mirror of https://github.com/CGAL/cgal
Merge pull request #4082 from mglisse/NewKernel_d-alphaweight-glisse
Add functors for weighted alpha-complexes
This commit is contained in:
commit
adc42303e0
|
|
@ -51,6 +51,11 @@ Release date: June 2020
|
|||
k-NN search to interrupt some distance computations before its end,
|
||||
saving precious milliseconds, in particular in medium-to-high dimension.
|
||||
|
||||
### dD Geometry Kernel
|
||||
- Epick\_d and Epeck\_d gain 2 new functors: `Power_side_of_bounded_power_sphere_d` and
|
||||
`Compute_squared_radius_smallest_orthogonal_sphere_d`. Those are
|
||||
essential for the computation of weighted alpha-complexes.
|
||||
|
||||
[Release 5.0](https://github.com/CGAL/cgal/releases/tag/releases%2FCGAL-5.0)
|
||||
-----------
|
||||
|
||||
|
|
|
|||
|
|
@ -120,6 +120,15 @@ public:
|
|||
template<class ForwardIterator>
|
||||
FT operator()(ForwardIterator first, ForwardIterator last);
|
||||
};
|
||||
class Compute_squared_radius_smallest_orthogonal_sphere_d {
|
||||
public:
|
||||
/*! returns the radius of the sphere defined by `A=tuple[first,last)`. The sphere is centered in the affine hull of A and orthogonal to all the spheres of A. The order of the points of A does not matter.
|
||||
\pre A is affinely independent.
|
||||
\tparam ForwardIterator has `Epeck_d::Weighted_point_d` as value type.
|
||||
*/
|
||||
template<class ForwardIterator>
|
||||
FT operator()(ForwardIterator first, ForwardIterator last);
|
||||
};
|
||||
/*! \cgalModels `Kernel_d::Side_of_bounded_sphere_d`
|
||||
*/
|
||||
class Side_of_bounded_sphere_d {
|
||||
|
|
@ -131,7 +140,18 @@ public:
|
|||
template<class ForwardIterator>
|
||||
Bounded_side operator()(ForwardIterator first, ForwardIterator last, const Point_d&p);
|
||||
};
|
||||
class Power_side_of_bounded_power_sphere_d {
|
||||
public:
|
||||
/*! returns the relative position of weighted point p to the sphere defined by `A=tuple[first,last)`. The sphere is centered in the affine hull of A and orthogonal to all the spheres of A. The order of the points of A does not matter.
|
||||
\pre A is affinely independent.
|
||||
\tparam ForwardIterator has `Epeck_d::Weighted_point_d` as value type.
|
||||
*/
|
||||
template<class ForwardIterator>
|
||||
Bounded_side operator()(ForwardIterator first, ForwardIterator last, const Weighted_point_d&p);
|
||||
};
|
||||
Construct_circumcenter_d construct_circumcenter_d_object();
|
||||
Compute_squared_radius_d compute_squared_radius_d_object();
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_d compute_squared_radius_smallest_orthogonal_sphere_d_object();
|
||||
Power_side_of_bounded_power_sphere_d power_side_of_bounded_power_sphere_d_object();
|
||||
}; /* end Epeck_d */
|
||||
} /* end namespace CGAL */
|
||||
|
|
|
|||
|
|
@ -109,6 +109,15 @@ public:
|
|||
template<class ForwardIterator>
|
||||
FT operator()(ForwardIterator first, ForwardIterator last);
|
||||
};
|
||||
class Compute_squared_radius_smallest_orthogonal_sphere_d {
|
||||
public:
|
||||
/*! returns the radius of the sphere defined by `A=tuple[first,last)`. The sphere is centered in the affine hull of A and orthogonal to all the spheres of A. The order of the points of A does not matter.
|
||||
\pre A is affinely independent.
|
||||
\tparam ForwardIterator has `Epick_d::Weighted_point_d` as value type.
|
||||
*/
|
||||
template<class ForwardIterator>
|
||||
FT operator()(ForwardIterator first, ForwardIterator last);
|
||||
};
|
||||
/*! \cgalModels `Kernel_d::Side_of_bounded_sphere_d`
|
||||
*/
|
||||
class Side_of_bounded_sphere_d {
|
||||
|
|
@ -120,7 +129,18 @@ public:
|
|||
template<class ForwardIterator>
|
||||
Bounded_side operator()(ForwardIterator first, ForwardIterator last, const Point_d&p);
|
||||
};
|
||||
class Power_side_of_bounded_power_sphere_d {
|
||||
public:
|
||||
/*! returns the relative position of weighted point p to the sphere defined by `A=tuple[first,last)`. The sphere is centered in the affine hull of A and orthogonal to all the spheres of A. The order of the points of A does not matter.
|
||||
\pre A is affinely independent.
|
||||
\tparam ForwardIterator has `Epick_d::Weighted_point_d` as value type.
|
||||
*/
|
||||
template<class ForwardIterator>
|
||||
Bounded_side operator()(ForwardIterator first, ForwardIterator last, const Weighted_point_d&p);
|
||||
};
|
||||
Construct_circumcenter_d construct_circumcenter_d_object();
|
||||
Compute_squared_radius_d compute_squared_radius_d_object();
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_d compute_squared_radius_smallest_orthogonal_sphere_d_object();
|
||||
Power_side_of_bounded_power_sphere_d power_side_of_bounded_power_sphere_d_object();
|
||||
}; /* end Epick_d */
|
||||
} /* end namespace CGAL */
|
||||
|
|
|
|||
|
|
@ -58,6 +58,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
typedef typename Get_functor<Base, Point_dimension_tag>::type Point_dimension_d;
|
||||
typedef typename Get_functor<Base, Side_of_oriented_sphere_tag>::type Side_of_oriented_sphere_d;
|
||||
typedef typename Get_functor<Base, Power_side_of_power_sphere_tag>::type Power_side_of_power_sphere_d;
|
||||
typedef typename Get_functor<Base, Power_side_of_bounded_power_circumsphere_tag>::type Power_side_of_bounded_power_sphere_d;
|
||||
typedef typename Get_functor<Base, Power_center_tag>::type Power_center_d;
|
||||
typedef typename Get_functor<Base, Power_distance_tag>::type Power_distance_d;
|
||||
typedef typename Get_functor<Base, Contained_in_affine_hull_tag>::type Contained_in_affine_hull_d;
|
||||
|
|
@ -166,6 +167,16 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
return typename Get_functor<Base, Squared_circumradius_tag>::type(this->kernel())(b,e);
|
||||
}
|
||||
};
|
||||
struct Compute_squared_radius_smallest_orthogonal_sphere_d : private Store_kernel<Kernel> {
|
||||
typedef Kernel R_; // for the macro
|
||||
CGAL_FUNCTOR_INIT_STORE(Compute_squared_radius_smallest_orthogonal_sphere_d)
|
||||
typedef FT result_type;
|
||||
template<class I> FT operator()(I b, I e)const{
|
||||
typename Get_functor<Base, Point_weight_tag>::type pw(this->kernel());
|
||||
typename Get_functor<Base, Power_center_tag>::type pc(this->kernel());
|
||||
return pw(pc(b,e));
|
||||
}
|
||||
};
|
||||
typedef typename Construct_cartesian_const_iterator_d::result_type Cartesian_const_iterator_d;
|
||||
typedef typename Get_functor<Base, Squared_distance_tag>::type Squared_distance_d;
|
||||
typedef typename Get_functor<Base, Squared_length_tag>::type Squared_length_d;
|
||||
|
|
@ -210,6 +221,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
Point_of_sphere_d point_of_sphere_d_object()const{ return Point_of_sphere_d(*this); }
|
||||
Side_of_oriented_sphere_d side_of_oriented_sphere_d_object()const{ return Side_of_oriented_sphere_d(*this); }
|
||||
Power_side_of_power_sphere_d power_side_of_power_sphere_d_object()const{ return Power_side_of_power_sphere_d(*this); }
|
||||
Power_side_of_bounded_power_sphere_d power_side_of_bounded_power_sphere_d_object()const{ return Power_side_of_bounded_power_sphere_d(*this); }
|
||||
Power_center_d power_center_d_object()const{ return Power_center_d(*this); }
|
||||
Power_distance_d power_distance_d_object()const{ return Power_distance_d(*this); }
|
||||
Side_of_bounded_sphere_d side_of_bounded_sphere_d_object()const{ return Side_of_bounded_sphere_d(*this); }
|
||||
|
|
@ -243,6 +255,7 @@ template <class Base_> struct Kernel_d_interface : public Base_ {
|
|||
Construct_sphere_d construct_sphere_d_object()const{ return Construct_sphere_d(*this); }
|
||||
Construct_hyperplane_d construct_hyperplane_d_object()const{ return Construct_hyperplane_d(*this); }
|
||||
Compute_squared_radius_d compute_squared_radius_d_object()const{ return Compute_squared_radius_d(*this); }
|
||||
Compute_squared_radius_smallest_orthogonal_sphere_d compute_squared_radius_smallest_orthogonal_sphere_d_object()const{ return Compute_squared_radius_smallest_orthogonal_sphere_d(*this); }
|
||||
Squared_distance_d squared_distance_d_object()const{ return Squared_distance_d(*this); }
|
||||
Squared_length_d squared_length_d_object()const{ return Squared_length_d(*this); }
|
||||
Scalar_product_d scalar_product_d_object()const{ return Scalar_product_d(*this); }
|
||||
|
|
|
|||
|
|
@ -169,29 +169,107 @@ template <class R_> struct Power_center : Store_kernel<R_> {
|
|||
WPoint const& wp0 = *f;
|
||||
Point const& p0 = pdw(wp0);
|
||||
int d = pd(p0);
|
||||
FT const& n0 = sdo(p0) - pw(wp0);
|
||||
Matrix m(d,d);
|
||||
Vec b = typename CVec::Dimension()(d);
|
||||
// Write the point coordinates in lines.
|
||||
int i;
|
||||
for(i=0; ++f!=e; ++i) {
|
||||
WPoint const& wp=*f;
|
||||
Point const& p=pdw(wp);
|
||||
for(int j=0;j<d;++j) {
|
||||
m(i,j)=2*(c(p,j)-c(p0,j));
|
||||
int k = static_cast<int>(std::distance(f,e));
|
||||
if (d+1 == k)
|
||||
{
|
||||
FT const& n0 = sdo(p0) - pw(wp0);
|
||||
Matrix m(d,d);
|
||||
Vec b = typename CVec::Dimension()(d);
|
||||
// Write the point coordinates in lines.
|
||||
int i;
|
||||
for(i=0; ++f!=e; ++i) {
|
||||
WPoint const& wp=*f;
|
||||
Point const& p=pdw(wp);
|
||||
for(int j=0;j<d;++j) {
|
||||
m(i,j)=2*(c(p,j)-c(p0,j));
|
||||
}
|
||||
b[i] = sdo(p) - pw(wp) - n0;
|
||||
}
|
||||
b[i] = sdo(p) - pw(wp) - n0;
|
||||
CGAL_assertion (i == d);
|
||||
Vec res = typename CVec::Dimension()(d);;
|
||||
//std::cout << "Mat: " << m << "\n Vec: " << one << std::endl;
|
||||
LA::solve(res, std::move(m), std::move(b));
|
||||
//std::cout << "Sol: " << res << std::endl;
|
||||
Point center = cp(d,LA::vector_begin(res),LA::vector_end(res));
|
||||
FT const& r2 = pdp (wp0, center);
|
||||
return cwp(std::move(center), r2);
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* Matrix P=(p1, p2, ...) (each point as a column)
|
||||
* Matrix Q=2*t(p2-p1,p3-p1, ...) (each vector as a line)
|
||||
* Matrix M: QP, adding a line of 1 at the top
|
||||
* Vector B: (1, p2^2-p1^2, p3^2-p1^2, ...) plus weights
|
||||
* Solve ML=B, the center of the sphere is PL
|
||||
*
|
||||
* It would likely be faster to write P then transpose, multiply,
|
||||
* etc instead of doing it by hand.
|
||||
*/
|
||||
// TODO: check for degenerate cases?
|
||||
|
||||
typedef typename R_::Max_ambient_dimension D2;
|
||||
typedef typename R_::LA::template Rebind_dimension<Dynamic_dimension_tag,D2>::Other LAd;
|
||||
typedef typename LAd::Square_matrix Matrix;
|
||||
typedef typename LAd::Vector Vec;
|
||||
typename Get_functor<R_, Scalar_product_tag>::type sp(this->kernel());
|
||||
Matrix m(k,k);
|
||||
Vec b(k);
|
||||
Vec l(k);
|
||||
int j,i=0;
|
||||
for(Iter f2=f; f2!=e; ++f2,++i){
|
||||
WPoint const& wp = *f2;
|
||||
Point const& p = pdw(wp);
|
||||
b(i) = m(i,i) = sdo(p) - pw(wp);
|
||||
j=0;
|
||||
for(Iter f3=f; f3!=e; ++f3,++j){
|
||||
// FIXME: scalar product of points ???
|
||||
m(j,i) = m(i,j) = sp(p,pdw(*f3));
|
||||
}
|
||||
}
|
||||
for(i=1;i<k;++i){
|
||||
b(i)-=b(0);
|
||||
for(j=0;j<k;++j){
|
||||
m(i,j)=2*(m(i,j)-m(0,j));
|
||||
}
|
||||
}
|
||||
for(j=0;j<k;++j) m(0,j)=1;
|
||||
b(0)=1;
|
||||
|
||||
LAd::solve(l,std::move(m),std::move(b));
|
||||
|
||||
typename LA::Vector center=typename LA::Construct_vector::Dimension()(d);
|
||||
for(i=0;i<d;++i) center(i)=0;
|
||||
j=0;
|
||||
for(Iter f2=f;f2!=e;++f2,++j){
|
||||
WPoint const& wp = *f2;
|
||||
Point const& p = pdw(wp);
|
||||
for(i=0;i<d;++i){
|
||||
center(i)+=l(j)*c(p,i);
|
||||
}
|
||||
}
|
||||
|
||||
Point c = cp(d, LA::vector_begin(center), LA::vector_end(center));
|
||||
FT r2 = pdp (wp0, c);
|
||||
return cwp(std::move(c), std::move(r2));
|
||||
}
|
||||
CGAL_assertion (i == d);
|
||||
Vec res = typename CVec::Dimension()(d);;
|
||||
//std::cout << "Mat: " << m << "\n Vec: " << one << std::endl;
|
||||
LA::solve(res, std::move(m), std::move(b));
|
||||
//std::cout << "Sol: " << res << std::endl;
|
||||
Point center = cp(d,LA::vector_begin(res),LA::vector_end(res));
|
||||
FT const& r2 = pdp (wp0, center);
|
||||
return cwp(std::move(center), r2);
|
||||
}
|
||||
};
|
||||
template<class R_> struct Power_side_of_bounded_power_circumsphere : private Store_kernel<R_> {
|
||||
CGAL_FUNCTOR_INIT_STORE(Power_side_of_bounded_power_circumsphere)
|
||||
typedef typename Get_type<R_, Bounded_side_tag>::type result_type;
|
||||
|
||||
template<class Iter, class P>
|
||||
result_type operator()(Iter f, Iter const& e, P const& p0) const {
|
||||
// TODO: Special case when the dimension is full.
|
||||
typename Get_functor<R_, Power_center_tag>::type pc(this->kernel());
|
||||
typename Get_functor<R_, Power_distance_tag>::type pd(this->kernel());
|
||||
|
||||
// ON_UNBOUNDED_SIDE = -1
|
||||
return enum_cast<Bounded_side>(-CGAL::sign(pd(pc(f, e), p0)));
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
CGAL_KD_DEFAULT_TYPE(Weighted_point_tag,(CGAL::KerD::Weighted_point<K>),(Point_tag),());
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Construct_ttag<Weighted_point_tag>,(CartesianDKernelFunctors::Construct_weighted_point<K>),(Weighted_point_tag,Point_tag),());
|
||||
|
|
@ -202,5 +280,6 @@ CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_side_of_power_sphere_tag,(CartesianDKernel
|
|||
CGAL_KD_DEFAULT_FUNCTOR(Power_distance_tag,(CartesianDKernelFunctors::Power_distance<K>),(Weighted_point_tag,Point_tag),(Squared_distance_tag,Point_drop_weight_tag,Point_weight_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Power_distance_to_point_tag,(CartesianDKernelFunctors::Power_distance_to_point<K>),(Weighted_point_tag,Point_tag),(Squared_distance_tag,Point_drop_weight_tag,Point_weight_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Power_center_tag,(CartesianDKernelFunctors::Power_center<K>),(Weighted_point_tag,Point_tag),(Compute_point_cartesian_coordinate_tag,Construct_ttag<Point_tag>,Construct_ttag<Weighted_point_tag>,Point_dimension_tag,Squared_distance_to_origin_tag,Point_drop_weight_tag,Point_weight_tag,Power_distance_to_point_tag));
|
||||
CGAL_KD_DEFAULT_FUNCTOR(Power_side_of_bounded_power_circumsphere_tag,(CartesianDKernelFunctors::Power_side_of_bounded_power_circumsphere<K>),(Weighted_point_tag),(Power_distance_tag,Power_center_tag));
|
||||
} // namespace CGAL
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -303,6 +303,7 @@ namespace CGAL {
|
|||
CGAL_DECL_PREDICATE(Contained_in_simplex);
|
||||
CGAL_DECL_PREDICATE(Power_side_of_power_sphere_raw);
|
||||
CGAL_DECL_PREDICATE(Power_side_of_power_sphere);
|
||||
CGAL_DECL_PREDICATE(Power_side_of_bounded_power_circumsphere);
|
||||
CGAL_DECL_PREDICATE(In_flat_power_side_of_power_sphere_raw);
|
||||
CGAL_DECL_PREDICATE(In_flat_power_side_of_power_sphere);
|
||||
#undef CGAL_DECL_PREDICATE
|
||||
|
|
|
|||
|
|
@ -143,8 +143,9 @@ void test2(){
|
|||
typedef typename K1::Translated_point_d TP;
|
||||
typedef typename K1::Power_center_d PC;
|
||||
typedef typename K1::Power_distance_d PoD;
|
||||
typedef typename K1::Weighted_point_d WP;
|
||||
typedef typename K1::Construct_weighted_point_d CWP;
|
||||
typedef typename K1::Power_side_of_bounded_power_sphere_d PSBPS;
|
||||
typedef typename K1::Compute_squared_radius_smallest_orthogonal_sphere_d CSRSOS;
|
||||
//typedef typename K1::Point_drop_weight_d PDW;
|
||||
typedef CP PDW;
|
||||
typedef typename K1::Compute_weight_d PW;
|
||||
|
|
@ -215,6 +216,8 @@ void test2(){
|
|||
PDW const& pdw = cp;
|
||||
PW pw Kinit(compute_weight_d_object);
|
||||
PoD pod Kinit(power_distance_d_object);
|
||||
PSBPS psbps Kinit(power_side_of_bounded_power_sphere_d_object);
|
||||
CSRSOS csrsos Kinit(compute_squared_radius_smallest_orthogonal_sphere_d_object);
|
||||
|
||||
CGAL_USE(bc);
|
||||
CGAL_USE(pol);
|
||||
|
|
@ -378,7 +381,13 @@ void test2(){
|
|||
assert(pdw(xw)[0]>2.5);
|
||||
assert(pw(xw)<2.95);
|
||||
assert(pw(xw)>2.5);
|
||||
|
||||
assert(psbps(tw+0,tw+3,cwp(cp(5,0),1.499)) == CGAL::ON_UNBOUNDED_SIDE);
|
||||
assert(psbps(tw+0,tw+3,cwp(cp(5,0),1.500)) == CGAL::ON_BOUNDARY);
|
||||
assert(psbps(tw+0,tw+3,cwp(cp(5,0),1.501)) == CGAL::ON_BOUNDED_SIDE);
|
||||
WP tw2[]={cwp(cp(-3,2),1),cwp(cp(5,2),2),cwp(cp(1,6),1)};
|
||||
assert(psbps(tw2+0,tw2+2,tw2[2]) == CGAL::ON_UNBOUNDED_SIDE);
|
||||
assert(abs(csrsos(tw2+0,tw2+2)-14.5039)<.0001);
|
||||
assert(abs(csrsos(tw2+0,tw2+1)+1)<.0001);
|
||||
|
||||
P tl=cp(2,5);
|
||||
P br=cp(4,-1);
|
||||
|
|
|
|||
Loading…
Reference in New Issue