add the suffix Ref to doxygen link to reference

This commit is contained in:
Sébastien Loriot 2018-09-04 11:11:41 +02:00
parent 8f097dc9eb
commit a2e8a1c68f
402 changed files with 1063 additions and 1063 deletions

View File

@ -1,16 +1,16 @@
/// \defgroup PkgAABB_tree AABB Tree Reference
/// \defgroup PkgAABB_treeRef AABB Tree Reference
/// \defgroup PkgAABB_treeConcepts Concepts
/// \ingroup PkgAABB_tree
/// \ingroup PkgAABB_treeRef
/*!
\addtogroup PkgAABB_tree
\addtogroup PkgAABB_treeRef
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABB_treeSummary}
\cgalPkgPicture{aabb-teaser-thumb.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Pierre Alliez, Stéphane Tayeb, Camille Wormser}
\cgalPkgDesc{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABB_tree}
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABB_treeRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.5}

View File

@ -34,7 +34,7 @@
namespace CGAL {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABB_treeRef
* Primitive type for a facet of a polyhedral surface.
* It wraps a handle to a facet of a polyhedron to a 3D triangle.
* The polyhedron from which the primitive is built should not be deleted

View File

@ -42,7 +42,7 @@ namespace CGAL {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABB_treeRef
* Primitive type for a edge of a polyhedral surface.
* It wraps an `edge_descriptor` into a 3D segment.
* The class model of `HalfedgeGraph` from which the primitive is built should not be deleted

View File

@ -40,7 +40,7 @@
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABB_treeRef
/// @{
/// \deprecated This class is deprecated since \cgal 4.3, the class
/// `AABB_halfedge_graph_segment_primitive` should be used instead.

View File

@ -35,7 +35,7 @@
#include <boost/type_traits/is_same.hpp>
namespace CGAL {
/// \ingroup PkgAABB_tree
/// \ingroup PkgAABB_treeRef
/// \deprecated This class is deprecated since \cgal 4.3, the class
/// `AABB_face_graph_triangle_primitive` should be used instead.
///

View File

@ -57,7 +57,7 @@ public:
#ifdef DOXYGEN_RUNNING
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABB_treeRef
* Generic primitive type.
* The two property maps which are template parameters of the class enable to get the datum and the reference point of
* the primitive from the identifier. The last template parameter controls whether the primitive class holds a copy of the datum.

View File

@ -56,7 +56,7 @@ namespace internal {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABB_treeRef
* Primitive type that uses as identifier an iterator with a 3D segment as `value_type`.
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.

View File

@ -173,7 +173,7 @@ struct AABB_traits_base_2<GeomTraits,true>{
} } //end of namespace internal::AABB_tree
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABB_treeRef
/// @{
/// This traits class handles any type of 3D geometric

View File

@ -44,7 +44,7 @@
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// \addtogroup PkgAABB_treeRef
/// @{
/**

View File

@ -56,7 +56,7 @@ namespace internal {
/*!
* \ingroup PkgAABB_tree
* \ingroup PkgAABB_treeRef
* Primitive type that uses as identifier an iterator with a 3D triangle as `value_type`.
* The iterator from which the primitive is built should not be invalided
* while the AABB tree holding the primitive is in use.

View File

@ -31,7 +31,7 @@
#include <boost/type_traits/is_same.hpp>
namespace CGAL {
// \ingroup PkgAABB_tree
// \ingroup PkgAABB_treeRef
// Primitive type that wraps a facet handle of a CGAL::Triangulation_3,
// which is used as id, and allows the construction of the datum on
// the fly. Since only the facet handle is stored in this primitive,

View File

@ -1,7 +1,7 @@
/// \defgroup PkgAdvancingFrontSurfaceReconstruction Advancing Front Surface Reconstruction Reference
/// \defgroup PkgAdvancingFrontSurfaceReconstructionRef Advancing Front Surface Reconstruction Reference
/*!
\addtogroup PkgAdvancingFrontSurfaceReconstruction
\addtogroup PkgAdvancingFrontSurfaceReconstructionRef
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstructionSummary}
\cgalPkgPicture{afsr-detail.png}
@ -12,7 +12,7 @@ unorganized point set. Starting from a seed facet, a piecewise linear
surface is grown by adding Delaunay triangles one by one. The most
plausible triangles are added first, in a way that avoids the appearance
of topological singularities. }
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
\cgalPkgManuals{Chapter_Advancing_Front_Surface_Reconstruction,PkgAdvancingFrontSurfaceReconstructionRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{4.7}

View File

@ -175,7 +175,7 @@ namespace CGAL {
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction` enables advanced users to provide the unstructured
point cloud in a 3D Delaunay triangulation. The reconstruction algorithm then marks vertices and faces
@ -2480,7 +2480,7 @@ namespace CGAL {
}
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
For a sequence of points computes a sequence of index triples
describing the faces of the reconstructed surface.
@ -2532,7 +2532,7 @@ namespace CGAL {
}
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
For a sequence of points computes a sequence of index triples
describing the faces of the reconstructed surface.

View File

@ -28,7 +28,7 @@
namespace CGAL {
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction_cell_base_3` is the default
cell type for the class `Advancing_front_surface_reconstruction`.

View File

@ -38,7 +38,7 @@ namespace CGAL {
template <class B, class C> class Advancing_front_surface_reconstruction;
/*!
\ingroup PkgAdvancingFrontSurfaceReconstruction
\ingroup PkgAdvancingFrontSurfaceReconstructionRef
The class `Advancing_front_surface_reconstruction_vertex_base_3` is the default
vertex type for the class `Advancing_front_surface_reconstruction`.

View File

@ -81,7 +81,7 @@ compatibility all functionality is also
accessible through global functions defined within namespace `CGAL`,
e.g., \link sqrt `CGAL::sqrt(x)` \endlink. This is realized via function templates using
the according functor of the traits class. For an overview see
Section \ref PkgAlgebraicFoundations in the reference manual.
Section \ref PkgAlgebraicFoundationsRef in the reference manual.
\subsection Algebraic_foundationsTagsinAlgebraicStructure Tags in Algebraic Structure Traits

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Algebraic_structure_traits` is a model of `AlgebraicStructureTraits`, where <span class="textsc">T</span> is the associated type.
@ -17,7 +17,7 @@ class Algebraic_structure_traits {
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the
`EuclideanRing` concept.
@ -34,7 +34,7 @@ struct Euclidean_ring_tag : public Unique_factorization_domain_tag {
}; /* end Euclidean_ring_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `Field` concept.
@ -50,7 +50,7 @@ struct Field_tag : public Integral_domain_tag {
}; /* end Field_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithKthRoot` concept.
@ -66,7 +66,7 @@ struct Field_with_kth_root_tag : public Field_with_sqrt_tag {
}; /* end Field_with_kth_root_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
@ -82,7 +82,7 @@ struct Field_with_root_of_tag : public Field_with_kth_root_tag {
}; /* end Field_with_root_of_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `FieldWithSqrt` concept.
@ -98,7 +98,7 @@ struct Field_with_sqrt_tag : public Field_tag {
}; /* end Field_with_sqrt_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `IntegralDomain` concept.
@ -114,7 +114,7 @@ struct Integral_domain_tag : public Integral_domain_without_division_tag {
}; /* end Integral_domain_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `IntegralDomainWithoutDivision` concept.
@ -129,7 +129,7 @@ struct Integral_domain_without_division_tag {
}; /* end Integral_domain_without_division_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
Tag indicating that a type is a model of the `UniqueFactorizationDomain` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Coercion_traits` reflects the type coercion of the types
<span class="textsc">A</span> and <span class="textsc">B</span>, it is symmetric in the two template arguments.

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Fraction_traits` is a model of `FractionTraits`,
where `T` is the associated type.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An instance of `Real_embeddable_traits` is a model of `RealEmbeddableTraits`, where <span class="textsc">T</span> is the associated type.

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `abs()` returns the absolute value of a number.
@ -19,7 +19,7 @@ template <class NT> NT abs(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `compare()` compares the first argument with respect to
the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
@ -43,7 +43,7 @@ result_type compare(const NT &x, const NT &y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `div()` computes the integral quotient of division
with remainder.
@ -74,7 +74,7 @@ div(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
computes the quotient \f$ q\f$ and remainder \f$ r\f$, such that \f$ x = q*y + r\f$
and \f$ r\f$ minimal with respect to the Euclidean Norm of the
@ -109,7 +109,7 @@ div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `gcd()` computes the greatest common divisor of two values.
@ -136,7 +136,7 @@ gcd(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `integral_division()` (a.k.a.\ exact division or division without remainder)
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
@ -167,7 +167,7 @@ integral_division(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `inverse()` returns the inverse element with respect to multiplication.
@ -187,7 +187,7 @@ template <class NT> NT inverse(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `is_negative()` determines if a value is negative or not.
The function is defined if the argument type
@ -206,7 +206,7 @@ result_type is_negative(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `is_one()` determines if a value is equal to 1 or not.
@ -226,7 +226,7 @@ template <class NT> result_type is_one(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `is_positive()` determines if a value is positive or not.
The function is defined if the argument type
@ -245,7 +245,7 @@ result_type is_positive(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -264,7 +264,7 @@ The `result_type` is convertible to `bool`.
template <class NT> result_type is_square(const NT& x);
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -287,7 +287,7 @@ template <class NT> result_type is_square(const NT& x, NT& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `is_zero()` determines if a value is equal to 0 or not.
@ -309,7 +309,7 @@ template <class NT> result_type is_zero(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `kth_root()` returns the k-th root of a value.
@ -327,7 +327,7 @@ template <class NT> NT kth_root(int k, const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `mod()` computes the remainder of division with remainder.
@ -357,7 +357,7 @@ mod(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
returns the k-th real root of the univariate polynomial, which is
defined by the iterator range, where begin refers to the constant
@ -383,7 +383,7 @@ root_of(int k, InputIterator begin, InputIterator end);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `sign()` returns the sign of its argument.
@ -403,7 +403,7 @@ template <class NT> result_type sign(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `simplify()` may simplify a given object.
@ -421,7 +421,7 @@ template <class NT> void simplify(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `sqrt()` returns the square root of a value.
@ -439,7 +439,7 @@ template <class NT> NT sqrt(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `square()` returns the square of a number.
@ -457,7 +457,7 @@ template <class NT> NT square(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `to_double()` returns a double approximation of a number.
Note that in general, the value returned is not guaranteed to be the same
@ -482,7 +482,7 @@ template <class NT> double to_double(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The template function `to_interval()` computes for a given real embeddable
number \f$ x\f$ a double interval containing \f$ x\f$.
@ -502,7 +502,7 @@ std::pair<double,double> to_interval(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsRef
The function `unit_part()` computes the unit part of a given ring
element.

