=0; i<16; ++i)
transform_matrix.data()[i] = (float)matrix[i];
rotate_matrix = transform_matrix;
rotate_matrix.setColumn(3, QVector4D(0,0,0,1));
QVector3D dir = rotate_matrix * QVector3D(0,1,0);
dir.normalize();
dir = length * dir;
CGAL::Polygon_mesh_processing::extrude_mesh(pMesh, *target->face_graph(),
Kernel::Vector_3(dir.x(), dir.y(), dir.z()));
scene->erase(scene->item_id(oliver_queen));
oliver_queen = NULL;
target->invalidateOpenGLBuffers();
target->itemChanged();
target = NULL;
}
private:
QList<QAction*> _actions;
Messages_interface* messageInterface;
Scene_interface* scene;
QMainWindow* mw;
QAction *actionCreateItem;
QAction *actionExtrude;
Scene_arrow_item* oliver_queen;
Scene_face_graph_item* target;
CGAL::qglviewer::LocalConstraint constraint;
};
#include "Extrude_plugin.moc"

View File

@ -140,6 +140,8 @@ distance_plugin \
distance_sm_plugin \ distance_sm_plugin \
edit_polyhedron_plugin \ edit_polyhedron_plugin \
edit_sm_plugin \ edit_sm_plugin \
extrude_poly_plugin \
extrude_sm_plugin \
fairing_plugin \ fairing_plugin \
features_detection_plugin \ features_detection_plugin \
gocad_plugin \ gocad_plugin \