mirror of https://github.com/CGAL/cgal
Remove / comment out unused local typedefs. Fix one place where FT was used instead of RT (homogeneous coordinates, probably never compiled).
This commit is contained in:
parent
c42caa17a4
commit
a758751485
|
|
@ -125,7 +125,6 @@ namespace CGAL
|
|||
|
||||
Point_and_primitive_id closest_point(const Point& query) const
|
||||
{
|
||||
typedef typename Add_decorated_point<Traits, typename Traits::Primitive::Id>::Point_3 Decorated_point;
|
||||
Neighbor_search search(*m_p_tree, query, 1);
|
||||
return Point_and_primitive_id(static_cast<Point>(search.begin()->first), search.begin()->first.id());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -90,7 +90,6 @@ namespace CGAL {
|
|||
const K& k)
|
||||
{
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::FT FT;
|
||||
|
||||
typename K::Compute_squared_distance_3 sq_distance =
|
||||
|
|
|
|||
|
|
@ -187,7 +187,6 @@ nearest_point_3(const typename K::Point_3& origin,
|
|||
const K& k)
|
||||
{
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::FT FT;
|
||||
|
||||
typename K::Compute_squared_distance_3 sq_distance =
|
||||
|
|
|
|||
|
|
@ -57,7 +57,6 @@ namespace CGAL {
|
|||
template <class AK>
|
||||
bool intersect(const typename AK::Polynomial_1_3 & p1,
|
||||
const typename AK::Polynomial_1_3 & p2) {
|
||||
typedef typename AK::Polynomial_1_3 Polynomial_1_3;
|
||||
typedef typename AK::RT RT;
|
||||
|
||||
CGAL_kernel_precondition(!(same_solutions<RT>(p1,p2)));
|
||||
|
|
@ -76,7 +75,6 @@ namespace CGAL {
|
|||
line_from_2_planes(const typename AK::Polynomial_1_3 & p1,
|
||||
const typename AK::Polynomial_1_3 & p2)
|
||||
{
|
||||
typedef typename AK::Polynomial_1_3 Polynomial_1_3;
|
||||
typedef typename AK::Polynomials_for_line_3 Polynomials_for_line_3;
|
||||
typedef typename AK::FT FT;
|
||||
CGAL_kernel_precondition(intersect<AK>(p1,p2));
|
||||
|
|
@ -112,7 +110,6 @@ namespace CGAL {
|
|||
inline
|
||||
bool intersect(const typename AK::Polynomial_for_spheres_2_3 & s1,
|
||||
const typename AK::Polynomial_for_spheres_2_3 & s2) {
|
||||
typedef typename AK::Polynomial_1_3 Polynomial_1_3;
|
||||
typedef typename AK::FT FT;
|
||||
typedef typename AK::Root_of_2 Root_of_2;
|
||||
|
||||
|
|
@ -145,7 +142,6 @@ namespace CGAL {
|
|||
inline
|
||||
bool tangent(const typename AK::Polynomial_for_spheres_2_3 & s1,
|
||||
const typename AK::Polynomial_for_spheres_2_3 & s2) {
|
||||
typedef typename AK::Polynomial_1_3 Polynomial_1_3;
|
||||
typedef typename AK::RT RT;
|
||||
typedef typename AK::Root_of_2 Root_of_2;
|
||||
|
||||
|
|
@ -335,7 +331,6 @@ namespace CGAL {
|
|||
OutputIterator res )
|
||||
{
|
||||
typedef typename AK::RT RT;
|
||||
typedef typename AK::Root_for_spheres_2_3 Root_for_spheres_2_3;
|
||||
typedef typename AK::Polynomials_for_line_3 Polynomials_for_line_3;
|
||||
// we put as a precondition that the polynomial for spheres represents
|
||||
// a sphere and not an isolated point or an empty_space
|
||||
|
|
@ -519,11 +514,9 @@ template < class AK, class OutputIterator >
|
|||
const typename AK::Polynomials_for_line_3 & l,
|
||||
OutputIterator res )
|
||||
{
|
||||
typedef typename AK::RT RT;
|
||||
typedef typename AK::Root_for_spheres_2_3 Root_for_spheres_2_3;
|
||||
typedef typename AK::Polynomial_for_spheres_2_3 Polynomial_for_spheres_2_3;
|
||||
typedef typename AK::Polynomial_1_3 Polynomial_1_3;
|
||||
typedef typename AK::Polynomials_for_line_3 Polynomials_for_line_3;
|
||||
const Polynomial_for_spheres_2_3 &s1 = e1.first;
|
||||
const Polynomial_1_3 &p1 = e1.second;
|
||||
|
||||
|
|
|
|||
|
|
