Merge branch '5.6.x-branch' into Triangulation_3-fix_simplex_traverser-GF-CGAL-5.6

# Conflicts:
#	STL_Extension/include/CGAL/Base_with_time_stamp.h
#	Triangulation_3/include/CGAL/Triangulation_3/internal/Triangulation_segment_traverser_3_impl.h
#	Triangulation_3/test/Triangulation_3/CMakeLists.txt
This commit is contained in:
Laurent Rineau 2023-06-20 16:03:30 +02:00
commit ad9efd0e18
3696 changed files with 202726 additions and 99463 deletions

6
.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,6 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@ -160,7 +160,7 @@ jobs:
script: |
const error = process.env.ERRORMSG
const job_url = `${context.serverUrl}/CGAL/cgal/actions/runs/${context.runId}`
const msg = "There was an error while building the doc: \n"+error + "\n" + job_url
const msg = "There was an error while building the doc: \n```\n"+error + "\n```\n" + job_url
github.rest.issues.createComment({
owner: "CGAL",
repo: "cgal",

2
.gitignore vendored
View File

@ -2,6 +2,7 @@
/*/*/*/build
/*/*/*/VC*
/*/*/*/GCC
.vscode
AABB_tree/demo/AABB_tree/AABB_demo
AABB_tree/demo/AABB_tree/Makefile
AABB_tree/examples/AABB_tree/*.kdev*
@ -1211,3 +1212,4 @@ gmon.*
Polygonal_surface_reconstruction/examples/build*
Polygonal_surface_reconstruction/test/build*
Solver_interface/examples/build*
/Mesh_3/examples/Mesh_3/indicator_0.inr.gz

View File

@ -6,12 +6,14 @@ project(AABB_traits_benchmark)
find_package(CGAL REQUIRED OPTIONAL_COMPONENTS Core)
# google benchmark
find_package(benchmark)
if (benchmark_FOUND)
create_single_source_cgal_program("tree_creation.cpp")
target_link_libraries(tree_creation benchmark::benchmark)
endif()
create_single_source_cgal_program("test.cpp")
create_single_source_cgal_program("tree_construction.cpp")
# google benchmark
find_package(benchmark QUIET)
if(benchmark_FOUND)
create_single_source_cgal_program("tree_creation.cpp")
target_link_libraries(tree_creation benchmark::benchmark)
else()
message(STATUS "NOTICE: The benchmark 'tree_creation.cpp' requires the Google benchmark library, and will not be compiled.")
endif()

View File

@ -5,6 +5,7 @@ project(AABB_tree_Demo)
# Find includes in corresponding build directories
set(CMAKE_INCLUDE_CURRENT_DIR ON)
# Instruct CMake to run moc automatically when needed.
set(CMAKE_AUTOMOC ON)
if(NOT POLICY CMP0070 AND POLICY CMP0053)
@ -23,7 +24,7 @@ include_directories(BEFORE ./ ./include)
find_package(CGAL REQUIRED OPTIONAL_COMPONENTS Qt5)
# Find Qt5 itself
find_package(Qt5 QUIET COMPONENTS Script OpenGL Gui Svg)
find_package(Qt5 QUIET COMPONENTS Widgets OpenGL)
if(CGAL_Qt5_FOUND AND Qt5_FOUND)
@ -31,10 +32,8 @@ if(CGAL_Qt5_FOUND AND Qt5_FOUND)
include(AddFileDependencies)
qt5_generate_moc("MainWindow.h"
"${CMAKE_CURRENT_BINARY_DIR}/MainWindow_moc.cpp")
add_file_dependencies(MainWindow_moc.cpp
"${CMAKE_CURRENT_SOURCE_DIR}/MainWindow.h")
qt5_generate_moc("MainWindow.h" "${CMAKE_CURRENT_BINARY_DIR}/MainWindow_moc.cpp")
add_file_dependencies(MainWindow_moc.cpp "${CMAKE_CURRENT_SOURCE_DIR}/MainWindow.h")
qt5_generate_moc("Viewer.h" "${CMAKE_CURRENT_BINARY_DIR}/Viewer_moc.cpp")
add_file_dependencies(Viewer_moc.cpp "${CMAKE_CURRENT_SOURCE_DIR}/Viewer.h")
@ -54,7 +53,7 @@ if(CGAL_Qt5_FOUND AND Qt5_FOUND)
#${CGAL_Qt5_MOC_FILES}
)
# Link with Qt libraries
target_link_libraries(AABB_demo PRIVATE Qt5::OpenGL Qt5::Gui
target_link_libraries(AABB_demo PRIVATE Qt5::Widgets Qt5::OpenGL
CGAL::CGAL CGAL::CGAL_Qt5)
add_to_cached_list(CGAL_EXECUTABLE_TARGETS AABB_demo)
@ -62,8 +61,7 @@ if(CGAL_Qt5_FOUND AND Qt5_FOUND)
include(${CGAL_MODULES_DIR}/CGAL_add_test.cmake)
cgal_add_compilation_test(AABB_demo)
else(CGAL_Qt5_FOUND
AND Qt5_FOUND)
else(CGAL_Qt5_FOUND AND Qt5_FOUND)
set(AABB_MISSING_DEPS "")
@ -75,11 +73,6 @@ else(CGAL_Qt5_FOUND
set(AABB_MISSING_DEPS "Qt5, ${AABB_MISSING_DEPS}")
endif()
message(
STATUS
"NOTICE: This demo requires ${AABB_MISSING_DEPS}and will not be compiled."
)
message("NOTICE: This demo requires ${AABB_MISSING_DEPS}, and will not be compiled.")
endif(
CGAL_Qt5_FOUND
AND Qt5_FOUND)
endif(CGAL_Qt5_FOUND AND Qt5_FOUND)

View File

@ -334,7 +334,7 @@ void Scene::compute_elements(int mode)
pos_points.push_back(p.z());
}
}
//The Segements
//The segments
{
std::list<Segment>::iterator sit;
for(sit = m_segments.begin(); sit != m_segments.end(); sit++)

View File

@ -2,8 +2,8 @@
<body>
<h2>AABB Tree Demo</h2>
<p>Copyright &copy;2009
<a href="http://www-sop.inria.fr/">INRIA Sophia Antipolis - Mediterranee<a/></p>
<p>This application illustrates the AABB tree component
<a href="https://www.inria.fr/fr/centre-inria-universite-cote-azur">INRIA Sophia Antipolis - Mediterranee<a/></p>
<p>This application illustrates the AABB tree component
of <a href="https://www.cgal.org/">CGAL</a>, applied to polyhedron
facets and edges.</p>
<p>See also the following chapters of the manual:

View File

@ -9,7 +9,7 @@ and compute intersections between query objects and the primitives stored in the
In addition, it contains predicates and constructors to compute distances between a point query
and the primitives stored in the AABB tree.
\cgalRefines `SearchGeomTraits_3`
\cgalRefines{SearchGeomTraits_3}
\cgalHasModel All models of the concept `Kernel`
@ -74,9 +74,9 @@ typedef unspecified_type Construct_projected_point_3;
/*!
A functor object to compare the distance of two points wrt a third one. Provides the operator:
`CGAL::Comparision_result operator()(const Point_3& p1, const Point_3& p2, const Point_3& p3)`,
`CGAL::Comparison_result operator()(const Point_3& p1, const Point_3& p2, const Point_3& p3)`,
which compares the distance between `p1 and `p2`, and between `p2` and `p3`.
which compares the distance between `p1` and `p2`, and between `p2` and `p3`.
*/
typedef unspecified_type Compare_distance_3;

View File

@ -7,7 +7,7 @@ concept `AABBGeomTraits`. In addition to the types required by
`AABBGeomTraits` it also requires types and functors necessary to
define the Intersection_distance functor.
\cgalRefines `AABBGeomTraits`
\cgalRefines{AABBGeomTraits}
\cgalHasModel All models of the concept `Kernel`

View File

@ -7,7 +7,7 @@ The concept `AABBTraits` provides the geometric primitive types and methods for
\cgalHasModel `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\cgalRefines `SearchGeomTraits_3`
\cgalRefines{SearchGeomTraits_3}
\sa `CGAL::AABB_traits<AABBGeomTraits,AABBPrimitive>`
\sa `CGAL::AABB_tree<AABBTraits>`

View File

@ -8,7 +8,7 @@
\cgalPkgDescriptionBegin{3D Fast Intersection and Distance Computation,PkgAABBTree}
\cgalPkgPicture{aabb-teaser-thumb.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Pierre Alliez, Stéphane Tayeb, Camille Wormser}
\cgalPkgAuthors{Pierre Alliez, Stéphane Tayeb, and Camille Wormser}
\cgalPkgDesc{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
\cgalPkgManuals{Chapter_3D_Fast_Intersection_and_Distance_Computation,PkgAABBTreeRef}
\cgalPkgSummaryEnd

View File

@ -390,7 +390,7 @@ query and location of query in space.
number of primitive data (greater than 2M faces in our experiments)
however we noticed that it is not necessary (and sometimes even
slower) to use all reference points when constructing the
KD-tree. In these cases we recommend to specify trough the function
KD-tree. In these cases we recommend to specify through the function
` AABB_tree::accelerate_distance_queries()` fewer reference
points (typically not more than 100K) evenly distributed over the
input primitives.

