mirror of https://github.com/CGAL/cgal
Spell check.
This commit is contained in:
parent
e3523a698f
commit
ae90c1131c
|
|
@ -35,8 +35,8 @@
|
||||||
|
|
||||||
\item Non-singularity of the matrix
|
\item Non-singularity of the matrix
|
||||||
|
|
||||||
For LSCM, the matrix of the system is the Gramm matrix of a matrix with maximal rank,
|
For LSCM, the matrix of the system is the Gram matrix of a matrix with maximal rank,
|
||||||
and is therefore non-singular (Gramm theorem).
|
and is therefore non-singular (Gram theorem).
|
||||||
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ approximating surfaces and remeshing.
|
||||||
This \cgal\ package implements some of the state-of-the-art
|
This \cgal\ package implements some of the state-of-the-art
|
||||||
surface parameterization methods, such as least squares conformal maps,
|
surface parameterization methods, such as least squares conformal maps,
|
||||||
discrete conformal map, discrete authalic
|
discrete conformal map, discrete authalic
|
||||||
parameterization, Floater mean value coordinates or tutte barycentric
|
parameterization, Floater mean value coordinates or Tutte barycentric
|
||||||
mapping. These methods mainly distinguish by the distortion they
|
mapping. These methods mainly distinguish by the distortion they
|
||||||
minimize (angles vs. areas), by the constrained border onto the
|
minimize (angles vs. areas), by the constrained border onto the
|
||||||
planar domain (convex polygon vs. free border) and by the guarantees
|
planar domain (convex polygon vs. free border) and by the guarantees
|
||||||
|
|
|
||||||
|
|
@ -76,7 +76,7 @@ Construction and destruction are undefined.
|
||||||
|
|
||||||
\ccMethod{Error_code parameterize_border(Adaptor& mesh);}
|
\ccMethod{Error_code parameterize_border(Adaptor& mesh);}
|
||||||
{
|
{
|
||||||
Assign to mesh's border vertices a 2D position (ie a (u,v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
|
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}. Return false on error.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{bool is_border_convex();}
|
\ccMethod{bool is_border_convex();}
|
||||||
|
|
|
||||||
|
|
@ -97,7 +97,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
|
||||||
|
|
||||||
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
||||||
{
|
{
|
||||||
Assign to mesh's border vertices a 2D position (ie a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{bool is_border_convex();}
|
\ccMethod{bool is_border_convex();}
|
||||||
|
|
|
||||||
|
|
@ -135,9 +135,9 @@ Check parameterize() preconditions:\begin{itemize}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void initialize_system_from_mesh_border(Matrix& A, Vector& Bu, Vector& Bv, const Adaptor& mesh);}
|
\ccMethod{void initialize_system_from_mesh_border(Matrix& A, Vector& Bu, Vector& Bv, const Adaptor& mesh);}
|
||||||
{
|
{
|
||||||
Initialize A, Bu and Bv after border parameterization. Fill the border vertices' lines in both linear systems: {\em u = constant} and {\em v = constant}.
|
Initialize A, Bu and \ccc{Bv} after border parameterization. Fill the border vertices' lines in both linear systems: {\em u = constant} and {\em v = constant}.
|
||||||
Preconditions:\begin{itemize}
|
Preconditions:\begin{itemize}
|
||||||
\item vertices must be indexed.\item A, Bu and Bv must be allocated.\item border vertices must be parameterized. \end{itemize}
|
\item vertices must be indexed.\item A, Bu and \ccc{Bv} must be allocated.\item border vertices must be parameterized. \end{itemize}
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{virtual NT compute_w_ij(const Adaptor& mesh, Vertex_const_handle main_vertex_v_i, Vertex_around_vertex_const_circulator neighbor_vertex_v_j);}
|
\ccMethod{virtual NT compute_w_ij(const Adaptor& mesh, Vertex_const_handle main_vertex_v_i, Vertex_around_vertex_const_circulator neighbor_vertex_v_j);}
|
||||||
|
|
@ -150,12 +150,12 @@ Compute \ccc{w_ij} = (i, j) coefficient of matrix A for j neighbor vertex of i.