View File

@ -1,10 +1,10 @@
/// \defgroup PkgAlgebraicFoundations Algebraic Foundations Reference
/// \defgroup PkgAlgebraicFoundationsRef Algebraic Foundations Reference
/// \defgroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts Concepts
/// \ingroup PkgAlgebraicFoundations
/// \ingroup PkgAlgebraicFoundationsRef
/*!
\addtogroup PkgAlgebraicFoundations
\addtogroup PkgAlgebraicFoundationsRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundationsSummary}
@ -12,7 +12,7 @@
\cgalPkgSummaryBegin
\cgalPkgAuthor{Michael Hemmer}
\cgalPkgDesc{This package defines what algebra means for \cgal, in terms of concepts, classes and functions. The main features are: (i) explicit concepts for interoperability of types (ii) separation between algebraic types (not necessarily embeddable into the reals), and number types (embeddable into the reals).}
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundations}
\cgalPkgManuals{Chapter_Algebraic_Foundations,PkgAlgebraicFoundationsRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.3}

View File

@ -1,7 +1,7 @@
/// \defgroup PkgAlgebraicKerneld Algebraic Kernel Reference
/// \defgroup PkgAlgebraicKerneldRef Algebraic Kernel Reference
/// \defgroup PkgAlgebraicKerneldConcepts Concepts
/// \ingroup PkgAlgebraicKerneld
/// \ingroup PkgAlgebraicKerneldRef
/// \defgroup PkgAlgebraicKerneldConceptsUni Univariate Algebraic Kernel
/// \ingroup PkgAlgebraicKerneldConcepts
@ -11,18 +11,18 @@
/// \defgroup PkgAlgebraicKerneldModels Models
/// \ingroup PkgAlgebraicKerneld
/// \ingroup PkgAlgebraicKerneldRef
/*!
\addtogroup PkgAlgebraicKerneld
\addtogroup PkgAlgebraicKerneldRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKerneldSummary}
\cgalPkgPicture{Algebraic_kernel_d.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain Lazard, Luis Peñaranda, and Monique Teillaud}
\cgalPkgDesc{Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted to provide black-box implementations of state-of-the-art algorithms to determine, compare and approximate real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an *Algebraic %Kernel*. So far the package only provides models for the univariate kernel. Nevertheless, it already defines concepts for the bivariate kernel, since this settles the interface for upcoming implementations.}
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKerneld}
\cgalPkgManuals{Chapter_Algebraic_Kernel,PkgAlgebraicKerneldRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.6}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShape2Ref
The class `Alpha_shape_2` represents the family of
\f$ \alpha\f$-shapes of points in a plane for <I>all</I> positive

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShape2Ref
The class `Alpha_shape_face_base_2` is the default model for the concept `AlphaShapeFace_2`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShape2Ref
The class `Alpha_shape_vertex_base_2` is the default model for the concept
`AlphaShapeVertex_2`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShape2
\ingroup PkgAlphaShape2Ref
\deprecated The class is deprecated since \cgal 4.10, as the weighted point and the function
objects for weighted points are part of the concept `Kernel`. The class is kept for backward

View File

@ -1,16 +1,16 @@
/// \defgroup PkgAlphaShape2 2D Alpha Shapes Reference
/// \defgroup PkgAlphaShape2Ref 2D Alpha Shapes Reference
/// \defgroup PkgAlphaShape2Concepts Concepts
/// \ingroup PkgAlphaShape2
/// \ingroup PkgAlphaShape2Ref
/*!
\addtogroup PkgAlphaShape2
\addtogroup PkgAlphaShape2Ref
\cgalPkgDescriptionBegin{2D Alpha Shapes,PkgAlphaShape2Summary}
\cgalPkgPicture{alpha-detail.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da}
\cgalPkgDesc{This package offers a data structure encoding the whole family of alpha-complexes related to a given 2D Delaunay or regular triangulation. In particular, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex).}
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShape2}
\cgalPkgManuals{Chapter_2D_Alpha_Shapes,PkgAlphaShape2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{2.1}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_3` represents the family of
alpha shapes of points in the 3D space for <I>all</I> real

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_cell_base_3` is the default model for the concept
`AlphaShapeCell_3`.
@ -37,7 +37,7 @@ public:
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_status` is a small data structure to store
the critical alpha values of faces of an alpha shape.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Alpha_shape_vertex_base_3` is the default model for the concept
`AlphaShapeVertex_3`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_3` represents one (fixed)
alpha shape of points in the 3D space for a real

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_cell_base_3` is the default model for the concept
`FixedAlphaShapeCell_3`.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgAlphaShapes3
\ingroup PkgAlphaShapes3Ref
The class `Fixed_alpha_shape_vertex_base_3` is the default model for the concept
`FixedAlphaShapeVertex_3`.

View File

@ -1,14 +1,14 @@
/// \defgroup PkgAlphaShapes3 3D Alpha Shapes Reference
/// \defgroup PkgAlphaShapes3Ref 3D Alpha Shapes Reference
/// \defgroup PkgAlphaShapes3Concepts Concepts
/// \ingroup PkgAlphaShapes3
/// \ingroup PkgAlphaShapes3Ref
/*!
\addtogroup PkgAlphaShapes3
\addtogroup PkgAlphaShapes3Ref
\cgalPkgDescriptionBegin{3D Alpha Shapes,PkgAlphaShapes3Summary}
\cgalPkgPicture{alpha_shapes_3_small.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da, Sébastien Loriot, and Mariette Yvinec}
\cgalPkgDesc{This package offers a data structure encoding either one alpha-complex or the whole family of alpha-complexes related to a given 3D Delaunay or regular triangulation. In the latter case, the data structure allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical alpha values and a filtration on the triangulation faces (this filtration is based on the first alpha value for which each face is included on the alpha-complex). }
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3}
\cgalPkgManuals{Chapter_3D_Alpha_Shapes,PkgAlphaShapes3Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{2.3}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_2` represents the
Apollonius graph. It supports insertions and deletions of sites.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_filtered_traits_2` provides a model for the
`ApolloniusGraphTraits_2` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
We provide an alternative to the class
`Apollonius_graph_2<Gt,Agds>` for the dynamic

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_hierarchy_vertex_base_2` provides a model for the
`ApolloniusGraphHierarchyVertexBase_2` concept, which is the

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_traits_2` provides a model for the
`ApolloniusGraphTraits_2` concept.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_graph_vertex_base_2` provides a model for the
`ApolloniusGraphVertexBase_2` concept which is the vertex base

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgApolloniusGraph2
\ingroup PkgApolloniusGraph2Ref
The class `Apollonius_site_2` is a model for the concept
`ApolloniusSite_2`. It is parametrized by a template parameter

View File

@ -1,15 +1,15 @@
/// \defgroup PkgApolloniusGraph2 2D Apollonius Graphs (Delaunay Graphs of Disks) Reference
/// \defgroup PkgApolloniusGraph2Ref 2D Apollonius Graphs (Delaunay Graphs of Disks) Reference
/// \defgroup PkgApolloniusGraph2Concepts Concepts
/// \ingroup PkgApolloniusGraph2
/// \ingroup PkgApolloniusGraph2Ref
/*!
\addtogroup PkgApolloniusGraph2
\addtogroup PkgApolloniusGraph2Ref
\todo check generated documentation
\cgalPkgDescriptionBegin{2D Apollonius Graphs (Delaunay Graphs of Disks),PkgApolloniusGraph2Summary}
\cgalPkgPicture{CircleVoronoi.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Menelaos Karavelas and Mariette Yvinec}
\cgalPkgDesc{Algorithms for computing the Apollonius graph in two dimensions. The Apollonius graph is the dual of the Apollonius diagram, also known as the <I>additively weighted Voronoi diagram</I>. The latter can be thought of as the Voronoi diagram of a set of disks under the Euclidean metric, and it is a generalization of the standard Voronoi diagram for points. The algorithms provided are dynamic.}
\cgalPkgManuals{Chapter_2D_Apollonius_Graphs,PkgApolloniusGraph2}
\cgalPkgManuals{Chapter_2D_Apollonius_Graphs,PkgApolloniusGraph2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.0}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
\anchor arr_refarr_access

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
`Arr_face_index_map` maintains a mapping of face handles of an
attached arrangement object to indices (of type `unsigned int`).

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
\anchor arr_refarr_obs

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
`Arr_vertex_index_map` maintains a mapping of vertex handles of an
attached arrangement object to indices (of type `unsigned int`).

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
\anchor arr_refarr

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgArrangement2
\ingroup PkgArrangement2Ref
\anchor arr_refarr_with_hist

View File

@ -1,7 +1,7 @@
/// \defgroup PkgArrangement2 2D Arrangement Reference
/// \defgroup PkgArrangement2Ref 2D Arrangement Reference
/// \defgroup PkgArrangement2Concepts Concepts
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \cgalConceptNamespace
/// The namespace containing concepts specific to Arrangements.
@ -20,13 +20,13 @@ namespace ArrTraits {}
/// \ingroup PkgArrangement2Concepts
/// \defgroup PkgArrangement2TraitsClasses Traits Classes
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2DCEL DCEL
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2IO I/O
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2op_left_shift operator<<
/// \ingroup PkgArrangement2IO
@ -35,35 +35,35 @@ namespace ArrTraits {}
/// \ingroup PkgArrangement2IO
/// \defgroup PkgArrangement2PointLocation Point Location
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2Overlay Overlay
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2Funcs Free Functions
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2Insert CGAL::insert()
/// \ingroup PkgArrangement2Funcs
/// \defgroup PkgArrangement2Tags Tags
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2Macros Macros
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/// \defgroup PkgArrangement2Enums Enumerations
/// \ingroup PkgArrangement2
/// \ingroup PkgArrangement2Ref
/*!
\addtogroup PkgArrangement2
\addtogroup PkgArrangement2Ref
\todo check generated documentation
\cgalPkgDescriptionBegin{2D Arrangements,PkgArrangement2Summary}
\cgalPkgPicture{Arrangement_2.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and Baruch Zukerman}
\cgalPkgDesc{This package can be used to construct, maintain, alter, and display arrangements in the plane. Once an arrangement is constructed, the package can be used to obtain results of various queries on the arrangement, such as point location. The package also includes generic implementations of two algorithmic frameworks, that are, computing the zone of an arrangement, and line-sweeping the plane, the arrangements is embedded on. These frameworks are used in turn in the implementations of other operations on arrangements. Computing the overlay of two arrangements, for example, is based on the sweep-line framework. Arrangements and arrangement components can also be extended to store additional data. An important extension stores the construction history of the arrangement, such that it is possible to obtain the originating curve of an arrangement subcurve.}
\cgalPkgManuals{Chapter_2D_Arrangements,PkgArrangement2}
\cgalPkgManuals{Chapter_2D_Arrangements,PkgArrangement2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{2.1}

View File

@ -1,6 +1,6 @@
/*!
\defgroup bgl_namedparameters BGL Named Parameters
\ingroup PkgBGL
\ingroup PkgBGLRef
The algorithms of the \sc{Bgl} often have many parameters with default
values that are appropriate for most cases. In general, when no

View File

@ -1,7 +1,7 @@
/// \defgroup PkgBGL CGAL and the Boost Graph Library Reference
/// \defgroup PkgBGLRef CGAL and the Boost Graph Library Reference
/*! \defgroup PkgBGLConcepts Concepts
\ingroup PkgBGL
\ingroup PkgBGLRef
We extend the Boost Graph Library (\sc{Bgl} for short) with a set of new concepts.
In order to make this documentation self-contained we here also document
@ -438,34 +438,34 @@ the requirement for traversal of all faces in a graph.
/// The property tags model of the boost concept <a href="https://www.boost.org/libs/graph/doc/PropertyTag.html"><code>PropertyTag</code></a>.
/// These tags are used to retrieve default property maps using the traits class <a href="https://www.boost.org/libs/graph/doc/property_map.html">boost::property_map</a>.
/// \defgroup PkgBGLProperties Properties
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLPropertiesDynamic Dynamic Properties
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLHelper Helper Classes
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLHelperFct Helper Functions
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLIterators Iterators and Circulators
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLSelectionFct Selection Functions
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLAdaptors Graph Adaptors
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLEulerOperations Euler Operations
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLPartition Partitioning Operations
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/// \defgroup PkgBGLIOFct I/O Functions
/// \ingroup PkgBGL
/// \ingroup PkgBGLRef
/*!
\addtogroup PkgBGLPropertiesDynamic
@ -541,13 +541,13 @@ Methods to read and write graphs.
/*!
\addtogroup PkgBGL
\addtogroup PkgBGLRef
\cgalPkgDescriptionBegin{CGAL and the Boost Graph Library,PkgBGLSummary}
\cgalPkgPicture{emst-detail.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Andreas Fabri, Fernando Cacciola, Philipp Moeller, and Ron Wein}
\cgalPkgDesc{This package provides a framework for interfacing \cgal data structures with the algorithms of the Boost Graph Library, or \sc{BGL} for short. It allows to run graph algorithms directly on \cgal data structures which are model of the \sc{BGL} graph concepts, for example the shortest path algorithm on a Delaunay triangulation in order to compute the Euclidean minimum spanning tree. Furthermore, it introduces several new graph concepts describing halfedge data structures.}
\cgalPkgManuals{Chapter_CGAL_and_the_Boost_Graph_Library,PkgBGL}
\cgalPkgManuals{Chapter_CGAL_and_the_Boost_Graph_Library,PkgBGLRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.3}

View File

@ -1,7 +1,7 @@
/*!
\defgroup PkgBGLTraits Specializations of boost::graph_traits
\ingroup PkgBGL
\ingroup PkgBGLRef
The \sc{Bgl} defines the class template
<A HREF="http://www.boost.org/libs/graph/doc/graph_traits.html">`boost::graph_traits`</A>

View File

@ -22,7 +22,7 @@
#define CGAL_BGL_PARTITION_H
/**
* \ingroup PkgBGL
* \ingroup PkgBGLRef
* \file CGAL/boost/graph/partition.h
* Convenience header file including the headers for all the partitioning-related
* free functions of this package.

View File

@ -203,7 +203,7 @@ void duplicate_terminal_vertices(Graph& graph,
/*!
\ingroup PkgBGL
\ingroup PkgBGLRef
splits into polylines the graph `g` at vertices of degree greater than 2
and at vertices for which `is_terminal(v,graph)==true`.
The polylines are reported using a visitor.

View File

@ -26,7 +26,7 @@ Segment and triangle coordinates can be computed by using either a global functi
Any point in the plane may be taken as a query point. However, we do not recommend to use Wachspress and discrete harmonic coordinates with query points outside the closure of a polygon because at some of those points these coordinates are not well-defined, as explained in the Section \ref gbc_degeneracies.
Once instantiated for some polygon, the coordinates can be computed multiple times for different query points with respect to all the vertices of the provided polygon. Use the \ref PkgBarycentric_coordinates_2 "Reference Manual" for the detailed interface.
Once instantiated for some polygon, the coordinates can be computed multiple times for different query points with respect to all the vertices of the provided polygon. Use the \ref PkgBarycentric_coordinates_2Ref "Reference Manual" for the detailed interface.
The output of the computation is a set of coordinate values at the current query point with respect to all the vertices of the polygon. This output can be stored in an arbitrary container providing an appropriate output iterator. In addition, all the classes return a pointer to the last stored element and a status of the computation (Boolean true or false).

View File

@ -1,17 +1,17 @@
/// \defgroup PkgBarycentric_coordinates_2 2D Generalized Barycentric Coordinates Reference
/// \defgroup PkgBarycentric_coordinates_2Ref 2D Generalized Barycentric Coordinates Reference
/// \defgroup PkgBarycentric_coordinates_2Concepts Concepts
/// \ingroup PkgBarycentric_coordinates_2
/// \ingroup PkgBarycentric_coordinates_2Ref
/*!
\addtogroup PkgBarycentric_coordinates_2
\addtogroup PkgBarycentric_coordinates_2Ref
\cgalPkgDescriptionBegin{2D Generalized Barycentric Coordinates, PkgBarycentric_coordinates_2Summary}
\cgalPkgPicture{barcoord_thumb.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Dmitry Anisimov, David Bommes, Kai Hormann, and Pierre Alliez}
\cgalPkgDesc{The package 2D Generalized Barycentric Coordinates offers an efficient and robust implementation of two-dimensional closed-form generalized barycentric coordinates defined for simple two-dimensional polygons. If coordinates with respect to multivariate scattered points instead of a polygon are required, please refer to natural neighbor coordinates from the Package \ref PkgInterpolation2Summary.}
\cgalPkgManuals{Chapter_2D_Generalized_Barycentric_Coordinates, PkgBarycentric_coordinates_2}
\cgalPkgManuals{Chapter_2D_Generalized_Barycentric_Coordinates, PkgBarycentric_coordinates_2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{4.6}