View File

@ -23,9 +23,8 @@
#include <iterator>
#include <boost/mpl/and.hpp>
#include <CGAL/is_iterator.h>
#include <CGAL/type_traits/is_iterator.h>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/if.hpp>
#include <CGAL/Default.h>

View File

@ -26,8 +26,7 @@
#define CGAL_REPLACEMENT_HEADER "<CGAL/AABB_halfedge_graph_segment_primitive.h>"
#include <CGAL/Installation/internal/deprecation_warning.h>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <type_traits>
namespace CGAL {
@ -80,9 +79,9 @@ namespace CGAL {
: m_halfedge_handle(*ptr) { };
template <class Iterator>
AABB_polyhedron_segment_primitive( Iterator it,
typename boost::enable_if<
boost::is_same<Id,typename Iterator::value_type>
>::type* =0
std::enable_if_t<
std::is_same<Id,typename Iterator::value_type>::value
>* =0
) : m_halfedge_handle(*it) { }
AABB_polyhedron_segment_primitive(const Self& primitive)

View File

@ -22,8 +22,7 @@
#define CGAL_REPLACEMENT_HEADER "<CGAL/AABB_face_graph_triangle_primitive.h>"
#include <CGAL/Installation/internal/deprecation_warning.h>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <type_traits>
namespace CGAL {
/// \ingroup PkgAABBTreeRef
@ -76,9 +75,9 @@ namespace CGAL {
: m_facet_handle(*ptr) { };
template <class Iterator>
AABB_polyhedron_triangle_primitive( Iterator it,
typename boost::enable_if<
boost::is_same<Id,typename Iterator::value_type>
>::type* =0
std::enable_if_t<
std::is_same<Id,typename Iterator::value_type>::value
>* =0
) : m_facet_handle(*it) { }

View File

@ -213,7 +213,7 @@ public:
/// Point query type.
typedef typename GeomTraits::Point_3 Point_3;
/// additionnal types for the search tree, required by the RangeSearchTraits concept
/// additional types for the search tree, required by the RangeSearchTraits concept
/// \bug This is not documented for now in the AABBTraits concept.
typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3;
@ -254,7 +254,7 @@ public:
* @param beyond iterator on beyond element
* @param bbox the bounding box of [first,beyond[
*
* Sorts the range defined by [first,beyond[. Sort is achieved on bbox longuest
* Sorts the range defined by [first,beyond[. Sort is achieved on bbox longest
* axis, using the comparison function `<dim>_less_than` (dim in {x,y,z})
*/
class Split_primitives

View File

@ -18,8 +18,8 @@
#include <functional>
#include <type_traits>
#include <boost/optional.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/variant/apply_visitor.hpp>
# if defined(BOOST_MSVC)
# pragma warning(push)
@ -201,7 +201,7 @@ template<typename Ray, typename SkipFunctor>
boost::optional< typename AABB_tree<AABBTraits>::template Intersection_and_primitive_id<Ray>::Type >
AABB_tree<AABBTraits>::first_intersection(const Ray& query,
const SkipFunctor& skip) const {
CGAL_static_assertion_msg((boost::is_same<Ray, typename AABBTraits::Ray_3>::value),
CGAL_static_assertion_msg((std::is_same<Ray, typename AABBTraits::Ray_3>::value),
"Ray and Ray_3 must be the same type");
switch(size()) // copy-paste from AABB_tree::traversal

View File

@ -143,18 +143,18 @@ struct AABB_covered_triangle_tree_traits
// Primitive ID --> box vector pos --> Bounding Box
using BPMB = internal::Vector_property_map<CGAL::Bbox_3>;
using BPM = CGAL::Property_map_binder<IDPM, BPMB>;
using BPM = CGAL::Compose_property_map<IDPM, BPMB>;
// Primitive ID --> point vector pos --> Reference Point
using RPPMB = internal::Vector_property_map<Point>;
using RPPM = CGAL::Property_map_binder<IDPM, RPPMB>;
using RPPM = CGAL::Compose_property_map<IDPM, RPPMB>;
// Primitive ID --> Datum pos vector pos --> Datum pos --> Datum
// The vector of data has size nf, but the vector of datum pos has size tree.size()
using DPPMB = internal::Vector_property_map<std::size_t>; // pos --> Datum pos
using DPPM = CGAL::Property_map_binder<IDPM, DPPMB>; // PID --> Datum pos
using DPPM = CGAL::Compose_property_map<IDPM, DPPMB>; // PID --> Datum pos
using DPMB = internal::Vector_property_map<Triangle_3>; // Datum pos --> Datum
using DPM = CGAL::Property_map_binder<DPPM, DPMB>; // PID --> Datum
using DPM = CGAL::Compose_property_map<DPPM, DPMB>; // PID --> Datum
using Primitive = CGAL::AABB_primitive<ID, DPM, RPPM,
CGAL::Tag_true /*external pmaps*/,
@ -207,7 +207,7 @@ public:
: Base(traits),
m_sq_length(square(max_length)),
m_dppmb(), m_bpm(), m_rppm(), m_dpmb(),
m_dpm(DPPM(m_dppmb/*first binder's value_map*/)/*second binder's key map*/, m_dpmb)
m_dpm(DPPM(Default(), m_dppmb/*first binder's value_map*/)/*second binder's key map*/, m_dpmb)
{
initialize_tree_property_maps();
}

View File

@ -18,8 +18,7 @@
#include <CGAL/disable_warnings.h>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <type_traits>
namespace CGAL {
// \ingroup PkgAABBTreeRef
@ -68,9 +67,9 @@ namespace CGAL {
: m_facet(*ptr) { }
template <class Iterator>
AABB_triangulation_3_triangle_primitive( Iterator it,
typename boost::enable_if<
boost::is_same<Id,typename Iterator::value_type>
>::type* =0
std::enable_if_t<
std::is_same<Id,typename Iterator::value_type>::value
>* =0
) : m_facet(*it) { }

View File

@ -527,7 +527,6 @@ private:
{
CGAL::Timer timer;
timer.start();
int nb_test = 0;
while ( timer.time() < duration )
{
Point a = random_point_in<K>(m_tree.bbox());
@ -539,8 +538,6 @@ private:
test(segment, m_polyhedron, m_tree, m_naive);
test(ray, m_polyhedron, m_tree, m_naive);
test(line, m_polyhedron, m_tree, m_naive);
++nb_test;
}
timer.stop();

View File

@ -131,7 +131,7 @@ std::tuple<std::size_t, std::size_t, std::size_t, long> test(const char* name) {
tu = std::make_tuple(intersect(lines.begin(), lines.end(), tree, counter),
intersect(rays.begin(), rays.end(), tree, counter),
intersect(segments.begin(), segments.end(), tree, counter),
// cant use counter here
// can't use counter here
0);
std::get<3>(tu) = counter;
}

View File

@ -9,7 +9,7 @@ used in the class `CGAL::Advancing_front_surface_reconstruction`.
It defines the geometric objects (points, segments...) forming the triangulation
together with a few geometric predicates and constructions on these objects.
\cgalRefines `DelaunayTriangulationTraits_3`
\cgalRefines{DelaunayTriangulationTraits_3}
\cgalHasModel All models of `Kernel`.
*/

View File

@ -9,7 +9,7 @@
\cgalPkgDescriptionBegin{Advancing Front Surface Reconstruction,PkgAdvancingFrontSurfaceReconstruction}
\cgalPkgPicture{afsr-detail.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Tran Kai Frank Da, David Cohen-Steiner}
\cgalPkgAuthors{Tran Kai Frank Da and David Cohen-Steiner}
\cgalPkgDesc{This package provides a greedy algorithm for surface reconstruction from an
unorganized point set. Starting from a seed facet, a piecewise linear
surface is grown by adding Delaunay triangles one by one. The most