|
||||||
Compute the line i of matrix A for i inner vertex:\begin{itemize}
|
Compute the line i of matrix A for i inner vertex:\begin{itemize}
|
||||||
\item call \ccc{compute_w_ij}() to compute the A coefficient \ccc{w_ij} for each neighbor \ccc{v_j}.\item compute \ccc{w_ii} = - sum of \ccc{w_ijs}.\end{itemize}
|
\item call \ccc{compute_w_ij}() to compute the A coefficient \ccc{w_ij} for each neighbor \ccc{v_j}.\item compute \ccc{w_ii} = - sum of \ccc{w_ijs}.\end{itemize}
|
||||||
Preconditions:\begin{itemize}
|
Preconditions:\begin{itemize}
|
||||||
\item vertices must be indexed.\item vertex i musn't be already parameterized.\item line i of A must contain only zeros. \end{itemize}
|
\item vertices must be indexed.\item vertex i mustn't be already parameterized.\item line i of A must contain only zeros. \end{itemize}
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void set_mesh_uv_from_system(Adaptor& mesh, const Vector& Xu, const Vector& Xv);}
|
\ccMethod{void set_mesh_uv_from_system(Adaptor& mesh, const Vector& Xu, const Vector& Xv);}
|
||||||
{
|
{
|
||||||
Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
|
Copy \ccc{Xu} and Xv coordinates into the (u,v) pair of each surface vertex.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code check_parameterize_postconditions(const Adaptor& mesh, const Matrix& A, const Vector& Bu, const Vector& Bv);}
|
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code check_parameterize_postconditions(const Adaptor& mesh, const Matrix& A, const Vector& Bu, const Vector& Bv);}
|
||||||
|
|
|
||||||
|
|
@ -92,7 +92,7 @@ Get/set vertex seaming flag. Default value is undefined.
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{int get_halfedge_seaming(Vertex_const_handle source, Vertex_const_handle target) const;}
|
\ccMethod{int get_halfedge_seaming(Vertex_const_handle source, Vertex_const_handle target) const;}
|
||||||
{
|
{
|
||||||
Get/set oriented edge's seaming flag, ie position of the oriented edge wrt to the UNIQUE main border.
|
Get/set oriented edge's seaming flag, i.e. position of the oriented edge wrt to the UNIQUE main border.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void set_halfedge_seaming(Vertex_handle source, Vertex_handle target, int seaming);}
|
\ccMethod{void set_halfedge_seaming(Vertex_handle source, Vertex_handle target, int seaming);}
|
||||||
|
|
|
||||||
|
|
@ -197,7 +197,7 @@ Clockwise circulator over the vertices incident to a vertex. Model of the Bidire
|
||||||
{
|
{
|
||||||
Create a Decorator for an existing \ccc{ParameterizationPatchableMesh_3} mesh. The input mesh can be of any genus, but it has to come with a {\em seam} that describes the border of a topological disc. This border may be an actual border of the mesh or a virtual border.
|
Create a Decorator for an existing \ccc{ParameterizationPatchableMesh_3} mesh. The input mesh can be of any genus, but it has to come with a {\em seam} that describes the border of a topological disc. This border may be an actual border of the mesh or a virtual border.
|
||||||
Preconditions:\begin{itemize}
|
Preconditions:\begin{itemize}
|
||||||
\item \ccc{first_seam_vertex} -$>$ \ccc{end_seam_vertex} defines the outer seam, ie \ccc{Parameterization_mesh_patch_3} will export the {\em right} of the seam.\item The {\em seam} is given as a container of \ccc{Adaptor::Vertex_handle} elements.\item The {\em seam} is implicitely a loop. The first vertex should $\ast$not$\ast$ be duplicated at the end. \end{itemize}
|
\item \ccc{first_seam_vertex} -$>$ \ccc{end_seam_vertex} defines the outer seam, ie \ccc{Parameterization_mesh_patch_3} will export the {\em right} of the seam.\item The {\em seam} is given as a container of \ccc{Adaptor::Vertex_handle} elements.\item The {\em seam} is implicitly a loop. The first vertex should $\ast$not$\ast$ be duplicated at the end. \end{itemize}
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -405,7 +405,7 @@ Return true if a vertex belongs to ANY mesh's border.
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{bool is_vertex_on_main_border(Vertex_const_handle vertex) const;}
|
\ccMethod{bool is_vertex_on_main_border(Vertex_const_handle vertex) const;}
|
||||||
{
|
{
|
||||||
Return true if a vertex belongs to the UNIQUE mesh's main border, ie the mesh's LONGEST border.
|
Return true if a vertex belongs to the UNIQUE mesh's main border, i.e. the mesh's LONGEST border.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{Vertex_around_vertex_circulator vertices_around_vertex_begin(Vertex_handle vertex, Vertex_handle start_position = Vertex_handle());}
|
\ccMethod{Vertex_around_vertex_circulator vertices_around_vertex_begin(Vertex_handle vertex, Vertex_handle start_position = Vertex_handle());}
|
||||||
|
|
@ -428,7 +428,7 @@ Get/set vertex seaming flag. Default value is undefined.
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{int get_halfedge_seaming(Vertex_const_handle source, Vertex_const_handle target) const;}
|
\ccMethod{int get_halfedge_seaming(Vertex_const_handle source, Vertex_const_handle target) const;}
|
||||||
{
|
{
|
||||||
Get/set oriented edge's seaming flag, ie position of the oriented edge wrt to the UNIQUE main border.
|
Get/set oriented edge's seaming flag, i.e. position of the oriented edge wrt to the UNIQUE main border.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void set_halfedge_seaming(Vertex_handle source, Vertex_handle target, int seaming);}
|
\ccMethod{void set_halfedge_seaming(Vertex_handle source, Vertex_handle target, int seaming);}
|
||||||
|
|
|
||||||
|
|
@ -134,7 +134,7 @@ Preconditions:\begin{itemize}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{static const char* get_error_message(int error_code);}
|
\ccMethod{static const char* get_error_message(int error_code);}
|
||||||
{
|
{
|
||||||
Get message (in english) corresponding to an error code
|
Get message (in English) corresponding to an error code
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\begin{description}
|
\begin{description}
|
||||||
|
|
|
||||||
|
|
@ -99,7 +99,7 @@ Export \ccc{ParameterizationMesh_3} template parameter.
|
||||||
|
|
||||||
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
\ccMethod{Parameterizer_traits_3<Adaptor>::Error_code parameterize_border(Adaptor& mesh);}
|
||||||
{
|
{
|
||||||
Assign to mesh's border vertices a 2D position (ie a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
Assign to mesh's border vertices a 2D position (i.e. a (u,v) pair) on border's shape. Mark them as {\em parameterized}.
|
||||||
}
|
}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{bool is_border_convex();}
|
\ccMethod{bool is_border_convex();}
|
||||||
|
|
|
||||||
|
|
@ -23,7 +23,7 @@
|
||||||
It computes a one-to-one mapping from a 3D triangle surface 'mesh' to a simple 2D domain.
|
It computes a one-to-one mapping from a 3D triangle surface 'mesh' to a simple 2D domain.
|
||||||
The mapping is piecewise linear on the triangle mesh.
|
The mapping is piecewise linear on the triangle mesh.
|
||||||
The result is a pair (u,v) of parameter coordinates for each vertex of the input mesh.
|
The result is a pair (u,v) of parameter coordinates for each vertex of the input mesh.
|
||||||
One-to-one mapping may be guaranteed or not, depending on the chosen ParametizerTraits algorithm.
|
One-to-one mapping may be guaranteed or not, depending on the chosen \ccc{ParametizerTraits} algorithm.
|
||||||
|
|
||||||
The \ccc{CGAL::parameterize()} function exists in two flavors, to provide a default parameterization algorithm
|
The \ccc{CGAL::parameterize()} function exists in two flavors, to provide a default parameterization algorithm
|
||||||
of Floater Mean Value Coordinates.
|
of Floater Mean Value Coordinates.
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue