mirror of https://github.com/CGAL/cgal
User manual
This commit is contained in:
parent
e86003c5c6
commit
b26aa59049
|
|
@ -832,6 +832,8 @@ of nearest neighbors or a fixed spherical neighborhood radius.
|
|||
|
||||
\section Point_set_processing_3NormalOrientation Normal Orientation
|
||||
|
||||
\subsection Point_set_processing_3Mst_orient_normals Minimum Spanning Tree
|
||||
|
||||
Function `mst_orient_normals()` orients the normals of a set of
|
||||
points with unoriented normals using the method described by Hoppe et
|
||||
al. in <I>Surface reconstruction from unorganized points</I> \cgalCite{cgal:hddms-srup-92}.
|
||||
|
|
@ -846,7 +848,7 @@ the normals which cannot be successfully oriented.
|
|||
Normal orientation of a sampled cube surface. Left: unoriented normals. Right: orientation of right face normals is propagated to bottom face.
|
||||
\cgalFigureEnd
|
||||
|
||||
\subsection Point_set_processing_3Example_normals Example
|
||||
\subsubsection Point_set_processing_3Example_normals Example
|
||||
|
||||
The following example reads a point set from a file, estimates the
|
||||
normals through PCA (either over the 18 nearest neighbors or using a
|
||||
|
|
@ -854,8 +856,31 @@ spherical neighborhood radius of twice the average spacing) and
|
|||
orients the normals:
|
||||
\cgalExample{Point_set_processing_3/normals_example.cpp}
|
||||
|
||||
\subsection Point_set_processing_3Scanline_orient_normals Scanline
|
||||
|
||||
The minimum spanning tree results can give suboptimal results on point
|
||||
clouds with many sharp features and occlusions, which typically
|
||||
happens on airborne acquired urban datasets.
|
||||
|
||||
`scanline_orient_normals()` is an alternative method specialized for
|
||||
point sets which are ordered in scanline aligned on the XY-plane. It
|
||||
can take advantage of LAS properties provided by some LIDAR scanner
|
||||
and is the best choice of normal orientation when dealing with 2.5D
|
||||
urban scenes.
|
||||
|
||||
\cgalFigureBegin{Point_set_processing_3figmst_scanline_orient_normals,scanline_orient_normals.png}
|
||||
Normal orientation of a LIDAR scanline. The point cloud is a typical
|
||||
airborne LIDAR input, sampling a building without normal information
|
||||
and with many occlusions (especially on vertical walls).
|
||||
\cgalFigureEnd
|
||||
|
||||
\subsubsection Point_set_processing_3Example_scanline_normals Example
|
||||
|
||||
The following example reads a point set from a LAS file, estimates the
|
||||
normals through Jet Fitting and outputs in PLY format the orientation
|
||||
results of all the variants of `scanline_orient_normals()`:
|
||||
|
||||
\cgalExample{Point_set_processing_3/orient_scanlines_example.cpp}
|
||||
|
||||
\section Point_set_processing_3Upsampling Upsampling
|
||||
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@
|
|||
\example Point_set_processing_3/hierarchy_simplification_example.cpp
|
||||
\example Point_set_processing_3/jet_smoothing_example.cpp
|
||||
\example Point_set_processing_3/normals_example.cpp
|
||||
\example Point_set_processing_3/orient_scanlines_example.cpp
|
||||
\example Point_set_processing_3/wlop_simplify_and_regularize_point_set_example.cpp
|
||||
\example Point_set_processing_3/bilateral_smooth_point_set_example.cpp
|
||||
\example Point_set_processing_3/edge_aware_upsample_point_set_example.cpp
|
||||
|
|
|
|||
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
Loading…
Reference in New Issue