mirror of https://github.com/CGAL/cgal
renamed functions 'is_non_hyperbolic' to 'is_Delaunay_hyperbolic' (for consistency in affirmative queries)
This commit is contained in:
parent
8287d55a98
commit
a4851a8ef9
|
|
@ -169,39 +169,39 @@ public:
|
|||
return Base::is_infinite(v);
|
||||
}
|
||||
|
||||
bool is_non_hyperbolic(Face_handle f) const
|
||||
bool is_Delaunay_hyperbolic(Face_handle f) const
|
||||
{
|
||||
return has_infinite_vertex(f) || is_finite_non_hyperbolic(f);
|
||||
return !has_infinite_vertex(f) && !is_finite_non_hyperbolic(f);
|
||||
}
|
||||
|
||||
bool is_non_hyperbolic(Face_handle f, int i) const
|
||||
bool is_Delaunay_hyperbolic(Face_handle f, int i) const
|
||||
{
|
||||
return has_infinite_vertex(f, i) || is_finite_non_hyperbolic(f, i);
|
||||
return !has_infinite_vertex(f, i) && !is_finite_non_hyperbolic(f, i);
|
||||
}
|
||||
|
||||
bool is_non_hyperbolic(const Edge& e) const
|
||||
bool is_Delaunay_hyperbolic(const Edge& e) const
|
||||
{
|
||||
return is_non_hyperbolic(e.first, e.second);
|
||||
return is_Delaunay_hyperbolic(e.first, e.second);
|
||||
}
|
||||
|
||||
bool is_non_hyperbolic(const Edge_circulator& ec) const
|
||||
bool is_Delaunay_hyperbolic(const Edge_circulator& ec) const
|
||||
{
|
||||
return is_non_hyperbolic(*ec);
|
||||
return is_Delaunay_hyperbolic(*ec);
|
||||
}
|
||||
|
||||
bool is_non_hyperbolic(const All_edges_iterator& ei) const
|
||||
bool is_Delaunay_hyperbolic(const All_edges_iterator& ei) const
|
||||
{
|
||||
return is_non_hyperbolic(*ei);
|
||||
return is_Delaunay_hyperbolic(*ei);
|
||||
}
|
||||
|
||||
// is_infinite functions are kept in order to reuse Triangulation_2 demo :
|
||||
// apply_to_range is called by Qt/TriangulationGraphicsItem.h
|
||||
// TODO: document that is_infinite functions are not inherited from Triangulation_2
|
||||
bool is_infinite(Face_handle f) const { return is_non_hyperbolic(f); }
|
||||
bool is_infinite(Face_handle f, int i) const { return is_non_hyperbolic(f,i); }
|
||||
bool is_infinite(const Edge e) const { return is_non_hyperbolic(e); }
|
||||
bool is_infinite(const Edge_circulator& ec) const { return is_non_hyperbolic(ec); }
|
||||
bool is_infinite(const All_edges_iterator& ei) const { return is_non_hyperbolic(ei); }
|
||||
bool is_infinite(Face_handle f) const { return !is_Delaunay_hyperbolic(f); }
|
||||
bool is_infinite(Face_handle f, int i) const { return !is_Delaunay_hyperbolic(f,i); }
|
||||
bool is_infinite(const Edge e) const { return !is_Delaunay_hyperbolic(e); }
|
||||
bool is_infinite(const Edge_circulator& ec) const { return !is_Delaunay_hyperbolic(ec); }
|
||||
bool is_infinite(const All_edges_iterator& ei) const { return !is_Delaunay_hyperbolic(ei); }
|
||||
|
||||
private:
|
||||
|
||||
|
|
@ -301,7 +301,7 @@ private:
|
|||
mark_face(next, test);
|
||||
|
||||
// go deeper if the neighbor is non_hyperbolic
|
||||
if(is_non_hyperbolic(next)) {
|
||||
if(!is_Delaunay_hyperbolic(next)) {
|
||||
backtrack.push(next);
|
||||
break;
|
||||
}
|
||||
|
|
@ -335,7 +335,7 @@ private:
|
|||
next = f->neighbor(ccw(i)); // turn ccw around v
|
||||
|
||||
opposite_face = f->neighbor(i);
|
||||
if(this->is_non_hyperbolic(opposite_face)) {
|
||||
if(!this->is_Delaunay_hyperbolic(opposite_face)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -432,10 +432,10 @@ public:
|
|||
return t->is_infinite(vit);
|
||||
}
|
||||
bool operator()(const All_faces_iterator & fit) const {
|
||||
return t->is_non_hyperbolic(fit);
|
||||
return !t->is_Delaunay_hyperbolic(fit);
|
||||
}
|
||||
bool operator()(const All_edges_iterator & eit ) const {
|
||||
return t->is_non_hyperbolic(eit);
|
||||
return !t->is_Delaunay_hyperbolic(eit);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -556,7 +556,7 @@ public:
|
|||
Voronoi_point
|
||||
dual(Face_handle f) const
|
||||
{
|
||||
CGAL_triangulation_precondition (!this->is_non_hyperbolic(f));
|
||||
CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f));
|
||||
|
||||
return this->geom_traits().construct_hyperbolic_circumcenter_2_object()
|
||||
( f->vertex(0)->point(), f->vertex(1)->point(), f->vertex(2)->point());
|
||||
|
|
@ -571,7 +571,7 @@ public:
|
|||
Hyperbolic_segment
|
||||
dual(Face_handle f, int i) const
|
||||
{
|
||||
CGAL_triangulation_precondition (!this->is_non_hyperbolic(f,i));
|
||||
CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f,i));
|
||||
|
||||
if(this->dimension() == 1) {
|
||||
Point p = f->vertex(cw(i))->point();
|
||||
|
|
@ -587,7 +587,7 @@ public:
|
|||
//TODO MT store values of bools to avoid recomputing is-hyperbolic several times
|
||||
|
||||
// boths faces are non_hyperbolic, but the incident edge is hyperbolic
|
||||
if( is_non_hyperbolic(f) && is_non_hyperbolic(n) ){
|
||||
if( !is_Delaunay_hyperbolic(f) && !is_Delaunay_hyperbolic(n) ){
|
||||
const Point& p = f->vertex(ccw(i))->point();
|
||||
const Point& q = f->vertex(cw(i))->point();
|
||||
|
||||
|
|
@ -598,7 +598,7 @@ public:
|
|||
}
|
||||
|
||||
// both faces are hyperbolic
|
||||
if( !is_non_hyperbolic(f) && !is_non_hyperbolic(n) ) {
|
||||
if( is_Delaunay_hyperbolic(f) && is_Delaunay_hyperbolic(n) ) {
|
||||
const Point& p = f->vertex(ccw(i))->point();
|
||||
const Point& q = f->vertex(cw(i))->point();
|
||||
|
||||
|
|
@ -612,7 +612,7 @@ public:
|
|||
// one of the incident faces is non_hyperbolic
|
||||
Face_handle hyp_face = f;
|
||||
|
||||
if(is_non_hyperbolic(f)) {
|
||||
if(!is_Delaunay_hyperbolic(f)) {
|
||||
hyp_face = n;
|
||||
i = in;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue