From a643c07a292df6e064a408396b1a9476980f6721 Mon Sep 17 00:00:00 2001 From: albert-github Date: Mon, 10 Feb 2025 10:19:10 +0100 Subject: [PATCH] Incorrect rendered formulas The formula in Documentation/doc/biblio/cgal_manual.bib ``` @article{cgal:cgm-fobbo-11, title={Fast Oriented Bounding Box Optimization on the Rotation Group $\SO(3, \mathrm{R})$}, author={Chang, Chia-Tche and Gorissen, Bastien and Melchior, Samuel}, ``` renders incorrectly (see Optimal_bounding_box/citelist.html) as there is no command `\SO` in LaTeX The formula in doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h ``` \pre \f$ sin_num^2 + cos_num^2 = den^2\f$ and \f$ 0 \leq e_1 < e_2 < d\f$. ``` renders in an unexpected way (see Kernel_d/classCGAL_1_1Aff__transformation__d.html) as the `_` is seen as subscript operator in LaTeX --- Documentation/doc/biblio/cgal_manual.bib | 2 +- Kernel_d/doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Documentation/doc/biblio/cgal_manual.bib b/Documentation/doc/biblio/cgal_manual.bib index d1600747b48..26aa8fa6d61 100644 --- a/Documentation/doc/biblio/cgal_manual.bib +++ b/Documentation/doc/biblio/cgal_manual.bib @@ -425,7 +425,7 @@ Boissonnat} } @article{cgal:cgm-fobbo-11, - title={Fast Oriented Bounding Box Optimization on the Rotation Group $\SO(3, \mathrm{R})$}, + title={Fast Oriented Bounding Box Optimization on the Rotation Group $SO(3, \mathrm{R})$}, author={Chang, Chia-Tche and Gorissen, Bastien and Melchior, Samuel}, journal={ACM Transactions on Graphics (TOG)}, volume={30}, diff --git a/Kernel_d/doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h b/Kernel_d/doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h index aa572c2df9a..f2edc867e1d 100644 --- a/Kernel_d/doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h +++ b/Kernel_d/doc/Kernel_d/CGAL/Kernel_d/Aff_transformation_d.h @@ -98,7 +98,7 @@ in the plane spanned by the base vectors \f$ b_{e1}\f$ and \f$ b_{e2}\f$ in \f$ d\f$-space. Thus the default use delivers a planar rotation in the \f$ x\f$-\f$ y\f$ plane. -\pre \f$ sin_num^2 + cos_num^2 = den^2\f$ and \f$ 0 \leq e_1 < e_2 < d\f$. +\pre \f$ sin\_num^2 + cos\_num^2 = den^2\f$ and \f$ 0 \leq e_1 < e_2 < d\f$. \pre `den != 0`. */