@ -39,7 +39,6 @@ namespace CGAL {
|
|||
const typename AK::Polynomial_1_3 & e3,
|
||||
OutputIterator res )
|
||||
{
|
||||
typedef typename AK::RT RT;
|
||||
typedef typename AK::FT FT;
|
||||
typedef typename AK::Root_for_spheres_2_3 Root_for_spheres_2_3;
|
||||
CGAL_kernel_precondition(!(same_solutions<FT>(e1,e2) || same_solutions<FT>(e1,e3) ||
|
||||
|
|
|
|||
|
|
@ -225,7 +225,6 @@ public:
|
|||
std::istream &
|
||||
operator>>(std::istream & is, Circular_arc_point_3<SK> &p)
|
||||
{
|
||||
typedef typename SK::Root_of_2 Root_of_2;
|
||||
typedef typename SK::Root_for_spheres_2_3 Root_for_spheres_2_3;
|
||||
|
||||
Root_for_spheres_2_3 r;
|
||||
|
|
|
|||
|
|
@ -58,7 +58,6 @@ namespace CGAL {
|
|||
has_on(const typename SK::Line_3 &a,
|
||||
const typename SK::Circular_arc_point_3 &p)
|
||||
{
|
||||
typedef typename SK::Algebraic_kernel Algebraic_kernel;
|
||||
typedef typename SK::Polynomials_for_line_3 Equation;
|
||||
Equation equation = get_equation<SK>(a);
|
||||
return p.rep().coordinates().is_on_line(equation);
|
||||
|
|
|
|||
|
|
@ -185,7 +185,6 @@ namespace CGAL {
|
|||
const typename SK::Circular_arc_3 & ca,
|
||||
OutputIterator res)
|
||||
{
|
||||
typedef typename SK::Point_3 Point_3;
|
||||
typedef typename SK::Circular_arc_point_3 Circular_arc_point_3;
|
||||
typedef std::vector<CGAL::Object> solutions_container;
|
||||
typedef std::pair<Circular_arc_point_3, unsigned> Solution;
|
||||
|
|
|
|||
|
|
@ -151,7 +151,6 @@ namespace CGAL {
|
|||
typedef typename SK::Point_3 Point_3;
|
||||
typedef typename SK::Circular_arc_point_3 Circular_arc_point_3;
|
||||
typedef typename SK::Line_3 Line_3;
|
||||
typedef typename SK::Line_arc_3 Line_arc_3;
|
||||
|
||||
Point_3 inters_p;
|
||||
Line_3 inters_l;
|
||||
|
|
|
|||
|
|
@ -51,7 +51,6 @@ namespace CGAL {
|
|||
typename SK::Polynomial_for_spheres_2_3
|
||||
get_equation( const typename SK::Sphere_3 & s )
|
||||
{
|
||||
typedef typename SK::RT RT;
|
||||
typedef typename SK::Point_3 Point_3;
|
||||
typedef typename SK::Algebraic_kernel Algebraic_kernel;
|
||||
Point_3 center = s.center();
|
||||
|
|
@ -297,7 +296,6 @@ namespace CGAL {
|
|||
typedef typename SK::Circle_3 Circle_3;
|
||||
typedef typename SK::Point_3 Point_3;
|
||||
typedef typename SK::Algebraic_kernel Algebraic_kernel;
|
||||
typedef std::vector< Object > solutions_container;
|
||||
CGAL_kernel_precondition(!s1.is_degenerate());
|
||||
CGAL_kernel_precondition(!s2.is_degenerate());
|
||||
CGAL_kernel_precondition(!s3.is_degenerate());
|
||||
|
|
@ -445,7 +443,6 @@ namespace CGAL {
|
|||
typedef typename SK::Root_for_spheres_2_3 Root_for_spheres_2_3;
|
||||
typedef typename SK::Circular_arc_point_3 Circular_arc_point_3;
|
||||
typedef typename SK::Polynomials_for_circle_3 Equation_circle;
|
||||
typedef typename SK::Circle_3 Circle_3;
|
||||
typedef typename SK::Algebraic_kernel Algebraic_kernel;
|
||||
if(non_oriented_equal<SK>(c1,c2)) {
|
||||
*res++ = make_object(c1);
|
||||
|
|
@ -475,7 +472,6 @@ namespace CGAL {
|
|||
typedef typename SK::Circular_arc_point_3 Circular_arc_point_3;
|
||||
typedef typename SK::Polynomials_for_circle_3 Equation_circle;
|
||||
typedef typename SK::Polynomials_for_line_3 Equation_line;
|
||||
typedef typename SK::Circle_3 Circle_3;
|
||||
typedef typename SK::Algebraic_kernel Algebraic_kernel;
|
||||
CGAL_kernel_precondition(!l.is_degenerate());
|
||||
Equation_circle e1 = get_equation<SK>(c);
|
||||
|
|
|
|||
|
|
@ -615,7 +615,6 @@ std::ostream& operator << ( std::ostream& os, const ConicCPA2<_PT,_DA>& c)
|
|||
template< class _PT, class _DA>
|
||||
std::istream& operator >> ( std::istream& is, ConicCPA2<_PT,_DA>& c)
|
||||
{
|
||||
typedef ConicCPA2<_PT,_DA> Conic;
|
||||
typedef typename _DA::FT FT;
|
||||
|
||||
FT r, s, t, u, v, w;
|
||||
|
|
|
|||
|
|
@ -1365,8 +1365,6 @@ struct Lazy_construction<LK, AC, EC, E2A_, true> {
|
|||
template<BOOST_PP_ENUM_PARAMS(n, class L)> \
|
||||
result_type \
|
||||
operator()( BOOST_PP_ENUM(n, CGAL_LARGS, _) ) const { \
|
||||
BOOST_PP_REPEAT(n, CGAL_TYPEMAP_EC, L) \
|
||||
BOOST_PP_REPEAT(n, CGAL_TYPEMAP_AC, L) \
|
||||
typedef Lazy< AT, ET, EFT, E2A> Handle; \
|
||||
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp); \
|
||||
Protect_FPU_rounding<Protection> P; \
|
||||
|
|
|
|||
|
|
@ -87,7 +87,7 @@ template <class K>
|
|||
typename Line_2_Iso_rectangle_2_pair<K>::Intersection_results
|
||||
Line_2_Iso_rectangle_2_pair<K>::intersection_type() const
|
||||
{
|
||||
typedef typename K::Line_2 line_t;
|
||||
//typedef typename K::Line_2 line_t;
|
||||
if (_known)
|
||||
return _result;
|
||||
// The non const this pointer is used to cast away const.
|
||||
|
|
|
|||
|
|
@ -81,7 +81,6 @@ template <class K>
|
|||
typename Point_2_Triangle_2_pair<K>::Intersection_results
|
||||
Point_2_Triangle_2_pair<K>::intersection_type() const
|
||||
{
|
||||
typedef typename K::Line_2 line_t;
|
||||
if (_known)
|
||||
return _result;
|
||||
// The non const this pointer is used to cast away const.
|
||||
|
|
@ -93,6 +92,7 @@ Point_2_Triangle_2_pair<K>::intersection_type() const
|
|||
}
|
||||
return _result;
|
||||
/*
|
||||
typedef typename K::Line_2 line_t;
|
||||
line_t l(_trian->vertex(0), _trian->vertex(1));
|
||||
if (l.has_on_positive_side(_trian->vertex(2))) {
|
||||
for (int i=0; i<3; i++) {
|
||||
|
|
|
|||
|
|
@ -99,7 +99,7 @@ Ray_2_Ray_2_pair<K>::intersection_type() const
|
|||
return _result;
|
||||
case Line_2_Line_2_pair<K>::LINE:
|
||||
{
|
||||
typedef typename K::RT RT;
|
||||
//typedef typename K::RT RT;
|
||||
const typename K::Vector_2 &dir1 = _ray1->direction().to_vector();
|
||||
const typename K::Vector_2 &dir2 = _ray2->direction().to_vector();
|
||||
if (CGAL_NTS abs(dir1.x()) > CGAL_NTS abs(dir1.y())) {
|
||||
|
|
|
|||
|
|
@ -101,7 +101,7 @@ Ray_2_Segment_2_pair<K>::intersection_type() const
|
|||
? POINT : NO_INTERSECTION;
|
||||
return _result;
|
||||
case Line_2_Line_2_pair<K>::LINE: {
|
||||
typedef typename K::RT RT;
|
||||
//typedef typename K::RT RT;
|
||||
const typename K::Point_2 &start1 = _seg->source();
|
||||
const typename K::Point_2 &end1 = _seg->target();
|
||||
const typename K::Point_2 &start2 = _ray->source();
|
||||
|
|
|
|||
|
|
@ -322,7 +322,7 @@ Segment_2_Segment_2_pair<K>::intersection_type() const
|
|||
break;
|
||||
case Line_2_Line_2_pair<K>::LINE:
|
||||
{
|
||||
typedef typename K::RT RT;
|
||||
//typedef typename K::RT RT;
|
||||
typename K::Point_2 const &start1 = _seg1->source();
|
||||
typename K::Point_2 const &end1 = _seg1->target();
|
||||
typename K::Point_2 const &start2 = _seg2->source();
|
||||
|
|
|
|||
|
|
@ -202,7 +202,6 @@ intersection(const typename K::Line_3 &l1,
|
|||
const K&)
|
||||
{
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Line_3 Line_3;
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
|
||||
|
|
@ -237,8 +236,6 @@ do_intersect(const typename K::Line_3 &l1,
|
|||
const typename K::Line_3 &l2,
|
||||
const K&)
|
||||
{
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Line_3 Line_3;
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
|
||||
|
|
@ -630,9 +627,7 @@ intersection(const typename K::Plane_3 &p,
|
|||
const typename K::Sphere_3 &s,
|
||||
const K&)
|
||||
{
|
||||
