Cleaned up

This commit is contained in:
Efi Fogel 2022-05-19 23:57:42 +03:00
parent 2429950bdd
commit a5e015a8a3
1 changed files with 171 additions and 303 deletions

View File

@ -33,8 +33,7 @@
namespace CGAL {
/*!
* \class A traits class for maintaining an arrangement of conic arcs (bounded
/*! \class A traits class for maintaining an arrangement of conic arcs (bounded
* segments of algebraic curves of degree 2 at most).
*
* The class is templated with two parameters:
@ -46,14 +45,14 @@ namespace CGAL {
* Nt_traits A traits class for performing various operations on the integer,
* rational and algebraic types.
*/
template <class Rat_kernel_, class Alg_kernel_, class Nt_traits_>
template <typename RatKernel, typename AlgKernel, typename NtTraits>
class Arr_conic_traits_2
{
public:
typedef Rat_kernel_ Rat_kernel;
typedef Alg_kernel_ Alg_kernel;
typedef Nt_traits_ Nt_traits;
typedef RatKernel Rat_kernel;
typedef AlgKernel Alg_kernel;
typedef NtTraits Nt_traits;
typedef typename Rat_kernel::FT Rational;
typedef typename Rat_kernel::Point_2 Rat_point_2;
@ -85,7 +84,6 @@ public:
typedef unsigned int Multiplicity;
private:
// Type definition for the intersection points mapping.
typedef typename X_monotone_curve_2::Conic_id Conic_id;
typedef typename X_monotone_curve_2::Intersection_point Intersection_point;
@ -95,16 +93,12 @@ private:
// intersection points.
public:
/*!
* Default constructor.
/*! Default constructor.
*/
Arr_conic_traits_2 ()
{}
Arr_conic_traits_2() {}
/*! Get the next conic index. */
static unsigned int get_index ()
{
/*! Obtain the next conic index. */
static unsigned int get_index() {
#ifdef CGAL_NO_ATOMIC
static unsigned int index;
#else
@ -116,11 +110,9 @@ public:
/// \name Basic functor definitions.
//@{
class Compare_x_2
{
class Compare_x_2 {
public:
/*!
* Compare the x-coordinates of two points.
/*! Compare the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
@ -134,101 +126,73 @@ public:
}
};
/*! Get a Compare_x_2 functor object. */
Compare_x_2 compare_x_2_object () const
{
return Compare_x_2();
}
/*! Obtain a Compare_x_2 functor object. */
Compare_x_2 compare_x_2_object () const { return Compare_x_2(); }
class Compare_xy_2
{
class Compare_xy_2 {
public:
/*!
* Compares two points lexigoraphically: by x, then by y.
/*! Compares two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
* EQUAL if the two points are equal.
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
Comparison_result operator()(const Point_2& p1, const Point_2& p2) const {
Alg_kernel ker;
return (ker.compare_xy_2_object() (p1, p2));
return ker.compare_xy_2_object()(p1, p2);
}
};
/*! Get a Compare_xy_2 functor object. */
/*! Obtain a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object() const
{
return Compare_xy_2();
}
{ return Compare_xy_2(); }
class Construct_min_vertex_2
{
class Construct_min_vertex_2 {
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
/*! Obtain the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
const Point_2& operator()(const X_monotone_curve_2 & cv) const
{
return (cv.left());
}
{ return cv.left(); }
};
/*! Get a Construct_min_vertex_2 functor object. */
/*! Obtain a Construct_min_vertex_2 functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object() const
{
return Construct_min_vertex_2();
}
{ return Construct_min_vertex_2(); }
class Construct_max_vertex_2
{
class Construct_max_vertex_2 {
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
/*! Obtain the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
const Point_2& operator()(const X_monotone_curve_2 & cv) const
{
return (cv.right());
}
{ return cv.right(); }
};
/*! Get a Construct_max_vertex_2 functor object. */
/*! Obtain a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object() const
{
return Construct_max_vertex_2();
}
{ return Construct_max_vertex_2(); }
class Is_vertical_2
{
class Is_vertical_2 {
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
/*! Check whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
bool operator()(const X_monotone_curve_2& cv) const
{
return (cv.is_vertical());
}
{ return cv.is_vertical(); }
};
/*! Get an Is_vertical_2 functor object. */
/*! Obtain an Is_vertical_2 functor object. */
Is_vertical_2 is_vertical_2_object() const
{
return Is_vertical_2();
}
{ return Is_vertical_2(); }
class Compare_y_at_x_2
{
class Compare_y_at_x_2 {
public:
/*!