View File

@ -49,7 +49,7 @@ namespace Barycentric_coordinates {
// [1] Reference: "M. S. Floater, K. Hormann, and G. Kos. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24(1-4):311-331, 2006.".
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Discrete_harmonic_2` implements 2D discrete harmonic coordinates ( \cite cgal:bc:fhk-gcbcocp-06, \cite cgal:pp-cdmsc-93, \cite cgal:bc:eddhls-maam-95 ).
* This class is parameterized by a traits class `Traits`, and it is used as a coordinate class to complete the class `Generalized_barycentric_coordinates_2`.
* For a polygon with three vertices (triangle) it is better to use the class `Triangle_coordinates_2`.

View File

@ -48,7 +48,7 @@ namespace Barycentric_coordinates {
// Examples: see the User Manual here - https://doc.cgal.org/latest/Manual/index.html.
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Generalized_barycentric_coordinates_2` implements generalized barycentric coordinates along the polygon's boundary and provides a common interface for all coordinate classes.
* This class is parameterized by a coordinate class `Coordinate_2`, and a traits class `Traits`.

View File

@ -101,7 +101,7 @@ public:
// [2] Reference: "M. S. Floater, Wachspress and mean value coordinates, to appear in the Proceedings of the 14th International Conference on Approximation Theory, G. Fasshauer and L. L. Schumaker (eds.)."
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Mean_value_2` implements 2D mean value coordinates ( \cite cgal:bc:hf-mvcapp-06, \cite cgal:bc:fhk-gcbcocp-06, \cite cgal:f-mvc-03 ).
* This class is parameterized by a traits class `Traits`, and it is used as a coordinate class to complete the class `Generalized_barycentric_coordinates_2`.
* For a polygon with three vertices (triangle) it is better to use the class `Triangle_coordinates_2`.

View File

@ -48,7 +48,7 @@ namespace Barycentric_coordinates {
// Examples: see the User Manual - https://doc.cgal.org/latest/Manual/index.html.
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Segment_coordinates_2` implements barycentric coordinates with respect to an arbitrary non-degenerate segment along an arbitrary line in the plane.
* This class is parameterized by a traits class `Traits`.

View File

@ -49,7 +49,7 @@ namespace Barycentric_coordinates {
// [1] Reference: Weisstein, Eric W. "Barycentric Coordinates." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BarycentricCoordinates.html.
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Triangle_coordinates_2` implements barycentric coordinates ( <a href="http://mathworld.wolfram.com/BarycentricCoordinates.html" target=blanc>[1]</a>,
* <a href="http://en.wikipedia.org/wiki/Barycentric_coordinate_system" target=blanc>[2]</a> ) with respect to an arbitrary non-degenerate triangle in the plane.
* This class is parameterized by a traits class `Traits`.

View File

@ -49,7 +49,7 @@ namespace Barycentric_coordinates {
// [1] Reference: "M. S. Floater, K. Hormann, and G. Kos. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24(1-4):311-331, 2006.".
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The class `Wachspress_2` implements 2D Wachspress coordinates ( \cite cgal:bc:fhk-gcbcocp-06, \cite cgal:bc:mlbd-gbcip-02, \cite cgal:bc:w-rfeb-75 ).
* This class is parameterized by a traits class `Traits`, and it is used as a coordinate class to complete the class `Generalized_barycentric_coordinates_2`.
* For a polygon with three vertices it is better to use the class `Triangle_coordinates_2`.

View File

@ -32,7 +32,7 @@
namespace CGAL {
/*!
* \ingroup PkgBarycentric_coordinates_2
* \ingroup PkgBarycentric_coordinates_2Ref
* The namespace Barycentric_coordinates contains implementations of all generalized barycentric coordinates: 2D, 3D, related enumerations, and so on.
*/

View File

@ -2,7 +2,7 @@ namespace CGAL {
/*!
\addtogroup boolean_complement Complement Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_complement
The `complement` function is overloaded. Depending on the
@ -58,7 +58,7 @@ namespace CGAL {
/*!
\addtogroup boolean_difference Difference Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_difference
Each one of these functions computes the difference between two given
@ -181,7 +181,7 @@ namespace CGAL {
/*!
\addtogroup boolean_do_intersect Intersection Testing Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_do_intersect
Each one of these functions computes if the interior of two given
@ -305,7 +305,7 @@ namespace CGAL {
/*!
\addtogroup boolean_intersection Intersection Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_intersection
Each one of these functions computes the intersection of two given
@ -467,7 +467,7 @@ namespace CGAL {
/*!
\addtogroup boolean_join Union Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_union
Each one of these functions computes the union of two given polygons
@ -621,7 +621,7 @@ OutputIterator oi);
namespace CGAL {
/*!
\addtogroup boolean_oriented_side Oriented Side Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_oriented_side
Each one of these functions returns `ON_POSITIVE_SIDE` if the two
@ -706,7 +706,7 @@ namespace CGAL {
/*!
\addtogroup boolean_symmetric_difference Symmetric Difference Functions
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_symmetric_difference
Each one of these functions computes the symmetric difference between

