Replace std::pow(x,2) by CGAL::square(x)

This commit is contained in:
Simon Giraudot 2021-03-23 13:14:41 +01:00
parent 91de37ec3a
commit ab14acff77
8 changed files with 13 additions and 13 deletions

View File

@ -192,7 +192,7 @@ void random_convex_hull_in_disc_2(std::size_t n, double radius, std::list<typena
(simulated_points < n)); // initialization such that 0 in P_n (simulated_points < n)); // initialization such that 0 in P_n
std::size_t T = n; std::size_t T = n;
if (!fast) T = static_cast<std::size_t>(std::floor(n / std::pow(std::log(static_cast<double>(n)), 2))); if (!fast) T = static_cast<std::size_t>(std::floor(n / CGAL::square(std::log(static_cast<double>(n)))));
while (simulated_points < n) { while (simulated_points < n) {
// l is a list coming from a convex hull operation. we are moving the // l is a list coming from a convex hull operation. we are moving the

View File

@ -90,7 +90,7 @@ compute_denoise_projection(
Vector normal_sum = CGAL::NULL_VECTOR; Vector normal_sum = CGAL::NULL_VECTOR;
FT cos_sigma = cos(sharpness_angle * CGAL_PI / 180.0); FT cos_sigma = cos(sharpness_angle * CGAL_PI / 180.0);
FT sharpness_bandwidth = std::pow((CGAL::max)(1e-8, 1 - cos_sigma), 2); FT sharpness_bandwidth = CGAL::square((CGAL::max)(1e-8, 1 - cos_sigma));
for (typename PointRange::iterator it : neighbor_pwns) for (typename PointRange::iterator it : neighbor_pwns)
{ {
@ -101,7 +101,7 @@ compute_denoise_projection(
if (dist2 < radius2) if (dist2 < radius2)
{ {
FT theta = std::exp(dist2 * iradius16); FT theta = std::exp(dist2 * iradius16);
FT psi = std::exp(-std::pow(1 - get(normal_map, vt) * nn, 2) FT psi = std::exp(-CGAL::square(1 - get(normal_map, vt) * nn)
/ sharpness_bandwidth); / sharpness_bandwidth);
weight = theta * psi; weight = theta * psi;

View File

@ -212,7 +212,7 @@ update_new_point(
for (unsigned int j = 0; j < candidate_num; j++) for (unsigned int j = 0; j < candidate_num; j++)
{ {
FT psi = std::exp(-std::pow(FT(1) - normal_cadidate[j] * t.normal, FT(2)) FT psi = std::exp(-CGAL::square(FT(1) - normal_cadidate[j] * t.normal)
/ sharpness_bandwidth); / sharpness_bandwidth);
FT project_diff_t_v = (t.pt - new_v.pt) * t.normal; FT project_diff_t_v = (t.pt - new_v.pt) * t.normal;
FT weight = psi * theta; FT weight = psi * theta;
@ -437,7 +437,7 @@ edge_aware_upsample_point_set(
// //
FT cos_sigma = static_cast<FT>(std::cos(FT(CGAL::to_double(sharpness_angle)) FT cos_sigma = static_cast<FT>(std::cos(FT(CGAL::to_double(sharpness_angle))
/ FT(180) * FT(CGAL_PI))); / FT(180) * FT(CGAL_PI)));
FT sharpness_bandwidth = static_cast<FT>(std::pow((CGAL::max)((FT)1e-8, (FT)1.0 - cos_sigma), 2)); FT sharpness_bandwidth = CGAL::square((CGAL::max)((FT)1e-8, (FT)1.0 - cos_sigma));
FT sum_density = 0.0; FT sum_density = 0.0;
unsigned int count_density = 1; unsigned int count_density = 1;

View File

@ -185,7 +185,7 @@ compute_update_sample_point(
if (dist2 < 1e-10) continue; if (dist2 < 1e-10) continue;
FT dist = std::sqrt(dist2); FT dist = std::sqrt(dist2);
weight = std::exp(dist2 * iradius16) * std::pow(FT(1.0) / dist, 2); // L1 weight = std::exp(dist2 * iradius16) * CGAL::square(FT(1.0) / dist); // L1
if (!is_sample_densities_empty) if (!is_sample_densities_empty)
{ {

View File

@ -88,7 +88,7 @@ public:
for(std::size_t i = 0; i < number_of_points; ++i) { for(std::size_t i = 0; i < number_of_points; ++i) {
double Q = i * golden_ratio * CGAL_PI; double Q = i * golden_ratio * CGAL_PI;
double R = std::sqrt(static_cast<double>(i) / number_of_points); double R = std::sqrt(static_cast<double>(i) / number_of_points);
double weight = exp(-0.5 * (std::pow(R / CGAL_ANGLE_ST_DEV_DIVIDER, 2))); double weight = exp(-0.5 * (CGAL::square(R / CGAL_ANGLE_ST_DEV_DIVIDER)));
*out_it++ = Tuple(R * cos(Q), R * sin(Q), weight); *out_it++ = Tuple(R * cos(Q), R * sin(Q), weight);
} }
} else { } else {

View File

@ -75,7 +75,7 @@ private:
return x == mean ? 1.0 : 0.0; return x == mean ? 1.0 : 0.0;
} }
double e_over = -0.5 * std::pow((x - mean) / deviation, 2); double e_over = -0.5 * CGAL::square((x - mean) / deviation);
return exp(e_over) / deviation; return exp(e_over) / deviation;
} }
/** /**
@ -289,7 +289,7 @@ private:
double new_deviation = 0.0; double new_deviation = 0.0;
for(std::size_t point_i = 0; point_i < points.size(); ++point_i) { for(std::size_t point_i = 0; point_i < points.size(); ++point_i) {
double membership = responsibility_matrix[center_i][point_i]; double membership = responsibility_matrix[center_i][point_i];
new_deviation += membership * std::pow(points[point_i] - new_mean, 2); new_deviation += membership * CGAL::square(points[point_i] - new_mean);
} }
new_deviation = std::sqrt(new_deviation/total_membership); new_deviation = std::sqrt(new_deviation/total_membership);

View File

@ -92,7 +92,7 @@ public:
double deviation = 0.0; double deviation = 0.0;
for(typename std::map<face_descriptor, std::size_t>::iterator it = for(typename std::map<face_descriptor, std::size_t>::iterator it =
neighbors.begin(); it != neighbors.end(); ++it) { neighbors.begin(); it != neighbors.end(); ++it) {
deviation += std::pow(get(values, it->first) - current_sdf_value, 2); deviation += CGAL::square(get(values, it->first) - current_sdf_value);
} }
deviation = std::sqrt(deviation / neighbors.size()); deviation = std::sqrt(deviation / neighbors.size());
if(deviation == 0.0) { if(deviation == 0.0) {
@ -133,7 +133,7 @@ public:
private: private:
/** Gaussian function for weighting. */ /** Gaussian function for weighting. */
double gaussian_function(double value, double deviation) const { double gaussian_function(double value, double deviation) const {
return exp(-0.5 * (std::pow(value / deviation, 2))); return exp(-0.5 * (CGAL::square(value / deviation)));
} }
}; };

View File

@ -123,7 +123,7 @@ public:
double cumulative_distance_square = 0.0; double cumulative_distance_square = 0.0;
// distance_square holds closest distance that points have, so just test new coming center (i.e. centers.back()) // distance_square holds closest distance that points have, so just test new coming center (i.e. centers.back())
for(std::size_t j = 0; j < points.size(); ++j) { for(std::size_t j = 0; j < points.size(); ++j) {
double new_distance = std::pow(centers.back() - points[j], 2); double new_distance = CGAL::square(centers.back() - points[j]);
if(new_distance < distance_square[j]) { if(new_distance < distance_square[j]) {
distance_square[j] = new_distance; distance_square[j] = new_distance;
} }
@ -422,7 +422,7 @@ private:
double sum = 0.0; double sum = 0.0;
for(std::vector<K_means_point>::const_iterator point_it = points.begin(); for(std::vector<K_means_point>::const_iterator point_it = points.begin();
point_it != points.end(); ++point_it) { point_it != points.end(); ++point_it) {
sum += std::pow(centers[point_it->center_id].mean - point_it->data, 2); sum += CGAL::square(centers[point_it->center_id].mean - point_it->data);
} }
return sum; return sum;
} }