View File

@ -186,7 +186,7 @@ namespace CGAL {
CGAL::Advancing_front_surface_reconstruction_vertex_base_3<
CGAL::Exact_predicates_inexact_constructions_kernel>,
CGAL::Advancing_front_surface_reconstruction_cell_base_3<
CGAL::Exact_predicates_inexact_constructions_kernel> > >`
CGAL::Exact_predicates_inexact_constructions_kernel> > >
\endcode
\tparam P must be a functor offering
@ -370,19 +370,19 @@ namespace CGAL {
coord_type K, min_K;
const coord_type eps;
const coord_type inv_eps_2; // 1/(eps^2)
const coord_type eps_3; // test de ^3 donc points tel 1e-7 soit petit
const coord_type eps_3; // tests using cubed eps so points such that 1e-7 is small
const criteria STANDBY_CANDIDATE;
const criteria STANDBY_CANDIDATE_BIS;
const criteria NOT_VALID_CANDIDATE;
//---------------------------------------------------------------------
//Pour une visu correcte
//pour retenir les facettes selectionnees
// For a correct visualization
// to retain the selected facets
int _vh_number;
int _facet_number;
//---------------------------------------------------------------------
//Pour le post traitement
// For post-processing
mutable int _postprocessing_counter;
int _size_before_postprocessing;
@ -501,9 +501,8 @@ namespace CGAL {
}
//-------------------------------------------------------------------
// pour gerer certaines aretes interieures: a savoir celle encore connectee au
// bord (en fait seule, les aretes interieures reliant 2 bords nous
// interressent...)
// to handle certain interior edges, meaning those still connected to the boundary
// (actually, only the interior edges linking two boundaries are relevant)
inline void set_interior_edge(Vertex_handle w, Vertex_handle v)
{
@ -806,7 +805,7 @@ namespace CGAL {
if ((number_of_facets() > static_cast<int>(T.number_of_vertices()))&&
(NB_BORDER_MAX > 0))
// en principe 2*nb_sommets = nb_facettes: y a encore de la marge!!!
// in theory 2*vertices_n = facets_n: plenty of room!!!
{
while(postprocessing()){
extend2_timer.start();
@ -1068,9 +1067,8 @@ namespace CGAL {
//---------------------------------------------------------------------
bool is_interior_edge(const Edge_like& key) const
// pour gerer certaines aretes interieures: a savoir celle encore connectee au
// bord (en fait seule, les aretes interieures reliant 2 bords nous
// interressent...)
// to handle certain interior edges, meaning those still connected to the boundary
// (actually, only the interior edges linking two boundaries are relevant)
{
return (is_interior_edge(key.first, key.second)||
is_interior_edge(key.second, key.first));
@ -1299,7 +1297,6 @@ namespace CGAL {
#ifdef AFSR_LAZY
value = lazy_squared_radius(cc);
#else
// qualified with CGAL, to avoid a compilation error with clang
if(volume(pp0, pp1, pp2, pp3) != 0){
value = T.geom_traits().compute_squared_radius_3_object()(pp0, pp1, pp2, pp3);
} else {
@ -1337,7 +1334,6 @@ namespace CGAL {
{
value = compute_scalar_product(Vc, Vc) - ac*ac/norm_V;
if ((value < 0)||(norm_V > inv_eps_2)){
// qualified with CGAL, to avoid a compilation error with clang
value = T.geom_traits().compute_squared_radius_3_object()(cp1, cp2, cp3);
}
}
@ -1365,7 +1361,7 @@ namespace CGAL {
/// @}
//---------------------------------------------------------------------
// For a border edge e we determine the incident facet which has the highest
// For a border edge e, we determine the incident facet which has the highest
// chance to be a natural extension of the surface
Radius_edge_type
@ -1425,8 +1421,7 @@ namespace CGAL {
P2Pn = construct_vector(p2, pn);
v2 = construct_cross_product(P2P1,P2Pn);
//pas necessaire de normer pour un bon echantillon:
// on peut alors tester v1*v2 >= 0
// no need to normalize for a correct sampling: one can then test v1*v2 >= 0
norm = sqrt(norm1 * compute_scalar_product(v2,v2));
pscal = v1*v2;
// check if the triangle will produce a sliver on the surface
@ -1437,7 +1432,8 @@ namespace CGAL {
if (tmp < min_valueA)
{
PnP1 = p1-pn;
// DELTA represente la qualite d'echantillonnage du bord
// DELTA encodes the quality of the border sampling
//
// We skip triangles having an internal angle along e
// whose cosinus is smaller than -DELTA
// that is the angle is larger than arcos(-DELTA)
@ -1462,37 +1458,36 @@ namespace CGAL {
if ((min_valueA == infinity()) || border_facet) // bad facets case
{
min_facet = Facet(c, i); // !!! sans aucune signification....
value = NOT_VALID_CANDIDATE; // Attention a ne pas inserer dans PQ
min_facet = Facet(c, i); // !!! without any meaning....
value = NOT_VALID_CANDIDATE; // Do not insert in the PQ
}
else
{
min_facet = min_facetA;
//si on considere seulement la pliure value appartient a [0, 2]
//value = coord_type(1) - min_valueP;
// si la pliure est bonne on note suivant le alpha sinon on prend en compte la
// pliure seule... pour discriminer entre les bons slivers...
// si on veut discriminer les facettes de bonnes pliures plus finement
// alors -(1+1/min_valueA) app a [-inf, -1]
// -min_valueP app a [-1, 1]
// If we only consider the fold value belongs to [0, 2]
// value = coord_type(1) - min_valueP;
// If the fold is OK, we rate based on the alpha value. Otherwise, take only the fold into account
// to discriminate between good slivers.
//
// If we wish to discriminate the facets with good folds more finely,
// then:
// -(1+1/min_valueA) is within [-inf, -1]
// -min_valueP is within [-1, 1]
//
if (min_valueP > COS_BETA)
value = -(coord_type(1) + coord_type(1)/min_valueA);
else
{
//on refuse une trop grande non-uniformite
// reject overly non-uniform values
coord_type tmp = priority (*this, c, i);
if (min_valueA <= K * tmp)
value = - min_valueP;
else
{
value = STANDBY_CANDIDATE; // tres mauvais candidat mauvaise pliure
// + grand alpha... a traiter plus tard....
min_K =
(std::min)(min_K,
min_valueA/tmp);
value = STANDBY_CANDIDATE; // extremely bad candidate, bad fold + large alpha; handle later
min_K = (std::min)(min_K, min_valueA/tmp);
}
}
}
@ -1597,7 +1592,7 @@ namespace CGAL {
}
//---------------------------------------------------------------------
// test de reciprocite avant de recoller une oreille anti-singularite
// reciprocity test before glueing anti-singularity ear
int
test_merge(const Edge_like& ordered_key, const Border_elt& result,
const Vertex_handle& v, const coord_type& ear_alpha)
@ -1622,12 +1617,12 @@ namespace CGAL {
coord_type norm = sqrt(compute_scalar_product(v1, v1) * compute_scalar_product(v2, v2));
if (v1*v2 > COS_BETA*norm)
return 1; // label bonne pliure sinon:
return 1; // mark as good fold
if (ear_alpha <= K * priority(*this, neigh, n_ind))
return 2; // label alpha coherent...
return 2; // mark alpha consistent
return 0; //sinon oreille a rejeter...
return 0; // ear to be rejected
}
@ -1753,7 +1748,7 @@ namespace CGAL {
Edge_like ordered_key(v1,v2);
if (!is_border_elt(ordered_key, result12))
std::cerr << "+++probleme coherence bord <validate>" << std::endl;
std::cerr << "+++issue with border consistency <validate>" << std::endl;
bool is_border_el1 = is_border_elt(ordered_el1, result1),
is_border_el2 = is_border_elt(ordered_el2, result2);
@ -1782,8 +1777,7 @@ namespace CGAL {
return FINAL_CASE;
}
//---------------------------------------------------------------------
//on peut alors marquer v1 et on pourrait essayer de merger
//sans faire de calcul inutile???
// we can then mark v1 and could try to merge without any useless computation???
if (is_border_el1)
{
Edge_incident_facet edge_Ifacet_2(Edge(c, i, edge_Efacet.first.third),
@ -1796,7 +1790,7 @@ namespace CGAL {
return EAR_CASE;
}
//---------------------------------------------------------------------
//idem pour v2
//idem for v2
if (is_border_el2)
{
Edge_incident_facet edge_Ifacet_1(Edge(c, i, edge_Efacet.first.second),
@ -1852,9 +1846,9 @@ namespace CGAL {
// border incident to a point... _mark<1 even if th orientation
// may be such as one vh has 2 successorson the same border...
{
// a ce niveau on peut tester si le recollement se fait en
// maintenant la compatibilite d'orientation des bords (pour
// surface orientable...) ou si elle est brisee...
// at this level, we can test if glueing can be done while keeping
// compatible orientations for the borders (for an orientable surface...)
// or if it is broken
Edge_incident_facet edge_Ifacet_1(Edge(c, i, edge_Efacet.first.second),
edge_Efacet.second);
Edge_incident_facet edge_Ifacet_2(Edge(c, i, edge_Efacet.first.third),
@ -1884,8 +1878,8 @@ namespace CGAL {
Border_elt result_ear2;
Edge_like ear1_e, ear2_e;
// pour maintenir la reconstruction d'une surface orientable :
// on verifie que les bords se recollent dans des sens opposes
// to preserve the reconstruction of an orientable surface, we check that
// borders glue to one another in opposite directions
if (ordered_key.first==v1)
{
ear1_e = Edge_like(c->vertex(i), ear1_c ->vertex(ear1_i));
@ -1897,7 +1891,7 @@ namespace CGAL {
ear2_e = Edge_like(c->vertex(i), ear2_c ->vertex(ear2_i));
}
//maintient la surface orientable
// preserves orientability of the surface
bool is_border_ear1 = is_ordered_border_elt(ear1_e, result_ear1);
bool is_border_ear2 = is_ordered_border_elt(ear2_e, result_ear2);
bool ear1_valid(false), ear2_valid(false);
@ -1931,8 +1925,7 @@ namespace CGAL {
{
Validation_case res = validate(ear1, e1.first);
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
std::cerr << "+++probleme de recollement : cas "
<< res << std::endl;
std::cerr << "+++issue in glueing: case " << res << std::endl;
e2 = compute_value(edge_Ifacet_2);
if (ordered_key.first == v1)
@ -1948,8 +1941,7 @@ namespace CGAL {
{
Validation_case res = validate(ear2, e2.first);
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
std::cerr << "+++probleme de recollement : cas "
<< res << std::endl;
std::cerr << "+++issue in glueing : case " << res << std::endl;
e1 = compute_value(edge_Ifacet_1);
if (ordered_key.first == v1)
@ -1962,25 +1954,23 @@ namespace CGAL {
_ordered_border.insert(Radius_ptr_type(e1.first, p1));
}
}
else// les deux oreilles ne se recollent pas sur la meme arete...
else // both ears do not glue on the same edge
{
// on resoud la singularite.
// resolve the singularity
if (ear1_valid)
{
Validation_case res = validate(ear1, e1.first);
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
std::cerr << "+++probleme de recollement : cas "
<< res << std::endl;
std::cerr << "+++issue in glueing: case " << res << std::endl;
}
if (ear2_valid)
{
Validation_case res = validate(ear2, e2.first);
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
std::cerr << "+++probleme de recollement : cas "
<< res << std::endl;
std::cerr << "+++issue in glueing : case " << res << std::endl;
}
// on met a jour la PQ s'il y a lieu... mais surtout pas
// avant la resolution de la singularite
// Update the PQ if needed, but not before resolving the singularity
if (!ear1_valid)
{
_ordered_border.insert(Radius_ptr_type(e1.first, p1));
@ -2020,7 +2010,7 @@ namespace CGAL {
if (new_candidate.first == STANDBY_CANDIDATE)
{
// a garder pour un K un peu plus grand...
// put aside for a slightly larger K
new_candidate.first = STANDBY_CANDIDATE_BIS;
}
@ -2042,8 +2032,8 @@ namespace CGAL {
void
extend()
{
// initilisation de la variable globale K: qualite d'echantillonnage requise
K = K_init; // valeur d'initialisation de K pour commencer prudemment...
// Initialize the global variable K: required sampling quality
K = K_init; // initial value of K to start carefully
coord_type K_prev = K;
Vertex_handle v1, v2;
@ -2052,7 +2042,7 @@ namespace CGAL {
}
do
{
min_K = infinity(); // pour retenir le prochain K necessaire pour progresser...
min_K = infinity(); // to store the next K required to progress
do
{
@ -2095,7 +2085,7 @@ namespace CGAL {
{
new_candidate = compute_value(mem_Ifacet);
if ((new_candidate != mem_e_it))
// &&(new_candidate.first < NOT_VALID_CANDIDATE))
// &&(new_candidate.first < NOT_VALID_CANDIDATE))
{
IO_edge_type* pnew =
set_again_border_elt(key_tmp.first, key_tmp.second,
@ -2111,8 +2101,7 @@ namespace CGAL {
(_ordered_border.begin()->first < STANDBY_CANDIDATE_BIS));
K_prev = K;
K += (std::max)(K_step, min_K - K + eps);
// on augmente progressivement le K mais on a deja rempli sans
// faire des betises auparavant...
// Progressively increase K, but having already filled without issue beforehand
}
while((!_ordered_border.empty())&&(K <= K)&&(min_K != infinity())&&(K!=K_prev));
@ -2125,9 +2114,8 @@ namespace CGAL {
//---------------------------------------------------------------------
// En principe, si l'allocateur de cellules etait bien fait on aurait pas besoin
// de mettre a jour les valeurs rajoutees pour les cellules a la main...
// In theory, if the cell allocator were properly made, one would not need to manually update
// the values added for the cells
void
re_init_for_free_cells_cache(const Vertex_handle& vh)
{
@ -2152,9 +2140,8 @@ namespace CGAL {
int index = c->index(vh);
Cell_handle neigh = c->neighbor(index);
int n_ind = neigh->index(c);
neigh->set_smallest_radius(n_ind, -1); // pour obliger le recalcul
// si c est selectionnee c'est qu'elle est aussi le mem_IFacet renvoye par
// compute_value... donc a swapper aussi
neigh->set_smallest_radius(n_ind, -1); // forces recomputation
// if c is selected, then it is also the mem_IFacet returned by compute_value... so to be swapped too
if (c->is_selected_facet(index))
{
int fn = c->facet_number(index);
@ -2214,8 +2201,8 @@ namespace CGAL {
circ = next(circ);
}
while(circ.first.first != c);
// si on passe par la, alors y a eu un probleme....
std::cerr << "+++probleme dans la MAJ avant remove..." << std::endl;
// if we are here, something went wrong
std::cerr << "+++issue in the update before removal..." << std::endl;
return Facet(c, start.second);
}
@ -2237,7 +2224,7 @@ namespace CGAL {
ordered_map_erase(border_elt.second.first.first,
border_IO_elt(vh, vh_succ));
remove_border_edge(vh, vh_succ);
// 1- a virer au cas ou car vh va etre detruit
// 1- remove just in case since vh is about to be destroyed
remove_interior_edge(vh_succ, vh);
bool while_cond(true);
do
@ -2266,14 +2253,14 @@ namespace CGAL {
{
ordered_map_erase(result.first.first, border_IO_elt(vh_int, vh));
remove_border_edge(vh_int, vh);
// 1- a virer au cas ou car vh va etre detruit
// 1- remove just in case since vh is about to be destroyed
remove_interior_edge(vh_int, vh);
while_cond = false;
}
// a titre preventif... on essaye de s'assurer de marquer les aretes
// interieures au sens large...
// 2- a virer a tout pris pour que maintenir le sens de interior edge
// As a preventive measure, we try to ensure marking the interior edges in a broad sense
// 2- remove to preserve the interior edge
remove_interior_edge(vh_int, vh_succ);
remove_interior_edge(vh_succ, vh_int);
@ -2304,16 +2291,16 @@ namespace CGAL {
bool
create_singularity(const Vertex_handle& vh)
{
// Pour reperer le cas de triangle isole
// To detect the isolated triangle case
if (vh->is_on_border())
{
// vh sommet 0
// vh vertex 0
Next_border_elt border_elt = *(vh->first_incident());
Vertex_handle vh_1 = border_elt.first;// sommet 1
Vertex_handle vh_1 = border_elt.first;// vertex 1
border_elt = *(vh_1->first_incident());
Vertex_handle vh_2 = border_elt.first;// sommet 2
Vertex_handle vh_2 = border_elt.first;// vertex 2
border_elt = *(vh_2->first_incident());
Vertex_handle vh_3 = border_elt.first;// sommet 0 ???
Vertex_handle vh_3 = border_elt.first;// vertex 0 ???
Cell_handle c;
int i, j, k;
if ((vh_3 == vh)&&(T.is_facet(vh, vh_1, vh_2, c, i ,j ,k)))
@ -2328,7 +2315,7 @@ namespace CGAL {
}
// Reperer le cas d'aretes interieures...
// Detect the interior edges case
std::list<Vertex_handle> vh_list;
T.incident_vertices(vh, std::back_inserter(vh_list));
@ -2402,9 +2389,9 @@ namespace CGAL {
std::list<Vertex_handle> L_v;
// Pour controler les sommets choisis sur le bord...
// To control vertices chosen on the boundary
// nombre d'aretes a partir duquel on considere que c'est irrecuperable NB_BORDER_MAX
// NB_BORDER_MAX: number of edges from which we consider that things are irrecoverable
int vh_on_border_inserted(0);
for(Finite_vertices_iterator v_it = T.finite_vertices_begin();
@ -2445,7 +2432,7 @@ namespace CGAL {
std::size_t itmp, L_v_size_mem;
L_v_size_mem = L_v.size();
if ((vh_on_border_inserted != 0)&& // pour ne post-traiter que les bords
if ((vh_on_border_inserted != 0)&& // to post-process only the borders
(L_v.size() < .1 * _size_before_postprocessing))
{
{
@ -2460,7 +2447,7 @@ namespace CGAL {
}
#ifdef VERBOSE
if(L_v.size() > 0){
std::cout << " " << L_v.size() << " non regular points." << std::endl;
std::cout << " " << L_v.size() << " non-regular points." << std::endl;
}
#endif // VERBOSE
re_compute_values();
@ -2469,7 +2456,7 @@ namespace CGAL {
postprocess_timer.stop();
return false;
}
// we stop if we removed more than 10% of points or after 20 rounds
// we stop if we removed more than 10% of points, or after 20 rounds
if ((L_v_size_mem == L_v.size())||
((_size_before_postprocessing - T.number_of_vertices()) >
.1 * _size_before_postprocessing)||
@ -2479,7 +2466,6 @@ namespace CGAL {
}
min_K = infinity();
// fin--
// if (_postprocessing_counter < 5)
// return true;
postprocess_timer.stop();

