mirror of https://github.com/CGAL/cgal
Fix some links
This commit is contained in:
parent
4591d9a899
commit
b653138420
|
|
@ -44,12 +44,14 @@ Type of input datum.
|
|||
typedef unspecified_type Datum;
|
||||
|
||||
/*!
|
||||
Point reference type returned by the function `point(const Shared_data&)`. It is convertible to the type `Point`.
|
||||
Point reference type returned by the function \link reference_point `reference_point(const Shared_data&)`\endlink.
|
||||
It is convertible to the type `Point`.
|
||||
*/
|
||||
typedef unspecified_type Point_reference;
|
||||
|
||||
/*!
|
||||
Datum reference type returned by the function `datum(const Shared_data&)`. It is convertible to the type `Datum`.
|
||||
Datum reference type returned by the function \link datum `datum(const Shared_data&)`\endlink.
|
||||
It is convertible to the type `Datum`.
|
||||
*/
|
||||
typedef unspecified_type Datum_reference;
|
||||
|
||||
|
|
|
|||
|
|
@ -128,7 +128,7 @@ namespace CGAL {
|
|||
* @param first iterator over first primitive to insert
|
||||
* @param beyond past-the-end iterator
|
||||
*
|
||||
* constructs an empty tree followed by a call to `insert(first,last,t...)`.
|
||||
* constructs an empty tree followed by a call to \link insert(InputIterator, InputIterator, T&&...) `insert(first,last,t...)`\endlink.
|
||||
* The tree stays empty if the memory allocation is not successful.
|
||||
*/
|
||||
template<typename InputIterator,typename ... T>
|
||||
|
|
@ -140,7 +140,8 @@ namespace CGAL {
|
|||
/// This procedure is called implicitly at the first call to a query member function.
|
||||
/// An explicit call to `build()` must be made to ensure that the next call to
|
||||
/// a query function will not trigger the construction of the data structure.
|
||||
/// A call to `AABBTraits::set_shared_data(t...)` is made using the internally stored traits.
|
||||
/// A call to \link AABBTraits::set_shared_data `AABBTraits::set_shared_data(t...)`\endlink
|
||||
// is made using the internally stored traits.
|
||||
/// This procedure has a complexity of \cgalBigO{n log(n)}, where \f$n\f$ is the number of
|
||||
/// primitives of the tree.
|
||||
template<typename ... T>
|
||||
|
|
@ -160,16 +161,17 @@ namespace CGAL {
|
|||
/// \name Operations
|
||||
///@{
|
||||
|
||||
/// is equivalent to calling `clear()`, `insert(first,last,t...)`, and `build()`
|
||||
/// is equivalent to calling `clear()`, \link insert(InputIterator, InputIterator, T&&...) `insert(first,last,t...)`\endlink,
|
||||
// and `build()`
|
||||
template<typename ConstPrimitiveIterator,typename ... T>
|
||||
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond,T&& ...);
|
||||
|
||||
|
||||
/// adds a sequence of primitives to the set of primitives of the AABB tree.
|
||||
/// `%InputIterator` is any iterator and the parameter pack `T` contains any types
|
||||
/// such that `Primitive` has a constructor with the following signature:
|
||||
/// `Primitive(%InputIterator, T...)`. If `Primitive` is a model of the concept
|
||||
/// `AABBPrimitiveWithSharedData`, a call to `AABBTraits::set_shared_data(t...)`
|
||||
/// `AABBPrimitiveWithSharedData`, a call to
|
||||
/// \link AABBTraits::set_shared_data `AABBTraits::set_shared_data(t...)`\endlink
|
||||
/// is made using the internally stored traits.
|
||||
template<typename InputIterator,typename ... T>
|
||||
void insert(InputIterator first, InputIterator beyond,T&& ...);
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ A model of the concept `FromDoubleConstructible` is required
|
|||
to be constructible from the type `double`.
|
||||
|
||||
In case the type is a model of `RealEmbeddable` too, for any double d
|
||||
the identity: `d == CGAL::to_double(T(d))`, is guaranteed.
|
||||
the identity: `d == ` \link CGAL::to_double ` CGAL::to_double(T(d))`\endlink, is guaranteed.
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -112,7 +112,7 @@ typedef Gt::Site_2 Site_2;
|
|||
the edge type.
|
||||
The `Edge(f,i)` is the edge common to faces `f` and
|
||||
`f.neighbor(i)`. It is also the edge joining the vertices
|
||||
`vertex(cw(i))` and `vertex(ccw(i))` of `f`.
|
||||
`f->vertex(cw(i))` and `f->vertex(ccw(i))` of `f`.
|
||||
\pre `i` must be `0`, `1` or `2`.
|
||||
*/
|
||||
typedef Data_structure::Edge Edge;
|
||||
|
|
|
|||
|
|
@ -1048,8 +1048,8 @@ not coincide with any existing arrangement vertex and does not lie on
|
|||
any edge. As mentioned in Section \ref arr_ssectraverse, it is
|
||||
possible to obtain the face containing an isolated vertex calling the
|
||||
member function `Arrangement_on_surface_2::Vertex::face()`. The member
|
||||
function
|
||||
`Arrangement_on_surface_2::remove_isolated_vertex(Vertex_handle v)`
|
||||
function \link Arrangement_on_surface_2::remove_isolated_vertex()
|
||||
`Arrangement_on_surface_2::remove_isolated_vertex(Vertex_handle v)`\endlink
|
||||
accepts a handle to an isolated vertex and removes it from the
|
||||
arrangement.
|
||||
|
||||
|
|
|
|||
|
|
@ -87,9 +87,9 @@ boost::graph_traits<Graph>::edge_iterator ei;
|
|||
|
||||
Algorithms obtain incidence information in graphs with the help of global
|
||||
functions such as:
|
||||
- `std::pair<vertex_iterator,vertex_iterator> vertices(const Graph& g);` to obtain an iterator range providing access to all the vertices, or
|
||||
- `vertices_size_type num_vertices(const Graph&);` to obtain the number of vertices of a graph, or
|
||||
- `vertex_descriptor source(edge_descriptor, const Graph&);` to obtain the source vertex of an edge.
|
||||
- \ref VertexListGraph::vertices(const VertexListGraph&) "std::pair<vertex_iterator,vertex_iterator> vertices(const Graph& g)" to obtain an iterator range providing access to all the vertices, or
|
||||
- \link VertexListGraph::num_vertices(const VertexListGraph&) `vertices_size_type num_vertices(const Graph&)`\endlink to obtain the number of vertices of a graph, or
|
||||
- \link IncidenceGraph `vertex_descriptor source(edge_descriptor, const Graph&)` \endlink to obtain the source vertex of an edge.
|
||||
|
||||
Note, that the way we have written the types is a simplification; in reality,
|
||||
the signature of the first of the above functions is:
|
||||
|
|
|
|||
Loading…
Reference in New Issue