Make Eigen_vcm_traits template of floating types with static_casts for Eigen conversion

This commit is contained in:
Simon Giraudot 2015-08-21 09:16:46 +02:00
parent 9e0e0b7c8a
commit a3bcd62a42
1 changed files with 34 additions and 29 deletions

View File

@ -30,15 +30,20 @@ namespace CGAL {
/// A model of the concept `VCMTraits` using \ref thirdpartyEigen. /// A model of the concept `VCMTraits` using \ref thirdpartyEigen.
/// \cgalModels `VCMTraits` /// \cgalModels `VCMTraits`
template <typename FT>
class Eigen_vcm_traits{ class Eigen_vcm_traits{
// Construct the covariance matrix // Construct the covariance matrix
static Eigen::Matrix3f static Eigen::Matrix3f
construct_covariance_matrix (const cpp11::array<double,6>& cov) { construct_covariance_matrix (const cpp11::array<FT,6>& cov) {
Eigen::Matrix3f m; Eigen::Matrix3f m;
m(0,0) = cov[0]; m(0,1) = cov[1]; m(0,2) = cov[2]; m(0,0) = static_cast<float>(cov[0]);
m(1,1) = cov[3]; m(1,2) = cov[4]; m(0,1) = static_cast<float>(cov[1]);
m(2,2) = cov[5]; m(0,2) = static_cast<float>(cov[2]);
m(1,1) = static_cast<float>(cov[3]);
m(1,2) = static_cast<float>(cov[4]);
m(2,2) = static_cast<float>(cov[5]);
m(1, 0) = m(0,1); m(2, 0) = m(0, 2); m(2, 1) = m(1, 2); m(1, 0) = m(0,1); m(2, 0) = m(0, 2); m(2, 1) = m(1, 2);
@ -65,8 +70,8 @@ class Eigen_vcm_traits{
public: public:
static bool static bool
diagonalize_selfadjoint_covariance_matrix( diagonalize_selfadjoint_covariance_matrix(
const cpp11::array<double,6>& cov, const cpp11::array<FT,6>& cov,
cpp11::array<double, 3>& eigenvalues) cpp11::array<FT, 3>& eigenvalues)
{ {
Eigen::Matrix3f m = construct_covariance_matrix(cov); Eigen::Matrix3f m = construct_covariance_matrix(cov);
@ -77,9 +82,9 @@ public:
if (res) if (res)
{ {
eigenvalues[0]=eigenvalues_[0]; eigenvalues[0]=static_cast<FT>(eigenvalues_[0]);
eigenvalues[1]=eigenvalues_[1]; eigenvalues[1]=static_cast<FT>(eigenvalues_[1]);
eigenvalues[2]=eigenvalues_[2]; eigenvalues[2]=static_cast<FT>(eigenvalues_[2]);
} }
return res; return res;
@ -87,9 +92,9 @@ public:
static bool static bool
diagonalize_selfadjoint_covariance_matrix( diagonalize_selfadjoint_covariance_matrix(
const cpp11::array<double,6>& cov, const cpp11::array<FT,6>& cov,
cpp11::array<double, 3>& eigenvalues, cpp11::array<FT, 3>& eigenvalues,
cpp11::array<double, 9>& eigenvectors) cpp11::array<FT, 9>& eigenvectors)
{ {
Eigen::Matrix3f m = construct_covariance_matrix(cov); Eigen::Matrix3f m = construct_covariance_matrix(cov);
@ -100,18 +105,18 @@ public:
if (res) if (res)
{ {
eigenvalues[0]=eigenvalues_[0]; eigenvalues[0]=static_cast<FT>(eigenvalues_[0]);
eigenvalues[1]=eigenvalues_[1]; eigenvalues[1]=static_cast<FT>(eigenvalues_[1]);
eigenvalues[2]=eigenvalues_[2]; eigenvalues[2]=static_cast<FT>(eigenvalues_[2]);
eigenvectors[0]=eigenvectors_(0,0); eigenvectors[0]=static_cast<FT>(eigenvectors_(0,0));
eigenvectors[1]=eigenvectors_(1,0); eigenvectors[1]=static_cast<FT>(eigenvectors_(1,0));
eigenvectors[2]=eigenvectors_(2,0); eigenvectors[2]=static_cast<FT>(eigenvectors_(2,0));
eigenvectors[3]=eigenvectors_(0,1); eigenvectors[3]=static_cast<FT>(eigenvectors_(0,1));
eigenvectors[4]=eigenvectors_(1,1); eigenvectors[4]=static_cast<FT>(eigenvectors_(1,1));
eigenvectors[5]=eigenvectors_(2,1); eigenvectors[5]=static_cast<FT>(eigenvectors_(2,1));
eigenvectors[6]=eigenvectors_(0,2); eigenvectors[6]=static_cast<FT>(eigenvectors_(0,2));
eigenvectors[7]=eigenvectors_(1,2); eigenvectors[7]=static_cast<FT>(eigenvectors_(1,2));
eigenvectors[8]=eigenvectors_(2,2); eigenvectors[8]=static_cast<FT>(eigenvectors_(2,2));
} }
return res; return res;
@ -120,8 +125,8 @@ public:
// Extract the eigenvector associated to the largest eigenvalue // Extract the eigenvector associated to the largest eigenvalue
static bool static bool
extract_largest_eigenvector_of_covariance_matrix ( extract_largest_eigenvector_of_covariance_matrix (
const cpp11::array<double,6>& cov, const cpp11::array<FT,6>& cov,
cpp11::array<double,3> &normal) cpp11::array<FT,3> &normal)
{ {
// Construct covariance matrix // Construct covariance matrix
Eigen::Matrix3f m = construct_covariance_matrix(cov); Eigen::Matrix3f m = construct_covariance_matrix(cov);
@ -134,9 +139,9 @@ public:
} }
// Eigenvalues are already sorted by increasing order // Eigenvalues are already sorted by increasing order
normal[0]=eigenvectors(0,0); normal[0]=static_cast<FT>(eigenvectors(0,0));
normal[1]=eigenvectors(1,0); normal[1]=static_cast<FT>(eigenvectors(1,0));
normal[2]=eigenvectors(2,0); normal[2]=static_cast<FT>(eigenvectors(2,0));
return true; return true;
} }