* Return the location of the given point with respect to the input curve.
/*! Return the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
@ -241,42 +205,34 @@ public:
{
Alg_kernel ker;
if (cv.is_vertical())
{
if (cv.is_vertical()) {
// A special treatment for vertical segments:
// In case p has the same x c-ordinate of the vertical segment, compare
// it to the segment endpoints to determine its position.
Comparison_result res1 = ker.compare_y_2_object()(p, cv.left());
Comparison_result res2 = ker.compare_y_2_object()(p, cv.right());
if (res1 == res2)
return (res1);
else
return (EQUAL);
if (res1 == res2) return res1;
else return EQUAL;
}
// Check whether the point is exactly on the curve.
if (cv.contains_point(p))
return (EQUAL);
if (cv.contains_point(p)) return EQUAL;
// Get a point q on the x-monotone arc with the same x coordinate as p.
// Obtain a point q on the x-monotone arc with the same x coordinate as p.
Comparison_result x_res;
Point_2 q;
if ((x_res = ker.compare_x_2_object() (p, cv.left())) == EQUAL)
{
if ((x_res = ker.compare_x_2_object()(p, cv.left())) == EQUAL) {
q = cv.left();
}
else
{
else {
CGAL_precondition (x_res != SMALLER);
if ((x_res = ker.compare_x_2_object() (p, cv.right())) == EQUAL)
{
if ((x_res = ker.compare_x_2_object()(p, cv.right())) == EQUAL) {
q = cv.right();
}
else
{
else {
CGAL_precondition(x_res != LARGER);
q = cv.point_at_x (p);
@ -288,17 +244,13 @@ public:
}
};
/*! Get a Compare_y_at_x_2 functor object. */
/*! Obtain a Compare_y_at_x_2 functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object() const
{
return Compare_y_at_x_2();
}
{ return Compare_y_at_x_2(); }
class Compare_y_at_x_left_2
{
class Compare_y_at_x_left_2 {
public:
/*!
* Compares the y value of two x-monotone curves immediately to the left
/*! Compares the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
@ -317,44 +269,30 @@ public:
CGAL_precondition(cv1.contains_point(p) &&
cv2.contains_point(p));
CGAL_precondition_code (
Alg_kernel ker;
);
CGAL_precondition (ker.compare_xy_2_object() (p,
cv1.left()) == LARGER &&
ker.compare_xy_2_object() (p,
cv2.left()) == LARGER);
CGAL_precondition_code(Alg_kernel ker;);
CGAL_precondition(ker.compare_xy_2_object()(p, cv1.left()) == LARGER &&
ker.compare_xy_2_object()(p, cv2.left()) == LARGER);
// If one of the curves is vertical, it is below the other one.
if (cv1.is_vertical())
{
if (cv2.is_vertical())
// Both are vertical:
return (EQUAL);
else
return (SMALLER);
}
else if (cv2.is_vertical())
{
return (LARGER);
if (cv1.is_vertical()) {
// Check whether both are vertical:
if (cv2.is_vertical()) return EQUAL;
else return SMALLER;
}
else if (cv2.is_vertical()) return LARGER;
// Compare the two curves immediately to the left of p:
return (cv1.compare_to_left (cv2, p));
return cv1.compare_to_left(cv2, p);
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
/*! Obtain a Compare_y_at_x_left_2 functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const
{
return Compare_y_at_x_left_2();
}
{ return Compare_y_at_x_left_2(); }
class Compare_y_at_x_right_2
{
class Compare_y_at_x_right_2 {
public:
/*!
* Compares the y value of two x-monotone curves immediately to the right
/*! Compares the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
@ -370,48 +308,31 @@ public:
{
// Make sure that p lies on both curves, and that both are defined to its
// left (so their left endpoint is lexicographically smaller than p).
CGAL_precondition (cv1.contains_point (p) &&
cv2.contains_point (p));
CGAL_precondition_code (
Alg_kernel ker;
);
CGAL_precondition (ker.compare_xy_2_object() (p,
cv1.right()) == SMALLER &&
ker.compare_xy_2_object() (p,
cv2.right()) == SMALLER);
CGAL_precondition(cv1.contains_point(p) && cv2.contains_point(p));
CGAL_precondition_code(Alg_kernel ker;);
CGAL_precondition(ker.compare_xy_2_object()(p, cv1.right()) == SMALLER &&
ker.compare_xy_2_object()(p, cv2.right()) == SMALLER);
// If one of the curves is vertical, it is above the other one.
if (cv1.is_vertical())
{
if (cv2.is_vertical())
// Both are vertical:
return (EQUAL);
else
return (LARGER);
}
else if (cv2.is_vertical())
{
return (SMALLER);
if (cv1.is_vertical()) {
// Check whether both are vertical:
if (cv2.is_vertical()) return EQUAL;
else return LARGER;
}
else if (cv2.is_vertical()) return SMALLER;
// Compare the two curves immediately to the right of p:
return (cv1.compare_to_right (cv2, p));
return cv1.compare_to_right(cv2, p);
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
/*! Obtain a Compare_y_at_x_right_2 functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
{
return Compare_y_at_x_right_2();
}
{ return Compare_y_at_x_right_2(); }
class Equal_2
{
class Equal_2 {
public:
/*!
* Check if the two x-monotone curves are the same (have the same graph).
/*! Check whether the two x-monotone curves are the same (have the same graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
@ -419,33 +340,25 @@ public:
bool operator()(const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
if (&cv1 == &cv2)
return (true);
return (cv1.equals (cv2));
if (&cv1 == &cv2) return true;
return cv1.equals(cv2);
}
/*!
* Check if the two points are the same.
/*! Check whether the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
*/
bool operator() (const Point_2& p1, const Point_2& p2) const
{
if (&p1 == &p2)
return (true);
bool operator()(const Point_2& p1, const Point_2& p2) const {
if (&p1 == &p2) return (true);
Alg_kernel ker;
return(ker.compare_xy_2_object()(p1, p2) == EQUAL);
}
};
/*! Get an Equal_2 functor object. */
Equal_2 equal_2_object () const
{
return Equal_2();
}
/*! Obtain an Equal_2 functor object. */
Equal_2 equal_2_object() const { return Equal_2(); }
//@}
/// \name Intersections, subdivisions, and mergings
@ -455,7 +368,7 @@ public:
* A functor for subdividing curves into x-monotone curves.
*/
class Make_x_monotone_2 {
typedef Arr_conic_traits_2 <Rat_kernel_, Alg_kernel_, Nt_traits_> Self;
typedef Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits> Self;
public:
/*! Subdivide a given conic curve (or conic arc) into x-monotone subcurves
@ -467,8 +380,7 @@ public:
* \return the past-the-end iterator.
*/
template <typename OutputIterator>
OutputIterator operator()(const Curve_2& cv, OutputIterator oi) const
{
OutputIterator operator()(const Curve_2& cv, OutputIterator oi) const {
typedef boost::variant<Point_2, X_monotone_curve_2>
Make_x_monotone_result;
@ -524,8 +436,8 @@ public:
// tangnecy points (or both lies above it).
int ind_first = 0;
int ind_second = 1;
Alg_kernel_ ker;
typename Alg_kernel_::Line_2 line =
Alg_kernel ker;
typename Alg_kernel::Line_2 line =
ker.construct_line_2_object()(vtan_ps[0], vtan_ps[1]);
const Comparison_result start_pos =
ker.compare_y_at_x_2_object()(cv.source(), line);
@ -566,15 +478,13 @@ public:
}
};
/*! Get a Make_x_monotone_2 functor object. */
/*! Obtain a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(); }
class Split_2
{
class Split_2 {
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
/*! Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
@ -583,17 +493,11 @@ public:
*/
void operator()(const X_monotone_curve_2& cv, const Point_2 & p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
{
cv.split (p, c1, c2);
return;
}
{ cv.split(p, c1, c2); }
};
/*! Get a Split_2 functor object. */
Split_2 split_2_object () const
{
return Split_2();
}
/*! Obtain a Split_2 functor object. */
Split_2 split_2_object() const { return Split_2(); }
class Intersect_2 {
private:
@ -615,17 +519,15 @@ public:
OutputIterator operator()(const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi) const
{ return (cv1.intersect(cv2, _inter_map, oi)); }
{ return cv1.intersect(cv2, _inter_map, oi); }
};
/*! Get an Intersect_2 functor object. */
/*! Obtain an Intersect_2 functor object. */
Intersect_2 intersect_2_object() const { return (Intersect_2(inter_map)); }
class Are_mergeable_2
{
class Are_mergeable_2 {
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
/*! Check whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
@ -633,22 +535,17 @@ public:
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
return (cv1.can_merge_with (cv2));
}
{ return cv1.can_merge_with(cv2); }
};
/*! Get an Are_mergeable_2 functor object. */
/*! Obtain an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object() const
{
return Are_mergeable_2();
}
{ return Are_mergeable_2(); }
/*! \class Merge_2
* A functor that merges two x-monotone arcs into one.
