From a9f391276f0afbf62352520d89b16194de02f83f Mon Sep 17 00:00:00 2001 From: Susan Hert Date: Wed, 27 Jun 2001 16:48:09 +0000 Subject: [PATCH] incorporated sentences about dD checking --- .../basic/ConvexHull/convexity_check_3.tex | 17 +++++++++-------- 1 file changed, 9 insertions(+), 8 deletions(-) diff --git a/Packages/Convex_hull_3/doc_tex/basic/ConvexHull/convexity_check_3.tex b/Packages/Convex_hull_3/doc_tex/basic/ConvexHull/convexity_check_3.tex index 0ae2828fbca..e776f3ecac4 100644 --- a/Packages/Convex_hull_3/doc_tex/basic/ConvexHull/convexity_check_3.tex +++ b/Packages/Convex_hull_3/doc_tex/basic/ConvexHull/convexity_check_3.tex @@ -1,9 +1,10 @@ -There are also functions for checking the validity of the computed convex -hull in three dimensions. For the function \ccc{convex_hull_3_from_d}, this is -provided through the \ccc{is_valid} member function of the class -\ccc{CGAL::Convex_hull_d}. -The function \ccc{is_strongly_convex_3}\ccIndexMainItem[C]{is_strongly_convex_3} -uses the algorithm of Mehlhorn \textit{et al.} \cite{mnssssu-cgpvg-96} -to determine if the vertices of a given polyhedron constitute a strongly -convex point set ot not. This is tested as a postcondition of the function +There are also functions for checking the validity of the computed 3- +or $d$-dimensional convex hull. These functions use the algorithm of +Mehlhorn \textit{et al.} \cite{mnssssu-cgpvg-96} to determine if the +vertices of a given hull constitute a strongly convex point set or not. +For three dimensions, this is provided via the function +\ccc{is_strongly_convex_3}\ccIndexMainItem[C]{is_strongly_convex_3}, which +is used in postcondition testing of the function \ccc{convex_hull_3}\ccIndexSubitem[C]{convex_hull_3}{postcondition}. +In $d$ dimensions, the functionality is provided through the \ccc{is_valid} +member function of the class \ccc{CGAL::Convex_hull_d}.