View File

@ -220,7 +220,7 @@ namespace CGAL {
else
{
if (m_incident_border->second->first != nullptr)
std::cerr << "+++probleme de MAJ du bord <Vertex_base>" << std::endl;
std::cerr << "+++issue while updating border <Vertex_base>" << std::endl;
*m_incident_border->second = elt;
}
}

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` computes the integral quotient of division
with remainder.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod`
@ -58,4 +58,4 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
}; /* end Div */
}
}

View File

@ -189,7 +189,7 @@ r
</TABLE>
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Mod`

View File

@ -16,7 +16,7 @@ This functor is required to provide two operators. The first operator takes two
arguments and returns true if the first argument divides the second argument.
The second operator returns \f$ c\f$ via the additional third argument.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::IntegralDivision`

View File

@ -17,7 +17,7 @@ unit-normal (i.e.\ have unit part 1).
to the partial order of divisibility. This is because an element \f$ a \in R\f$ is said to divide \f$ b \in R\f$, iff \f$ \exists r \in R\f$ such that \f$ a \cdot r = b\f$.
Thus, \f$ 0\f$ is divided by every element of the Ring, in particular by itself.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ exists (i.e.\ if \f$ x\f$ is divisible by \f$ y\f$). Otherwise the effect of inv
this operation is undefined. Since the ring represented is an integral domain,
\f$ z\f$ is uniquely defined if it exists.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Divides`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the inverse element with
respect to multiplication of a `Field`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`,
returns true in case the argument is the one of the ring.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -13,7 +13,7 @@ A ring element \f$ x\f$ is said to be a square iff there exists a ring element \
that \f$ x= y*y\f$. In case the ring is a `UniqueFactorizationDomain`,
\f$ y\f$ is uniquely defined up to multiplication by units.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, returns true in case the argument is the zero element of the ring.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`
\sa `RealEmbeddableTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableBinaryFunction` providing the k-th root.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_ {
`AdaptableBinaryFunction` computes the remainder of division with remainder.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits_::Div`

View File

@ -8,7 +8,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableFunctor` computes a real root of a square-free univariate
polynomial.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
This `AdaptableUnaryFunction` may simplify a given object.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction` providing the square root.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -7,7 +7,7 @@ namespace AlgebraicStructureTraits_{
`AdaptableUnaryFunction`, computing the square of the argument.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -21,7 +21,7 @@ hence the unit-part of a non-zero integer is its sign. For a `Field`, every
non-zero element is a unit and is its own unit part, its unit normal
associate being one. The unit part of zero is, by convention, one.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicStructureTraits`

View File

@ -139,7 +139,7 @@ typedef unspecified_type Is_numerical_sensitive;
This type specifies the return type of the predicates provided
by this traits. The type must be convertible to `bool` and
typically the type indeed maps to `bool`. However, there are also
cases such as interval arithmetic, in which it is `Uncertain<bool>`
cases such as interval arithmetic, in which it is `CGAL::Uncertain<bool>`
or some similar type.
*/
@ -300,4 +300,3 @@ typedef unspecified_type Root_of;
/// @}
}; /* end AlgebraicStructureTraits */

View File

@ -25,7 +25,7 @@ The most prominent example of a Euclidean ring are the integers.
Whenever both \f$ x\f$ and \f$ y\f$ are positive, then it is conventional to choose
the smallest positive remainder \f$ r\f$.
\cgalRefines `UniqueFactorizationDomain`
\cgalRefines{UniqueFactorizationDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< Field >` is a model of
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< Field >::Algebraic_category` \endlink derived from `CGAL::Field_tag`
- \link AlgebraicStructureTraits::Inverse `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` \endlink which is a model of `AlgebraicStructureTraits_::Inverse`
\cgalRefines `IntegralDomain`
\cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -7,8 +7,7 @@ The concept `FieldNumberType` combines the requirements of the concepts
A model of `FieldNumberType` can be used as a template parameter
for Cartesian kernels.
\cgalRefines `Field`
\cgalRefines `RealEmbeddable`
\cgalRefines{Field,RealEmbeddable}
\cgalHasModel float
\cgalHasModel double

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithKthRoot >` is a model of `
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits_::KthRoot`
\cgalRefines `FieldWithSqrt`
\cgalRefines{FieldWithSqrt}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -11,7 +11,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithRootOf >` is a model of `A
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits_::RootOf`
\cgalRefines `FieldWithKthRoot`
\cgalRefines{FieldWithKthRoot}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -10,7 +10,7 @@ Moreover, `CGAL::Algebraic_structure_traits< FieldWithSqrt >` is a model of `Alg
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_category` \endlink derived from `CGAL::Field_with_sqrt_tag`
- \link AlgebraicStructureTraits::Sqrt `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` \endlink which is a model of `AlgebraicStructureTraits_::Sqrt`
\cgalRefines `Field`
\cgalRefines{Field}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -113,7 +113,7 @@ FractionTraits::Denominator_type & d);
`AdaptableBinaryFunction`, returns the fraction of its arguments.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `Fraction`
\sa `FractionTraits`
@ -168,7 +168,7 @@ This can be considered as a relaxed version of `AlgebraicStructureTraits_::Gcd`,
this is needed because it is not guaranteed that `FractionTraits::Denominator_type` is a model of
`UniqueFactorizationDomain`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `Fraction`
\sa `FractionTraits`

View File

@ -16,7 +16,7 @@ In this case
\link CGAL::Coercion_traits::Are_implicit_interoperable `CGAL::Coercion_traits<A,B>::Are_implicit_interoperable`\endlink
is `CGAL::Tag_true`.
\cgalRefines `ExplicitInteroperable`
\cgalRefines{ExplicitInteroperable}
\sa `CGAL::Coercion_traits<A,B>`
\sa `ExplicitInteroperable`

View File

@ -16,7 +16,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomain >` is a model of
- \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits_::IntegralDivision`
- \link AlgebraicStructureTraits::Divides `CGAL::Algebraic_structure_traits< IntegralDomain >::Divides` \endlink which is a model of `AlgebraicStructureTraits_::Divides`
\cgalRefines `IntegralDomainWithoutDivision`
\cgalRefines{IntegralDomainWithoutDivision}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -29,11 +29,7 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >` is
- \link AlgebraicStructureTraits::Simplify `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` \endlink which is a model of `AlgebraicStructureTraits_::Simplify`
- \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits_::UnitPart`
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`
\cgalRefines `EqualityComparable`
\cgalRefines `FromIntConstructible`
\cgalRefines{Assignable,CopyConstructible,DefaultConstructible,EqualityComparable,FromIntConstructible}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -38,8 +38,7 @@ If a number type is a model of both `IntegralDomainWithoutDivision` and
`RealEmbeddable`, it follows that the ring represented by such a number type
is a sub-ring of the real numbers and hence has characteristic zero.
\cgalRefines `EqualityComparable`
\cgalRefines `LessThanComparable`
\cgalRefines{EqualityComparable,LessThanComparable}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction` computes the absolute value of a number.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableBinaryFunction` compares two real embeddable numbers.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is negative.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is positive.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
`AdaptableUnaryFunction`, returns true in case the argument is 0.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`
\sa `AlgebraicStructureTraits_::IsZero`

View File

@ -7,7 +7,7 @@ namespace RealEmbeddableTraits_ {
This `AdaptableUnaryFunction` computes the sign of a real embeddable number.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -11,7 +11,7 @@ embeddable number.
Remark: In order to control the quality of approximation one has to resort
to methods that are specific to NT. There are no general guarantees whatsoever.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -9,7 +9,7 @@ namespace RealEmbeddableTraits_ {
number \f$ x\f$ a double interval containing \f$ x\f$.
This interval is represented by `std::pair<double,double>`.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `RealEmbeddableTraits`

View File

@ -25,7 +25,7 @@ typedef unspecified_type Type;
/*!
Tag indicating whether the associated type is real embeddable.
This is either \link Tag_true `Tag_true`\endlink or \link Tag_false `Tag_false`\endlink.
This is either \link CGAL::Tag_true `Tag_true`\endlink or \link CGAL::Tag_false `Tag_false`\endlink.
*/
typedef unspecified_type Is_real_embeddable;

View File

@ -8,8 +8,7 @@ The concept `RingNumberType` combines the requirements of the concepts
A model of `RingNumberType` can be used as a template parameter
for Homogeneous kernels.
\cgalRefines `IntegralDomainWithoutDivision`
\cgalRefines `RealEmbeddable`
\cgalRefines{IntegralDomainWithoutDivision,RealEmbeddable}
\cgalHasModel \cpp built-in number types
\cgalHasModel `CGAL::Gmpq`

View File

@ -23,7 +23,7 @@ is a model of `AlgebraicStructureTraits` providing:
derived from `CGAL::Unique_factorization_domain_tag`
- \link AlgebraicStructureTraits::Gcd `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` \endlink which is a model of `AlgebraicStructureTraits_::Gcd`
\cgalRefines `IntegralDomain`
\cgalRefines{IntegralDomain}
\sa `IntegralDomainWithoutDivision`
\sa `IntegralDomain`

View File

@ -9,8 +9,8 @@ int main(){
typedef FT::Numerator_type Numerator_type;
typedef FT::Denominator_type Denominator_type;
CGAL_static_assertion((boost::is_same<Numerator_type,CGAL::Gmpz>::value));
CGAL_static_assertion((boost::is_same<Denominator_type,CGAL::Gmpz>::value));
CGAL_static_assertion((std::is_same<Numerator_type,CGAL::Gmpz>::value));
CGAL_static_assertion((std::is_same<Denominator_type,CGAL::Gmpz>::value));
Numerator_type numerator;
Denominator_type denominator;

View File

@ -354,7 +354,7 @@ class Algebraic_structure_traits_base< Type_,
typedef typename CT::Type Coercion_type_NT1_NT2;
CGAL_USE_TYPE(Coercion_type_NT1_NT2);
CGAL_static_assertion((
::boost::is_same<Coercion_type_NT1_NT2 , Type >::value));
::std::is_same<Coercion_type_NT1_NT2 , Type >::value));
typename Coercion_traits< NT1, NT2 >::Cast cast;
operator()( cast(x), cast(y), q, r );

View File

@ -23,19 +23,19 @@
#define CGAL_COERCION_TRAITS_H 1
#include <iterator>
#include <type_traits>
#include <CGAL/boost/iterator/transform_iterator.hpp>
#include <boost/type_traits/is_same.hpp>
#include <CGAL/tags.h>
// Makro to define an additional operator for binary functors which takes
// Macro to define an additional operator for binary functors which takes
// two number types as parameters that are interoperable with the
// number type
#define CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( NT, Result_type ) \
template < class CT_Type_1, class CT_Type_2 > \
Result_type operator()( const CT_Type_1& x, const CT_Type_2& y ) const { \
CGAL_static_assertion((::boost::is_same< \
CGAL_static_assertion((::std::is_same< \
typename Coercion_traits< CT_Type_1, CT_Type_2 >::Type, NT \
>::value)); \
\

View File

@ -28,7 +28,7 @@ class Parens_as_product_tag {};
/*! \ingroup NiX_io_parens
* \brief decides whether this number requires parentheses
* in case it appears within a produkt.
* in case it appears within a product.
*/
template <class NT>
struct Needs_parens_as_product{
@ -37,7 +37,7 @@ struct Needs_parens_as_product{
/*! \ingroup NiX_io_parens
* \brief decides whether this number requires parentheses
* in case it appears within a produkt.
* in case it appears within a product.
*/
template <class NT>
inline bool needs_parens_as_product(const NT& x){

View File

@ -21,7 +21,8 @@
#include <CGAL/number_type_basic.h>
#include <CGAL/Fraction_traits.h>
#include <CGAL/is_convertible.h>
#include <boost/utility/enable_if.hpp>
#include <type_traits>
namespace CGAL {
@ -79,11 +80,11 @@ public:
{ return make_rational(x.first, x.second); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,typename boost::enable_if_c<is_implicit_convertible<N,RT>::value&&is_implicit_convertible<D,RT>::value,int>::type=0) const
Rational make_rational(const N& n, const D& d,std::enable_if_t<is_implicit_convertible<N,RT>::value&&is_implicit_convertible<D,RT>::value,int> = 0) const
{ return Compose()(n,d); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,typename boost::enable_if_c<!is_implicit_convertible<N,RT>::value||!is_implicit_convertible<D,RT>::value,int>::type=0) const
Rational make_rational(const N& n, const D& d,std::enable_if_t<!is_implicit_convertible<N,RT>::value||!is_implicit_convertible<D,RT>::value,int> = 0) const
{ return n/d; } // Assume that n or d is already a fraction
};
}// namespace internal
@ -92,9 +93,9 @@ public:
template <class T>
class Rational_traits
: public internal::Rational_traits_base<T,
::boost::is_same<typename Fraction_traits<T>::Is_fraction,Tag_true>::value
::std::is_same<typename Fraction_traits<T>::Is_fraction,Tag_true>::value
&&
::boost::is_same<
::std::is_same<
typename Fraction_traits<T>::Numerator_type,
typename Fraction_traits<T>::Denominator_type
>::value >

View File

@ -85,13 +85,13 @@ public:
// determine extractable scalar factor
Scalar operator () (const NT& a) {
CGAL_static_assertion(( ::boost::is_same< NT,Scalar >::value));
CGAL_static_assertion(( ::std::is_same< NT,Scalar >::value));
typedef typename Algebraic_structure_traits<NT>::Algebraic_category SAT;
return scalar_factor(a, SAT());
}
// determine extractable scalar factor
Scalar operator () (const NT& a, const Scalar& d) {
CGAL_static_assertion(( ::boost::is_same< NT,Scalar >::value));
CGAL_static_assertion(( ::std::is_same< NT,Scalar >::value));
typedef typename Algebraic_structure_traits<NT>::Algebraic_category SAT;
return scalar_factor(a,d,SAT());
}

View File

@ -44,7 +44,7 @@
template <typename AdaptableFunctor, typename ResultType>
void check_result_type(AdaptableFunctor, ResultType){
typedef typename AdaptableFunctor::result_type result_type;
CGAL_static_assertion((::boost::is_same<result_type,ResultType>::value));
CGAL_static_assertion((::std::is_same<result_type,ResultType>::value));
CGAL_USE_TYPE(result_type);
}
// check nothing for CGAL::Null_functor
@ -123,11 +123,11 @@ void test_algebraic_structure_intern( const CGAL::Integral_domain_tag& ) {
using CGAL::Null_functor;
CGAL_static_assertion(
(!::boost::is_same< Integral_division, Null_functor >::value));
CGAL_static_assertion((!::boost::is_same< Divides, Null_functor >::value));
CGAL_static_assertion((!::boost::is_same< Is_zero, Null_functor >::value));
CGAL_static_assertion((!::boost::is_same< Is_one, Null_functor >::value));
CGAL_static_assertion((!::boost::is_same< Square, Null_functor >::value));
(!::std::is_same< Integral_division, Null_functor >::value));
CGAL_static_assertion((!::std::is_same< Divides, Null_functor >::value));
CGAL_static_assertion((!::std::is_same< Is_zero, Null_functor >::value));
CGAL_static_assertion((!::std::is_same< Is_one, Null_functor >::value));
CGAL_static_assertion((!::std::is_same< Square, Null_functor >::value));
// functor
const Is_zero is_zero = Is_zero();
@ -206,7 +206,7 @@ void test_algebraic_structure_intern(
CGAL_SNAP_AST_FUNCTORS(AST);
using CGAL::Null_functor;
CGAL_static_assertion((!::boost::is_same< Gcd, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Gcd, Null_functor>::value));
const Gcd gcd = Gcd();
assert( gcd( AS ( 0), AS ( 0)) == unit_normal( AS (0) ) );
@ -268,9 +268,9 @@ void test_algebraic_structure_intern( const CGAL::Euclidean_ring_tag&) {
CGAL_SNAP_AST_FUNCTORS(AST);
using CGAL::Null_functor;
CGAL_static_assertion((!::boost::is_same< Div, Null_functor>::value));
CGAL_static_assertion((!::boost::is_same< Mod, Null_functor>::value));
CGAL_static_assertion((!::boost::is_same< Div_mod, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Div, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Mod, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Div_mod, Null_functor>::value));
const Div div=Div();
const Mod mod=Mod();
@ -387,7 +387,7 @@ void test_algebraic_structure_intern( const CGAL::Field_with_sqrt_tag& ) {
CGAL_SNAP_AST_FUNCTORS(AST);
CGAL_static_assertion((!::boost::is_same< Sqrt, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Sqrt, Null_functor>::value));
const Sqrt sqrt =Sqrt();
AS a(4);
@ -614,10 +614,10 @@ class Test_is_square {
CGAL_USE_TYPE(Second_argument_type);
CGAL_static_assertion(
( ::boost::is_same< AS , First_argument_type>::value));
( ::std::is_same< AS , First_argument_type>::value));
CGAL_static_assertion(
( ::boost::is_same< AS& , Second_argument_type>::value));
//CGAL_static_assertion(( ::boost::is_same< bool , Result_type>::value));
( ::std::is_same< AS& , Second_argument_type>::value));
//CGAL_static_assertion(( ::std::is_same< bool , Result_type>::value));
bool b = Result_type(true); CGAL_USE(b);
AS test_number = AS(3)*AS(3);
@ -649,8 +649,8 @@ public:
typedef typename Sqrt::result_type Result_type;
CGAL_USE_TYPE(Argument_type);
CGAL_USE_TYPE(Result_type);
CGAL_static_assertion(( ::boost::is_same< AS , Argument_type>::value));
CGAL_static_assertion(( ::boost::is_same< AS , Result_type>::value));
CGAL_static_assertion(( ::std::is_same< AS , Argument_type>::value));
CGAL_static_assertion(( ::std::is_same< AS , Result_type>::value));
typedef Algebraic_structure_traits<AS> AST;
typedef typename AST::Is_exact Is_exact;
assert( !Is_exact::value || AS (3) == sqrt( AS (9)));
@ -676,11 +676,11 @@ public:
CGAL_USE_TYPE(Second_argument_type);
CGAL_USE_TYPE(Result_type);
CGAL_static_assertion(
( ::boost::is_same<int, First_argument_type>::value));
( ::std::is_same<int, First_argument_type>::value));
CGAL_static_assertion(
( ::boost::is_same< AS , Second_argument_type>::value));
( ::std::is_same< AS , Second_argument_type>::value));
CGAL_static_assertion(
( ::boost::is_same< AS , Result_type>::value));
( ::std::is_same< AS , Result_type>::value));
AS epsilon(1);
assert( test_equality_epsilon( AS (2),
root( 4, AS (16) ), epsilon ) );
@ -803,7 +803,7 @@ void test_algebraic_structure(){
typedef CGAL::Algebraic_structure_traits< AS > AST;
CGAL_SNAP_AST_FUNCTORS(AST);
CGAL_static_assertion((::boost::is_same<AS,typename AST::Type>::value));
CGAL_static_assertion((::std::is_same<AS,typename AST::Type>::value));
typedef typename AST::Boolean Boolean;
assert(!Boolean());
@ -817,13 +817,13 @@ void test_algebraic_structure(){
using CGAL::Null_functor;
// Test for desired exactness
CGAL_static_assertion(
( ::boost::is_same< typename AST::Is_exact, Is_exact >::value));
( ::std::is_same< typename AST::Is_exact, Is_exact >::value));
CGAL_static_assertion(( ::boost::is_convertible< Tag,
Integral_domain_without_division_tag >::value ));
CGAL_static_assertion(( ::boost::is_same< Tag, Algebraic_category>::value));
CGAL_static_assertion((!::boost::is_same< Simplify, Null_functor>::value));
CGAL_static_assertion((!::boost::is_same< Unit_part, Null_functor>::value));
CGAL_static_assertion(( ::std::is_same< Tag, Algebraic_category>::value));
CGAL_static_assertion((!::std::is_same< Simplify, Null_functor>::value));
CGAL_static_assertion((!::std::is_same< Unit_part, Null_functor>::value));
const Simplify simplify=Simplify();;
const Unit_part unit_part= Unit_part();
@ -944,7 +944,7 @@ void test_algebraic_structure( const AS & a, const AS & b, const AS & c) {
typedef CGAL::Algebraic_structure_traits<AS> AST;
typedef typename AST::Is_numerical_sensitive Is_numerical_sensitive;
CGAL_static_assertion(
!(::boost::is_same<Is_numerical_sensitive, CGAL::Null_tag>::value));
!(::std::is_same<Is_numerical_sensitive, CGAL::Null_tag>::value));
CGAL_USE_TYPE(Is_numerical_sensitive);
}

View File

@ -327,8 +327,8 @@ void test_implicit_interoperable_one_way() {
typedef typename CT::Are_implicit_interoperable Are_implicit_interoperable;
CGAL_static_assertion(
(::boost::is_same<Are_implicit_interoperable, CGAL::Tag_true>::value));
assert((::boost::is_same<Are_implicit_interoperable, CGAL::Tag_true>::value));
(::std::is_same<Are_implicit_interoperable, CGAL::Tag_true>::value));
assert((::std::is_same<Are_implicit_interoperable, CGAL::Tag_true>::value));
typename CGAL::Real_embeddable_traits<C>::Is_real_embeddable is_real_embeddable;
test_implicit_interoperable_for_real_embeddable<A,B>(is_real_embeddable);
@ -346,9 +346,9 @@ void test_explicit_interoperable_one_way(){
typedef typename CT::Cast Cast;
typedef typename Cast::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<result_type,Type>::value));
CGAL_static_assertion((::boost::is_same< typename CT::Are_explicit_interoperable,CGAL::Tag_true>::value));
CGAL_static_assertion((::boost::is_same<Type,RT>::value));
CGAL_static_assertion((::std::is_same<result_type,Type>::value));
CGAL_static_assertion((::std::is_same< typename CT::Are_explicit_interoperable,CGAL::Tag_true>::value));
CGAL_static_assertion((::std::is_same<Type,RT>::value));
typename CT::Cast cast;
A a(3);

View File

@ -37,11 +37,11 @@ void test_fraction_traits(){
typedef typename FT::Compose Compose;
CGAL_USE_TYPE(Is_fraction);
CGAL_static_assertion( (::boost::is_same<Type,T>::value));
CGAL_static_assertion( (::boost::is_same<Is_fraction,Tag_true>::value));
CGAL_static_assertion(!(::boost::is_same<Common_factor,Null_functor>::value));
CGAL_static_assertion(!(::boost::is_same<Decompose,Null_functor>::value));
CGAL_static_assertion(!(::boost::is_same<Compose,Null_functor>::value));
CGAL_static_assertion( (::std::is_same<Type,T>::value));
CGAL_static_assertion( (::std::is_same<Is_fraction,Tag_true>::value));
CGAL_static_assertion(!(::std::is_same<Common_factor,Null_functor>::value));
CGAL_static_assertion(!(::std::is_same<Decompose,Null_functor>::value));
CGAL_static_assertion(!(::std::is_same<Compose,Null_functor>::value));
// Decompose

View File

@ -29,7 +29,7 @@ void test_rational_traits(){
typedef Rational_traits<Rational> Rational_traits;
typedef typename Rational_traits::RT RT;
CGAL_static_assertion((::boost::is_same<RT,RT>::value));
CGAL_static_assertion((::std::is_same<RT,RT>::value));
assert( Rational_traits().numerator(x) == RT(7));
assert( Rational_traits().denominator(x) == RT(2));
@ -39,7 +39,7 @@ void test_rational_traits(){
assert( Rational_traits().make_rational(std::make_pair(x,x)) == Rational(1));
assert( Rational_traits().make_rational(std::make_pair(7,RT(2))) == x);
// gloabal function to_rational
// global function to_rational
x = CGAL::to_rational<Rational>(3.5);
assert( x == Rational(7)/Rational(2));
}

View File

@ -48,9 +48,9 @@ namespace CGAL {
void operator() (const ToDouble& to_double) {
typedef typename ToDouble::argument_type Argument_type;
typedef typename ToDouble::result_type Result_type;
CGAL_static_assertion(( ::boost::is_same<Type, Argument_type>::value));
CGAL_static_assertion(( ::std::is_same<Type, Argument_type>::value));
CGAL_USE_TYPE(Argument_type);
CGAL_static_assertion(( ::boost::is_same<double, Result_type>::value));
CGAL_static_assertion(( ::std::is_same<double, Result_type>::value));
CGAL_USE_TYPE(Result_type);
assert(42.0 == to_double(Type(42)));
}
@ -71,9 +71,9 @@ namespace CGAL {
typedef typename To_interval::argument_type Argument_type;
typedef typename To_interval::result_type Result_type;
typedef std::pair<double,double> Interval_type;
CGAL_static_assertion(( ::boost::is_same<Type, Argument_type>::value));
CGAL_static_assertion(( ::std::is_same<Type, Argument_type>::value));
CGAL_USE_TYPE(Argument_type);
CGAL_static_assertion(( ::boost::is_same<Interval_type, Result_type>::value));
CGAL_static_assertion(( ::std::is_same<Interval_type, Result_type>::value));
CGAL_USE_TYPE(Result_type); CGAL_USE_TYPE(Interval_type);
// assert(NiX::in(42.0,to_Interval(Type(42))));
@ -84,7 +84,7 @@ namespace CGAL {
assert(to_interval(Type(42)).first > 41.99);
assert(to_interval(Type(42)).second < 42.01);
// test neagtive numbers as well to catch obvious sign
// test negative numbers as well to catch obvious sign
// errors
assert( -42.0 >= to_interval( -Type(42) ).first );
assert( -42.0 <= to_interval( -Type(42) ).second );
@ -139,7 +139,7 @@ void test_real_embeddable() {
CGAL_SNAP_RET_FUNCTORS(RET);
typedef typename RET::Is_real_embeddable Is_real_embeddable;
using CGAL::Tag_true;
CGAL_static_assertion(( ::boost::is_same< Is_real_embeddable, Tag_true>::value));
CGAL_static_assertion(( ::std::is_same< Is_real_embeddable, Tag_true>::value));
CGAL_USE_TYPE(Is_real_embeddable);
typedef typename RET::Boolean Boolean;
@ -246,7 +246,7 @@ void test_not_real_embeddable() {
typedef CGAL::Real_embeddable_traits<Type> RET;
typedef typename RET::Is_real_embeddable Is_real_embeddable;
using CGAL::Tag_false;
CGAL_static_assertion(( ::boost::is_same< Is_real_embeddable, Tag_false>::value));
CGAL_static_assertion(( ::std::is_same< Is_real_embeddable, Tag_false>::value));
CGAL_USE_TYPE(Is_real_embeddable);
}
@ -254,13 +254,13 @@ void test_not_real_embeddable() {
//template <class Type, class CeilLog2Abs>
//void test_rounded_log2_abs(Type zero, CGAL::Null_functor, CeilLog2Abs) {
// typedef CGAL::Null_functor Null_functor;
// CGAL_static_assertion(( ::boost::is_same< CeilLog2Abs, Null_functor>::value));
// CGAL_static_assertion(( ::std::is_same< CeilLog2Abs, Null_functor>::value));
//}
//
//template <class Type, class FloorLog2Abs, class CeilLog2Abs>
//void test_rounded_log2_abs(Type zero, FloorLog2Abs fl_log, CeilLog2Abs cl_log) {
// typedef CGAL::Null_functor Null_functor;
// CGAL_static_assertion((!::boost::is_same< CeilLog2Abs, Null_functor>::value));
// CGAL_static_assertion((!::std::is_same< CeilLog2Abs, Null_functor>::value));
//
// assert( fl_log(Type( 7)) == 2 );
// assert( cl_log(Type( 7)) == 3 );

View File

@ -195,7 +195,7 @@ template< class Number_type >
inline
// select a Is_zero functor
typename boost::mpl::if_c<
::boost::is_same< typename Algebraic_structure_traits< Number_type >::Is_zero,
::std::is_same< typename Algebraic_structure_traits< Number_type >::Is_zero,
Null_functor >::value ,
typename Real_embeddable_traits< Number_type >::Is_zero,
typename Algebraic_structure_traits< Number_type >::Is_zero
@ -204,7 +204,7 @@ is_zero( const Number_type& x ) {
// We take the Algebraic_structure_traits<>::Is_zero functor by default. If it
// is not available, we take the Real_embeddable_traits functor
typename ::boost::mpl::if_c<
::boost::is_same<
::std::is_same<
typename Algebraic_structure_traits< Number_type >::Is_zero,
Null_functor >::value ,
typename Real_embeddable_traits< Number_type >::Is_zero,

View File

@ -9,21 +9,21 @@ int main(){
typedef AET::Type Type;
CGAL_USE_TYPE(Type);
CGAL_static_assertion((::boost::is_same<int,Type>::value));
CGAL_static_assertion((::std::is_same<int,Type>::value));
typedef AET::Is_extended Is_extended;
CGAL_USE_TYPE(Is_extended);
CGAL_static_assertion(
(::boost::is_same<CGAL::Tag_false,Is_extended>::value));
(::std::is_same<CGAL::Tag_false,Is_extended>::value));
typedef AET::Normalization_factor Normalization_factor;
{
typedef Normalization_factor::argument_type argument_type;
CGAL_USE_TYPE(argument_type);
CGAL_static_assertion((::boost::is_same<argument_type,int>::value));
CGAL_static_assertion((::std::is_same<argument_type,int>::value));
typedef Normalization_factor::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<result_type,int>::value));
CGAL_static_assertion((::std::is_same<result_type,int>::value));
Normalization_factor nfac;
assert(nfac(3)==1);
}
@ -31,10 +31,10 @@ int main(){
{
typedef DFAI::argument_type argument_type;
CGAL_USE_TYPE(argument_type);
CGAL_static_assertion((::boost::is_same<argument_type,int>::value));
CGAL_static_assertion((::std::is_same<argument_type,int>::value));
typedef DFAI::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<result_type,int>::value));
CGAL_static_assertion((::std::is_same<result_type,int>::value));
DFAI dfai;
assert(dfai(3)==1);
}
@ -45,21 +45,21 @@ int main(){
typedef AET::Type Type;
CGAL_USE_TYPE(Type);
CGAL_static_assertion((::boost::is_same<EXT,Type>::value));
CGAL_static_assertion((::std::is_same<EXT,Type>::value));
typedef AET::Is_extended Is_extended;
CGAL_USE_TYPE(Is_extended);
CGAL_static_assertion(
(::boost::is_same<CGAL::Tag_true,Is_extended>::value));
(::std::is_same<CGAL::Tag_true,Is_extended>::value));
typedef AET::Normalization_factor Normalization_factor;
{
typedef Normalization_factor::argument_type argument_type;
CGAL_USE_TYPE(argument_type);
CGAL_static_assertion((::boost::is_same<argument_type,EXT>::value));
CGAL_static_assertion((::std::is_same<argument_type,EXT>::value));
typedef Normalization_factor::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<result_type,EXT>::value));
CGAL_static_assertion((::std::is_same<result_type,EXT>::value));
Normalization_factor nfac;
assert(nfac(EXT(3))==1);
assert(nfac(EXT(3,0,5))==1);
@ -69,10 +69,10 @@ int main(){
{
typedef DFAI::argument_type argument_type;
CGAL_USE_TYPE(argument_type);
CGAL_static_assertion((::boost::is_same<argument_type,EXT>::value));
CGAL_static_assertion((::std::is_same<argument_type,EXT>::value));
typedef DFAI::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<result_type,EXT>::value));
CGAL_static_assertion((::std::is_same<result_type,EXT>::value));
DFAI dfai;
assert(dfai(EXT(3))==1);
assert(dfai(EXT(3,0,5))==1);

View File

@ -8,7 +8,7 @@
typedef AST::NAME NAME; \
CGAL_USE_TYPE(NAME); \
CGAL_static_assertion( \
(::boost::is_same<CGAL::Null_functor,NAME>::value)); \
(::std::is_same<CGAL::Null_functor,NAME>::value)); \
}
int main(){
@ -16,19 +16,19 @@ int main(){
typedef AST::Type Type;
CGAL_USE_TYPE(Type);
CGAL_static_assertion((::boost::is_same<void,Type>::value));
CGAL_static_assertion((::std::is_same<void,Type>::value));
typedef AST::Algebraic_category Algebraic_category;
CGAL_USE_TYPE(Algebraic_category);
CGAL_static_assertion(
(::boost::is_same<CGAL::Null_tag,Algebraic_category>::value));
(::std::is_same<CGAL::Null_tag,Algebraic_category>::value));
typedef AST::Is_exact Is_exact;
CGAL_USE_TYPE(Is_exact);
CGAL_static_assertion((::boost::is_same<CGAL::Null_tag,Is_exact>::value));
CGAL_static_assertion((::std::is_same<CGAL::Null_tag,Is_exact>::value));
typedef AST::Is_numerical_sensitive Is_sensitive;
CGAL_USE_TYPE(Is_sensitive);
CGAL_static_assertion((::boost::is_same<CGAL::Null_tag,Is_sensitive>::value));
CGAL_static_assertion((::std::is_same<CGAL::Null_tag,Is_sensitive>::value));
CGAL_IS_AST_NULL_FUNCTOR ( Simplify);
CGAL_IS_AST_NULL_FUNCTOR ( Unit_part);

View File

@ -6,22 +6,22 @@ int main(){
{
typedef CGAL::Coercion_traits<int,int> CT;
CGAL_USE_TYPE(CT);
CGAL_static_assertion(( boost::is_same<CT::Type,int>::value));
CGAL_static_assertion(( std::is_same<CT::Type,int>::value));
CGAL_static_assertion(
( boost::is_same<CT::Are_implicit_interoperable,CGAL::Tag_true>::value));
( std::is_same<CT::Are_implicit_interoperable,CGAL::Tag_true>::value));
CGAL_static_assertion(
( boost::is_same<CT::Are_explicit_interoperable,CGAL::Tag_true>::value));
( std::is_same<CT::Are_explicit_interoperable,CGAL::Tag_true>::value));
assert( 5 == CT::Cast()(5));
}
{
typedef CGAL::Coercion_traits<CGAL::Tag_true,CGAL::Tag_false> CT;
CGAL_USE_TYPE(CT);
// CGAL_static_assertion(( boost::is_same<CT::Type,CGAL::Null_type>::value));
// CGAL_static_assertion(( std::is_same<CT::Type,CGAL::Null_type>::value));
CGAL_static_assertion(
( boost::is_same<CT::Are_implicit_interoperable,CGAL::Tag_false>::value));
( std::is_same<CT::Are_implicit_interoperable,CGAL::Tag_false>::value));
CGAL_static_assertion(
( boost::is_same<CT::Are_explicit_interoperable,CGAL::Tag_false>::value));
( std::is_same<CT::Are_explicit_interoperable,CGAL::Tag_false>::value));
CGAL_static_assertion(
( boost::is_same<CT::Cast,CGAL::Null_functor>::value));
( std::is_same<CT::Cast,CGAL::Null_functor>::value));
}
}

View File

@ -8,7 +8,7 @@
typedef RET::NAME NAME; \
CGAL_USE_TYPE(NAME); \
CGAL_static_assertion( \
(::boost::is_same<CGAL::Null_functor,NAME>::value)); \
(::std::is_same<CGAL::Null_functor,NAME>::value)); \
}
int main(){
@ -16,11 +16,11 @@ int main(){
typedef RET::Type Type;
CGAL_USE_TYPE(Type);
CGAL_static_assertion((::boost::is_same<void,Type>::value));
CGAL_static_assertion((::std::is_same<void,Type>::value));
typedef RET::Is_real_embeddable Is_real_embeddable;
CGAL_USE_TYPE(Is_real_embeddable);
CGAL_static_assertion((::boost::is_same<CGAL::Tag_false,Is_real_embeddable>::value));
CGAL_static_assertion((::std::is_same<CGAL::Tag_false,Is_real_embeddable>::value));
CGAL_IS_RET_NULL_FUNCTOR(Abs);
CGAL_IS_RET_NULL_FUNCTOR(Sgn);

View File

@ -7,33 +7,33 @@
int main(){
typedef CGAL::Scalar_factor_traits<int> SFT;
CGAL_USE_TYPE(SFT);
CGAL_static_assertion((::boost::is_same<int, SFT::Type>::value));
CGAL_static_assertion((::boost::is_same<int, SFT::Scalar>::value));
CGAL_static_assertion((::std::is_same<int, SFT::Type>::value));
CGAL_static_assertion((::std::is_same<int, SFT::Scalar>::value));
typedef SFT::Scalar_factor Scalar_factor;
{
typedef Scalar_factor::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<int, result_type>::value));
CGAL_static_assertion((::std::is_same<int, result_type>::value));
typedef Scalar_factor::argument_type argument_type;
CGAL_USE_TYPE(argument_type);
CGAL_static_assertion((::boost::is_same<int, argument_type>::value));
CGAL_static_assertion((::std::is_same<int, argument_type>::value));
}
typedef SFT::Scalar_div Scalar_div;
{
typedef Scalar_div::result_type result_type;
CGAL_USE_TYPE(result_type);
CGAL_static_assertion((::boost::is_same<void, result_type>::value));
CGAL_static_assertion((::std::is_same<void, result_type>::value));
typedef Scalar_div::first_argument_type first_argument_type;
CGAL_USE_TYPE(first_argument_type);
CGAL_static_assertion(
(::boost::is_same<int&, first_argument_type>::value));
(::std::is_same<int&, first_argument_type>::value));
typedef Scalar_div::second_argument_type second_argument_type;
CGAL_USE_TYPE(second_argument_type);
CGAL_static_assertion(
(::boost::is_same<int, second_argument_type>::value));
(::std::is_same<int, second_argument_type>::value));
}
int i;

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateAbsolute_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateRelative_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_1::ApproximateRelative_1` is an `AdaptableBinaryFu
approximation of an `AlgebraicKernel_d_1::Algebraic_real_1` value with
respect to a given relative precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ Computes a number of type
`AlgebraicKernel_d_1::Bound` in-between two
`AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
*/

View File

@ -5,7 +5,7 @@
Compares `AlgebraicKernel_d_1::Algebraic_real_1` values.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
*/
class AlgebraicKernel_d_1::Compare_1 {

View File

@ -6,7 +6,7 @@
Computes a square free univariate polynomial \f$ p\f$, such that the given
`AlgebraicKernel_d_1::Algebraic_real_1` is a root of \f$ p\f$.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::Isolate_1`

View File

@ -5,7 +5,7 @@
Constructs `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableFunctor`
\cgalRefines{AdaptableFunctor}
\sa `AlgebraicKernel_d_2::ConstructAlgebraicReal_2`

View File

@ -6,7 +6,7 @@
Determines whether a given pair of univariate polynomials \f$ p_1, p_2\f$ is coprime,
namely if \f$ \deg({\rm gcd}(p_1 ,p_2)) = 0\f$.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::MakeCoprime_1`

View File

@ -5,7 +5,7 @@
Computes whether the given univariate polynomial is square free.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::MakeSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -6,7 +6,7 @@
Computes whether an `AlgebraicKernel_d_1::Polynomial_1`
is zero at a given `AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::SignAt_1`

View File

@ -6,7 +6,7 @@
Computes an open isolating interval for an `AlgebraicKernel_d_1::Algebraic_real_1`
with respect to the real roots of a given univariate polynomial.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::ComputePolynomial_1`

View File

@ -16,7 +16,7 @@ such that \f$ q_1\f$ and \f$ q_2\f$ are coprime.
It returns true if \f$ p_1\f$ and \f$ p_2\f$ are already coprime.
\cgalRefines `AdaptableFunctor` with five arguments
\cgalRefines{AdaptableQuinaryFunction}
\sa `AlgebraicKernel_d_1::IsCoprime_1`

View File

@ -5,7 +5,7 @@
Returns a square free part of a univariate polynomial.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::SquareFreeFactorize_1`

View File

@ -5,7 +5,7 @@
Computes the number of real solutions of the given univariate polynomial.
\cgalRefines `AdaptableUnaryFunction`
\cgalRefines{AdaptableUnaryFunction}
\sa `AlgebraicKernel_d_1::ConstructAlgebraicReal_1`

View File

@ -7,7 +7,7 @@ Computes the sign of a univariate polynomial
`AlgebraicKernel_d_1::Polynomial_1` at a real value of type
`AlgebraicKernel_d_1::Algebraic_real_1`.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_1::IsZeroAt_1`

View File

@ -5,8 +5,7 @@
Computes the real roots of a univariate polynomial.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
*/

View File

@ -14,8 +14,7 @@ and a constant factor \f$ c\f$, such that
The factor multiplicity pairs \f$ <q_i,m_i>\f$ are written to the
given output iterator. The constant factor \f$ c\f$ is not computed.
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`
\cgalRefines{Assignable,CopyConstructible}
\sa `AlgebraicKernel_d_1::IsSquareFree_1`
\sa `AlgebraicKernel_d_1::MakeSquareFree_1`

View File

@ -6,8 +6,7 @@
A model of the `AlgebraicKernel_d_1` concept is meant to provide the
algebraic functionalities on univariate polynomials of general degree \f$ d\f$.
\cgalRefines `CopyConstructible`
\cgalRefines `Assignable`
\cgalRefines{CopyConstructible,Assignable}
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpz_d_1`
\cgalHasModel `CGAL::Algebraic_kernel_rs_gmpq_d_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteX_2` is an `AdaptableBinaryF
approximation of the \f$ x\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeX_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

View File

@ -7,7 +7,7 @@ A model of `AlgebraicKernel_d_2::ApproximateAbsoluteY_2` is an `AdaptableBinaryF
approximation of the \f$ y\f$-coordinate of an `AlgebraicKernel_d_2::Algebraic_real_2` value
with respect to a given absolute precision.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines{AdaptableBinaryFunction}
\sa `AlgebraicKernel_d_2::ApproximateRelativeY_2`
\sa `AlgebraicKernel_d_1::ApproximateAbsolute_1`

Some files were not shown because too many files have changed in this diff Show More