mirror of https://github.com/CGAL/cgal
proposal for Solve_2 (with a question left in footnote)
This commit is contained in:
parent
df7c6842b3
commit
aa1f0714e5
|
|
@ -2,7 +2,8 @@
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
\ccc{AdaptableFunction} that computes the real roots of a univariate polynomial.
|
\ccc{AdaptableFunction} that computes the real roots of a univariate
|
||||||
|
polynomial.
|
||||||
|
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
|
|
@ -13,15 +14,17 @@ A model of this type must provide:
|
||||||
operator()(const AlgebraicKernel_d_1::Polynomial_1 &p,
|
operator()(const AlgebraicKernel_d_1::Polynomial_1 &p,
|
||||||
OutputIterator res, bool known_to_be_square_free=false);}
|
OutputIterator res, bool known_to_be_square_free=false);}
|
||||||
{Copies in the output iterator the roots of \ccc{p} as objects of type
|
{Copies in the output iterator the roots of \ccc{p} as objects of type
|
||||||
\ccc{Algebraic_real_1}. The boolean indicates whether \ccc{p} is known
|
\ccc{AlgebraicKernel_d_1::Algebraic_real_1}. The boolean indicates
|
||||||
to be square free or if this information is not known.}
|
whether \ccc{p} is known to be square free or if this information is
|
||||||
|
not known.}
|
||||||
|
|
||||||
\ccMethod{template < class OutputIteratorRoots, class OutputIteratorMult >
|
\ccMethod{template < class OutputIteratorRoots, class OutputIteratorMult >
|
||||||
std::pair< OutputIteratorRoots, OutputIteratorMult >
|
std::pair< OutputIteratorRoots, OutputIteratorMult >
|
||||||
operator()(const AlgebraicKernel_d_1::Polynomial_1 &p,
|
operator()(const AlgebraicKernel_d_1::Polynomial_1 &p,
|
||||||
OutputIteratorRoots roots, OutputIteratorMult mult);}
|
OutputIteratorRoots roots, OutputIteratorMult mult);}
|
||||||
{Copies in the output iterator \ccc{roots} the roots of \ccc{p} as
|
{Copies in the output iterator \ccc{roots} the roots of \ccc{p} as
|
||||||
\ccc{Algebraic_real_1}s and copies in the output iterator \ccc{mult}
|
\ccc{AlgebraicKernel_d_1::Algebraic_real_1}s and copies in the output
|
||||||
their respective multiplicity as \ccc{int}s, in the same order.}
|
iterator \ccc{mult} their respective multiplicity as \ccc{int}s, in
|
||||||
|
the same order.}
|
||||||
|
|
||||||
\end{ccRefConcept}
|
\end{ccRefConcept}
|
||||||
|
|
|
||||||
|
|
@ -2,15 +2,20 @@
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
\footnote{Remark: It should be similar to Solve\_1 as we discussed at the CGAL
|
|
||||||
Dev Meeting.}
|
|
||||||
|
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
A model \ccVar\ of this type must provide:
|
||||||
|
|
||||||
|
\ccMethod{template < class OutputIteratorRoots, class OutputIteratorMult >
|
||||||
|
std::pair< OutputIteratorRoots, OutputIteratorMult >
|
||||||
\footnote{TBD, I am getting tired... what about the case of 1-dimensional components? a choice must be made}
|
operator()(const AlgebraicKernel_d_2::Polynomial_2 & p1,
|
||||||
|
const AlgebraicKernel_d_2::Polynomial_2 & p2,
|
||||||
|
OutputIteratorRoots roots, OutputIteratorMult mult);}
|
||||||
|
{Copies in the output iterator \ccc{roots} the common roots of $p_1$
|
||||||
|
and $p_2$ as \ccc{AlgebraicKernel_d_2::Algebraic_real_2}s and copies
|
||||||
|
in the output iterator \ccc{mult} their respective multiplicity as
|
||||||
|
\ccc{int}s, in the same order.
|
||||||
|
\ccPrecond{The set of solutions of the system is a 0-dimensional.}}
|
||||||
|
\footnote{what if it is not 0-dimensional??}
|
||||||
|
|
||||||
\end{ccRefConcept}
|
\end{ccRefConcept}
|
||||||
|
|
|
||||||
|
|
@ -3,8 +3,7 @@
|
||||||
|
|
||||||
\subsection{open}
|
\subsection{open}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Missing Doc for IsSquareFree\_2, IsCoprime\_2, MakeSquareFree\_2,
|
\item Missing Doc for IsSquareFree\_2, IsCoprime\_2, MakeSquareFree\_2
|
||||||
MakeCoprime\_2, Solve\_2
|
|
||||||
\item Move methods from AlgebraicReal\_2 to a traits class.
|
\item Move methods from AlgebraicReal\_2 to a traits class.
|
||||||
\item AlgebraicReal\_2 - Add GetX() and GetY() functors.
|
\item AlgebraicReal\_2 - Add GetX() and GetY() functors.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue