diff --git a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h index fa1307325be..f68beaa9a62 100644 --- a/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h +++ b/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangulation_2.h @@ -169,39 +169,39 @@ public: return Base::is_infinite(v); } - bool is_non_hyperbolic(Face_handle f) const + bool is_Delaunay_hyperbolic(Face_handle f) const { - return has_infinite_vertex(f) || is_finite_non_hyperbolic(f); + return !has_infinite_vertex(f) && !is_finite_non_hyperbolic(f); } - bool is_non_hyperbolic(Face_handle f, int i) const + bool is_Delaunay_hyperbolic(Face_handle f, int i) const { - return has_infinite_vertex(f, i) || is_finite_non_hyperbolic(f, i); + return !has_infinite_vertex(f, i) && !is_finite_non_hyperbolic(f, i); } - bool is_non_hyperbolic(const Edge& e) const + bool is_Delaunay_hyperbolic(const Edge& e) const { - return is_non_hyperbolic(e.first, e.second); + return is_Delaunay_hyperbolic(e.first, e.second); } - bool is_non_hyperbolic(const Edge_circulator& ec) const + bool is_Delaunay_hyperbolic(const Edge_circulator& ec) const { - return is_non_hyperbolic(*ec); + return is_Delaunay_hyperbolic(*ec); } - bool is_non_hyperbolic(const All_edges_iterator& ei) const + bool is_Delaunay_hyperbolic(const All_edges_iterator& ei) const { - return is_non_hyperbolic(*ei); + return is_Delaunay_hyperbolic(*ei); } // is_infinite functions are kept in order to reuse Triangulation_2 demo : // apply_to_range is called by Qt/TriangulationGraphicsItem.h // TODO: document that is_infinite functions are not inherited from Triangulation_2 - bool is_infinite(Face_handle f) const { return is_non_hyperbolic(f); } - bool is_infinite(Face_handle f, int i) const { return is_non_hyperbolic(f,i); } - bool is_infinite(const Edge e) const { return is_non_hyperbolic(e); } - bool is_infinite(const Edge_circulator& ec) const { return is_non_hyperbolic(ec); } - bool is_infinite(const All_edges_iterator& ei) const { return is_non_hyperbolic(ei); } + bool is_infinite(Face_handle f) const { return !is_Delaunay_hyperbolic(f); } + bool is_infinite(Face_handle f, int i) const { return !is_Delaunay_hyperbolic(f,i); } + bool is_infinite(const Edge e) const { return !is_Delaunay_hyperbolic(e); } + bool is_infinite(const Edge_circulator& ec) const { return !is_Delaunay_hyperbolic(ec); } + bool is_infinite(const All_edges_iterator& ei) const { return !is_Delaunay_hyperbolic(ei); } private: @@ -301,7 +301,7 @@ private: mark_face(next, test); // go deeper if the neighbor is non_hyperbolic - if(is_non_hyperbolic(next)) { + if(!is_Delaunay_hyperbolic(next)) { backtrack.push(next); break; } @@ -335,7 +335,7 @@ private: next = f->neighbor(ccw(i)); // turn ccw around v opposite_face = f->neighbor(i); - if(this->is_non_hyperbolic(opposite_face)) { + if(!this->is_Delaunay_hyperbolic(opposite_face)) { return false; } @@ -432,10 +432,10 @@ public: return t->is_infinite(vit); } bool operator()(const All_faces_iterator & fit) const { - return t->is_non_hyperbolic(fit); + return !t->is_Delaunay_hyperbolic(fit); } bool operator()(const All_edges_iterator & eit ) const { - return t->is_non_hyperbolic(eit); + return !t->is_Delaunay_hyperbolic(eit); } }; @@ -556,7 +556,7 @@ public: Voronoi_point dual(Face_handle f) const { - CGAL_triangulation_precondition (!this->is_non_hyperbolic(f)); + CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f)); return this->geom_traits().construct_hyperbolic_circumcenter_2_object() ( f->vertex(0)->point(), f->vertex(1)->point(), f->vertex(2)->point()); @@ -571,7 +571,7 @@ public: Hyperbolic_segment dual(Face_handle f, int i) const { - CGAL_triangulation_precondition (!this->is_non_hyperbolic(f,i)); + CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f,i)); if(this->dimension() == 1) { Point p = f->vertex(cw(i))->point(); @@ -587,7 +587,7 @@ public: //TODO MT store values of bools to avoid recomputing is-hyperbolic several times // boths faces are non_hyperbolic, but the incident edge is hyperbolic - if( is_non_hyperbolic(f) && is_non_hyperbolic(n) ){ + if( !is_Delaunay_hyperbolic(f) && !is_Delaunay_hyperbolic(n) ){ const Point& p = f->vertex(ccw(i))->point(); const Point& q = f->vertex(cw(i))->point(); @@ -598,7 +598,7 @@ public: } // both faces are hyperbolic - if( !is_non_hyperbolic(f) && !is_non_hyperbolic(n) ) { + if( is_Delaunay_hyperbolic(f) && is_Delaunay_hyperbolic(n) ) { const Point& p = f->vertex(ccw(i))->point(); const Point& q = f->vertex(cw(i))->point(); @@ -612,7 +612,7 @@ public: // one of the incident faces is non_hyperbolic Face_handle hyp_face = f; - if(is_non_hyperbolic(f)) { + if(!is_Delaunay_hyperbolic(f)) { hyp_face = n; i = in; }