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
An instance of this template serves as a basis type for any face record
of the <span class="textsc">Dcel</span> class used by instances of the
@ -22,7 +22,7 @@ further.
class Gps_face_base : public Arr_face_base {};
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
An instance of this teplate serves as a basis type for any halfedge record
of the <span class="textsc">Dcel</span> class used by instances of the
@ -44,7 +44,7 @@ class Gps_halfedge_base : public Arr_halfedge_base<X_monotone_curve_2>
{};
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
The default <span class="textsc">Dcel</span> class template used by the
`General_polygon_set_2` and `General_polygon_with_holes_2` class templates.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
The class `General_polygon_2` models the concept `GeneralPolygon_2`.
It represents a simple general-polygon. It is parameterized with the type

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
An object of the `General_polygon_set_2` class-template represents a
point set in the plane bounded by \f$ x\f$ monotone curves. Points in the set

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
The traits class `Gps_circle_segment_traits_2` models the `GeneralPolygonSetTraits_2`
concept. It enables Boolean set-operations on general polygons bounded by

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\cgalModels `GeneralPolygonSetTraits_2`

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
The traits class `Gps_traits_2` models the concept
`GeneralPolygonSetTraits_2`. It inherits from the instantiated

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
The class `Polygon_set_2` represents sets of linear polygons with holes.
The first two template parameters (`Kernel` and `Container`)

View File

@ -2,7 +2,7 @@ namespace CGAL {
/*!
\addtogroup boolean_connect_holes Functions on Polygon with Holes
\ingroup PkgBooleanSetOperations2
\ingroup PkgBooleanSetOperations2Ref
\anchor ref_bso_connect_holes

View File

@ -1,20 +1,20 @@
/// \defgroup PkgBooleanSetOperations2 2D Regularized Boolean Set-Operations Reference
/// \defgroup PkgBooleanSetOperations2Ref 2D Regularized Boolean Set-Operations Reference
/// \defgroup PkgBooleanSetOperations2Concepts Concepts
/// \ingroup PkgBooleanSetOperations2
/// \ingroup PkgBooleanSetOperations2Ref
/// \cgalConceptNamespace
/// The namespace containing concepts specific to 2D Boolean Set Operations.
namespace ArrDirectionalTraits {}
/*!
\addtogroup PkgBooleanSetOperations2
\addtogroup PkgBooleanSetOperations2Ref
\todo check generated documentation
\cgalPkgDescriptionBegin{2D Regularized Boolean Set-Operations,PkgBooleanSetOperations2Summary}
\cgalPkgPicture{Boolean_set_operations_2.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Efi Fogel, Ophir Setter, Ron Wein, Guy Zucker, Baruch Zukerman, and Dan Halperin}
\cgalPkgDesc{This package consists of the implementation of Boolean set-operations on point sets bounded by weakly x-monotone curves in 2-dimensional Euclidean space. In particular, it contains the implementation of regularized Boolean set-operations, intersection predicates, and point containment predicates.}
\cgalPkgManuals{Chapter_2D_Regularized_Boolean_Set-Operations,PkgBooleanSetOperations2}
\cgalPkgManuals{Chapter_2D_Regularized_Boolean_Set-Operations,PkgBooleanSetOperations2Ref}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.2}

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of class `Approximate_min_ellipsoid_d` is an approximation to the
ellipsoid of smallest volume enclosing a finite multiset of points

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Approximate_min_ellipsoid_d_traits_2` is a traits class for
`CGAL::Approximate_min_ellipsoid_d<Traits>` using the

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Approximate_min_ellipsoid_d_traits_3` is a traits class for
`CGAL::Approximate_min_ellipsoid_d<Traits>` using the

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Approximate_min_ellipsoid_d_traits_d` is a traits class for
`CGAL::Approximate_min_ellipsoid_d<Traits>` using the

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of the class `Min_annulus_d` is the unique annulus (region between
two concentric spheres with radii \f$ r\f$ and \f$ R\f$, \f$ r \leq R\f$) enclosing a

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of the class `Min_circle_2` is the unique circle of smallest area
enclosing a finite (multi)set of points in two-dimensional Euclidean

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_circle_2_traits_2` is a traits class for `Min_circle_2<Traits>`
using the two-dimensional \cgal kernel.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of the class `Min_ellipse_2` is the unique ellipse of smallest area
enclosing a finite (multi)set of points in two-dimensional euclidean

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_ellipse_2_traits_2` is a traits class for `CGAL::Min_ellipse_2<Traits>`
using the two-di-men-sional \cgal kernel.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_quadrilateral_default_traits_2` is a traits class for the
functions `min_rectangle_2`, `min_parallelogram_2` and

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_sphere_annulus_d_traits_2` is a traits class for the \f$ d\f$-dimensional
optimisation algorithms using the two-dimensional \cgal kernel.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_sphere_annulus_d_traits_3` is a traits class for the \f$ d\f$-dimensional
optimisation algorithms using the three-dimensional \cgal kernel.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Min_sphere_annulus_d_traits_d` is a traits class for the \f$ d\f$-dimensional
optimisation algorithms using the \f$ d\f$-dimensional \cgal kernel.

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of the class `Min_sphere_d` is the unique sphere of
smallest volume enclosing a finite (multi)set of points in \f$ d\f$-dimensional

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_points_d_traits_2<K,FT,UseSqrt,Algorithm>` is a

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_points_d_traits_3<K,FT,UseSqrt,Algorithm>` is a

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_points_d_traits_d<K,FT,Dim,UseSqrt,Algorithm>` is

View File

@ -2,7 +2,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
An object of the class `Min_sphere_of_spheres_d` is a data structure that represents
the unique sphere of smallest volume enclosing a finite set of spheres

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_spheres_d_traits_2<K,FT,UseSqrt,Algorithm>` is a

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_spheres_d_traits_3<K,FT,UseSqrt,Algorithm>` is a

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class
`Min_sphere_of_spheres_d_traits_d<K,FT,Dim,UseSqrt,Algorithm>` is

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The function computes a minimum area enclosing
parallelogram \f$ A(P)\f$ of a given convex point set \f$ P\f$. Note that
@ -72,7 +72,7 @@ Traits& t = Default_traits);
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The function computes a minimum area enclosing rectangle
\f$ R(P)\f$ of a given convex point set \f$ P\f$. Note that \f$ R(P)\f$ is not
@ -141,7 +141,7 @@ Traits& t = Default_traits);
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The function computes a minimum width enclosing strip
\f$ S(P)\f$ of a given convex point set \f$ P\f$. A strip is the closed region

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
The class `Rectangular_p_center_default_traits_2` defines types and operations
needed to compute rectilinear \f$ p\f$-centers of a planar point set
@ -194,7 +194,7 @@ construct_iso_rectangle_2_above_right_point_2_object() const;
};
/*!
\ingroup PkgBoundingVolumes
\ingroup PkgBoundingVolumesRef
Computes rectilinear
\f$ p\f$-centers of a planar point set, i.e.\ a set of \f$ p\f$ points such

View File

@ -1,15 +1,15 @@
/// \defgroup PkgBoundingVolumes Bounding Volumes Reference
/// \defgroup PkgBoundingVolumesRef Bounding Volumes Reference
/// \defgroup PkgBoundingVolumesConcepts Concepts
/// \ingroup PkgBoundingVolumes
/// \ingroup PkgBoundingVolumesRef
/*!
\addtogroup PkgBoundingVolumes
\addtogroup PkgBoundingVolumesRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Bounding Volumes,PkgBoundingVolumesSummary}
\cgalPkgPicture{minCircle.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven Schönherr}
\cgalPkgDesc{This package provides algorithms for computing optimal bounding volumes of point sets. In d-dimensional space, the smallest enclosing sphere, ellipsoid (approximate), and annulus can be computed. In 3-dimensional space, the smallest enclosing strip is available as well, and in 2-dimensional space, there are algorithms for a number of additional volumes (rectangles, parallelograms, \f$ k=2,3,4\f$ axis-aligned rectangles). The smallest enclosing sphere algorithm can also be applied to a set of d-dimensional spheres.}
\cgalPkgManuals{Chapter_Bounding_Volumes,PkgBoundingVolumes}
\cgalPkgManuals{Chapter_Bounding_Volumes,PkgBoundingVolumesRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{1.1}

View File

@ -1,24 +1,24 @@
/// \defgroup PkgBoxIntersectionD Intersecting Sequences of dD Iso-oriented Boxes Reference
/// \defgroup PkgBoxIntersectionDRef Intersecting Sequences of dD Iso-oriented Boxes Reference
/// \defgroup PkgBoxIntersectionDConcepts Concepts
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/// \defgroup PkgBoxIntersectionDClasses Classes
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/// \defgroup PkgBoxIntersectionD_box_intersection_d CGAL::box_intersection_d()
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/// \defgroup PkgBoxIntersectionD_box_intersection_all_pairs_d CGAL::box_intersection_all_pairs_d()
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/// \defgroup PkgBoxIntersectionD_box_self_intersection_d CGAL::box_self_intersection_d()
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/// \defgroup PkgBoxIntersectionD_box_self_intersection_all_pairs_d CGAL::box_self_intersection_all_pairs_d()
/// \ingroup PkgBoxIntersectionD
/// \ingroup PkgBoxIntersectionDRef
/*!
\addtogroup PkgBoxIntersectionD
\addtogroup PkgBoxIntersectionDRef
\todo de-math and change D to d for the dimension
@ -27,7 +27,7 @@
\cgalPkgSummaryBegin
\cgalPkgAuthors{Lutz Kettner, Andreas Meyer, and Afra Zomorodian}
\cgalPkgDesc{An efficient algorithm for finding all intersecting pairs for large numbers of iso-oriented boxes, in order to apply a user defined callback on them. Typically these boxes will be bounding boxes of more complicated geometries. The algorithm is useful for (self-) intersection tests of surfaces etc. }
\cgalPkgManuals{Chapter_Intersecting_Sequences_of_dD_Iso-oriented_Boxes,PkgBoxIntersectionD}
\cgalPkgManuals{Chapter_Intersecting_Sequences_of_dD_Iso-oriented_Boxes,PkgBoxIntersectionDRef}
\cgalPkgSummaryEnd
\cgalPkgShortInfoBegin
\cgalPkgSince{3.1}

View File

@ -1,5 +1,5 @@
/*!
\ingroup PkgCGALIpelets
\ingroup PkgCGALIpeletsRef
The registration of a new ipelet can be done using the macro command `CGAL_IPELET`.
Taking as a parameter the name of the class defining the new ipelet, that macro must be placed in the source
file after the class definition.
@ -9,7 +9,7 @@ file after the class definition.
namespace CGAL {
/*!
\ingroup PkgCGALIpelets
\ingroup PkgCGALIpeletsRef
`Ipelet_base` is an abstract base class for defining an ipelet.
The only function that needs to be defined in a derived class is

Some files were not shown because too many files have changed in this diff Show More