typedef typename K::Sphere_3 Sphere_3;
|
||||
typedef typename K::Circle_3 Circle_3;
|
||||
typedef typename K::Plane_3 Plane_3;
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::FT FT;
|
||||
const FT d2 = CGAL::square(p.a()*s.center().x() +
|
||||
|
|
@ -656,10 +651,6 @@ do_intersect(const typename K::Plane_3 &p,
|
|||
const typename K::Sphere_3 &s,
|
||||
const K&)
|
||||
{
|
||||
typedef typename K::Sphere_3 Sphere_3;
|
||||
typedef typename K::Circle_3 Circle_3;
|
||||
typedef typename K::Plane_3 Plane_3;
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::FT FT;
|
||||
const FT d2 = CGAL::square(p.a()*s.center().x() +
|
||||
p.b()*s.center().y() +
|
||||
|
|
@ -697,7 +688,6 @@ intersection(const typename K::Sphere_3 &s1,
|
|||
const K& k)
|
||||
{
|
||||
typedef typename K::Plane_3 Plane_3;
|
||||
typedef typename K::Sphere_3 Sphere_3;
|
||||
if(s1.center() == s2.center()) {
|
||||
if(s1.squared_radius() == s2.squared_radius()) {
|
||||
if(is_zero(s1.squared_radius())) return make_object(s1.center());
|
||||
|
|
@ -716,7 +706,6 @@ do_intersect(const typename K::Sphere_3 &s1,
|
|||
const K& k)
|
||||
{
|
||||
typedef typename K::Plane_3 Plane_3;
|
||||
typedef typename K::Sphere_3 Sphere_3;
|
||||
if(s1.center() == s2.center()) {
|
||||
return s1.squared_radius() == s2.squared_radius();
|
||||
}
|
||||
|
|
@ -1095,7 +1084,6 @@ intersection(const typename K::Line_3 &line,
|
|||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::Segment_3 Segment_3;
|
||||
typedef typename K::RT RT;
|
||||
typedef typename K::FT FT;
|
||||
bool all_values = true;
|
||||
FT _min = 0, _max = 0; // initialization to stop compiler warning
|
||||
|
|
@ -1169,7 +1157,6 @@ intersection(const typename K::Ray_3 &ray,
|
|||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::Segment_3 Segment_3;
|
||||
typedef typename K::RT RT;
|
||||
typedef typename K::FT FT;
|
||||
bool all_values = true;
|
||||
FT _min = 0, _max = 0; // initialization to prevent compiler warning
|
||||
|
|
@ -1241,7 +1228,6 @@ intersection(const typename K::Segment_3 &seg,
|
|||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::Segment_3 Segment_3;
|
||||
typedef typename K::RT RT;
|
||||
typedef typename K::FT FT;
|
||||
FT _min = 0, _max;
|
||||
|
||||
|
|
@ -1320,7 +1306,6 @@ intersection(
|
|||
min_points[1] = (icub2.min)();
|
||||
max_points[0] = (icub1.max)();
|
||||
max_points[1] = (icub2.max)();
|
||||
typedef typename K::FT FT;
|
||||
const int DIM = 3;
|
||||
int min_idx[DIM];
|
||||
int max_idx[DIM];
|
||||
|
|
|
|||
|
|
@ -39,7 +39,6 @@ do_intersect(const typename K::Triangle_3 &tr,
|
|||
const K & k)
|
||||
{
|
||||
typedef typename K::Triangle_3 Triangle;
|
||||
typedef typename K::Point_3 Point;
|
||||
|
||||
CGAL_kernel_precondition( ! k.is_degenerate_3_object() (tr) );
|
||||
CGAL_kernel_precondition( ! k.is_degenerate_3_object() (tet) );
|
||||
|
|
|
|||
|
|
@ -43,7 +43,6 @@ t3r3_intersection_coplanar_aux(const typename K::Point_3& p,
|
|||
// preconditions:
|
||||
// + p,v,a,b are coplanar
|
||||
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::FT FT;
|
||||
|
||||
|
|
|
|||
|
|
@ -42,7 +42,6 @@ t3s3_intersection_coplanar_aux(const typename K::Point_3& p,
|
|||
// preconditions:
|
||||
// + p,q,a,b are coplanar
|
||||
|
||||
typedef typename K::Point_3 Point_3;
|
||||
typedef typename K::Vector_3 Vector_3;
|
||||
typedef typename K::FT FT;
|
||||
|
||||
|
|
|
|||
|
|
@ -33,7 +33,6 @@ generic_print_polyhedron( std::ostream& out,
|
|||
const Polyhedron& P,
|
||||
Writer& writer) {
|
||||
// writes P to `out' in the format provided by `writer'.
|
||||
typedef typename Polyhedron::Vertex Vertex;
|
||||
typedef typename Polyhedron::Vertex_const_iterator VCI;
|
||||
typedef typename Polyhedron::Facet_const_iterator FCI;
|
||||
typedef typename Polyhedron::Halfedge_around_facet_const_circulator HFCC;
|
||||
|
|
|
|||
|
|
@ -2249,7 +2249,6 @@ move_if_no_collision_and_give_new_faces(Vertex_handle v,
|
|||
CGAL_triangulation_precondition(!this->is_infinite(v));
|
||||
if(v->point() == p) return v;
|
||||
|
||||
typedef std::list<Face_handle> Faces_list;
|
||||
const int dim = this->dimension();
|
||||
|
||||
if(dim == 2) {
|
||||
|
|
|
|||
|
|
@ -180,8 +180,8 @@ compare_power_distance(const Weighted_point<Bare_point, Weight>& p,
|
|||
const Bare_point& r, Homogeneous_tag)
|
||||
{
|
||||
typedef typename Kernel_traits<Bare_point>::Kernel::RT RT;
|
||||
return compare_power_distanceH2(p.hx(), p.hy(), p.hw(), FT(p.weight()),
|
||||
q.hx(), q.hy(), q.hw(), FT(q.weight()),
|
||||
return compare_power_distanceH2(p.hx(), p.hy(), p.hw(), RT(p.weight()),
|
||||
q.hx(), q.hy(), q.hw(), RT(q.weight()),
|
||||
r.hx(), r.hy(), r.hw());
|
||||
}
|
||||
|
||||
|
|
@ -306,7 +306,6 @@ typename Kernel_traits<Bare_point>::Kernel::Oriented_side
|
|||
power_test_2(const Weighted_point<Bare_point, Weight> &p,
|
||||
const Weighted_point<Bare_point, Weight> &t)
|
||||
{
|
||||
typedef typename Kernel_traits<Bare_point>::Kernel::RT RT;
|
||||
Comparison_result r = compare(p.weight(), t.weight());
|
||||
if(r == LARGER) return ON_NEGATIVE_SIDE;
|
||||
else if (r == SMALLER) return ON_POSITIVE_SIDE;
|
||||
|
|
|
|||
|
|
@ -594,7 +594,6 @@ std::ptrdiff_t insert(InputIterator first, InputIterator last)
|
|||
|
||||
bool well_oriented(Vertex_handle v) const
|
||||
{
|
||||
typedef typename Geom_traits::Orientation_2 Orientation_2;
|
||||
Face_circulator fc = incident_faces(v), done(fc);
|
||||
do {
|
||||
if(!is_infinite(fc)) {
|
||||
|
|
@ -634,8 +633,6 @@ public:
|
|||
EdgeIt edge_end,
|
||||
FaceIt face_begin,
|
||||
FaceIt face_end) {
|
||||
typedef typename Triangulation_data_structure::Edge Tds_Edge;
|
||||
typedef typename Triangulation_data_structure::Face Tds_Face;
|
||||
Vertex_handle v = _tds.star_hole( edge_begin, edge_end,
|
||||
face_begin, face_end);
|
||||
v->set_point(p);
|
||||
|
|
@ -2149,7 +2146,6 @@ move_if_no_collision_and_give_new_faces(Vertex_handle v,
|
|||
{
|
||||
CGAL_triangulation_precondition(!is_infinite(v));
|
||||
if(v->point() == p) return v;
|
||||
typedef std::list<Face_handle> Faces_list;
|
||||
const int dim = this->dimension();
|
||||
|
||||
Locate_type lt;
|
||||
|
|
|
|||
Loading…
Reference in New Issue