*/
class Merge_2
{
class Merge_2 {
protected:
typedef Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits> Traits;
@ -663,8 +560,7 @@ public:
friend class Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits>;
public:
/*!
* Merge two given x-monotone curves into a single curve (segment).
/*! Merge two given x-monotone curves into a single curve (segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
@ -682,10 +578,7 @@ public:
};
/*! Obtain a Merge_2 functor object. */
Merge_2 merge_2_object() const
{
return Merge_2(this);
}
Merge_2 merge_2_object() const { return Merge_2(this); }
//@}
@ -693,35 +586,26 @@ public:
//@{
typedef double Approximate_number_type;
class Approximate_2
{
class Approximate_2 {
public:
/*!
* Return an approximation of a point coordinate.
/*! Return an approximation of a point coordinate.
* \param p The exact point.
* \param i The coordinate index (either 0 or 1).
* \pre i is either 0 or 1.
* \return An approximation of p's x-coordinate (if i == 0), or an
* approximation of p's y-coordinate (if i == 1).
*/
Approximate_number_type operator() (const Point_2& p,
int i) const
{
Approximate_number_type operator()(const Point_2& p, int i) const {
CGAL_precondition(i == 0 || i == 1);
if (i == 0)
return (CGAL::to_double(p.x()));
else
return (CGAL::to_double(p.y()));
if (i == 0) return CGAL::to_double(p.x());
else return CGAL::to_double(p.y());
}
};
/*! Get an Approximate_2 functor object. */
/*! Obtain an Approximate_2 functor object. */
Approximate_2 approximate_2_object () const
{
return Approximate_2();
}
{ return Approximate_2(); }
//! Functor
class Construct_x_monotone_curve_2 {
@ -736,7 +620,7 @@ public:
{ return (X_monotone_curve_2(p, q)); }
};
/*! Get a Construct_x_monotone_curve_2 functor object. */
/*! Obtain a Construct_x_monotone_curve_2 functor object. */
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object () const
{ return Construct_x_monotone_curve_2(); }
@ -750,10 +634,10 @@ public:
* \return A segment connecting p and q.
*/
Curve_2 operator()(const Point_2& p, const Point_2& q) const
{ return (Curve_2(p, q)); }
{ return Curve_2(p, q); }
};
/*! Get a Construct_curve_2 functor object. */
/*! Obtain a Construct_curve_2 functor object. */
Construct_curve_2 construct_curve_2_object () const
{ return Construct_curve_2(); }
//@}
@ -761,55 +645,39 @@ public:
/// \name Functor definitions for the Boolean set-operation traits.
//@{
class Compare_endpoints_xy_2
{
class Compare_endpoints_xy_2 {
public:
/*!
* Compare the endpoints of an $x$-monotone curve lexicographically.
/*! Compare the endpoints of an $x$-monotone curve lexicographically.
* (assuming the curve has a designated source and target points).
* \param cv The curve.
* \return SMALLER if the curve is directed right;
* LARGER if the curve is directed left.
*/
Comparison_result operator() (const X_monotone_curve_2& cv) const
{
if (cv.is_directed_right())
return (SMALLER);
else
return (LARGER);
Comparison_result operator() (const X_monotone_curve_2& cv) const {
if (cv.is_directed_right()) return SMALLER;
else return LARGER;
}
};
/*! Get a Compare_endpoints_xy_2 functor object. */
/*! Obtain a Compare_endpoints_xy_2 functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
}
{ return Compare_endpoints_xy_2(); }
class Construct_opposite_2
{
class Construct_opposite_2 {
public:
/*!
* Construct an opposite x-monotone (with swapped source and target).
/*! Construct an opposite x-monotone (with swapped source and target).
* \param cv The curve.
* \return The opposite curve.
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2& cv) const
{
return (cv.flip());
}
{ return cv.flip(); }
};
/*! Get a Construct_opposite_2 functor object. */
/*! Obtain a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2();
}
{ return Construct_opposite_2(); }
class Trim_2
{
class Trim_2 {
protected:
typedef Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits> Traits;