Remove directory Linear_cell_complex/

This commit is contained in:
Guillaume Damiand 2011-10-14 17:51:15 +00:00
parent 025a6db5e6
commit b68c7da28b
129 changed files with 0 additions and 15548 deletions

128
.gitattributes vendored
View File

@ -1931,134 +1931,6 @@ Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler-detail.png -text
Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler.png -text Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler.png -text
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test eol=lf Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test eol=lf
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test_with_cmake eol=lf Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test_with_cmake eol=lf
Linear_cell_complex/demo/Linear_cell_complex/CMakeLists.txt -text
Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.cpp -text
Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.qrc -text
Linear_cell_complex/demo/Linear_cell_complex/CreateMesh.ui -text
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.cpp -text
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.h -text
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.ui -text
Linear_cell_complex/demo/Linear_cell_complex/Viewer.cpp -text
Linear_cell_complex/demo/Linear_cell_complex/Viewer.h -text
Linear_cell_complex/demo/Linear_cell_complex/about_Combinatorial_map_3.html -text
Linear_cell_complex/demo/Linear_cell_complex/map_3_subdivision.cpp -text
Linear_cell_complex/demo/Linear_cell_complex/typedefs.h -text
Linear_cell_complex/doc_tex/Linear_cell_complex/Linear_cell_complex.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex/PkgDescription.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/4Dobject.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/Diagramme_class.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/basic-example3D.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/creations.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew2.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-edge.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-vertex.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-object.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom2.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/object2d.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/4Dobject.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/Diagramme_class.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/basic-example3D.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/creations.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-edge.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-vertex.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-object.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom2.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc.pdf -text svneol=unset#unset
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/object2d.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/plane-graph.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/triangulation.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/plane-graph.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/4Dobject.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/Diagramme_class.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/basic-example3D.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/creations.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew2.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-edge.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-vertex.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-object.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom2.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/object2d.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/plane-graph.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/triangulation.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/triangulation.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex/main.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/CellAttributeWithPoint.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Cell_attribute_with_point.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexItems.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexTraits.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_constructors.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_min_items.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_operations.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_traits.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/import_graph.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_cuboid.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_hexahedron.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_quadrilateral.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_rectangle.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_segment.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_tetrahedron.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_triangle.fig -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/import_graph.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_cuboid.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_hexahedron.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_quadrilateral.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_rectangle.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_segment.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_tetrahedron.pdf -text svneol=unset#unset
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_triangle.pdf -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/import_graph.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_cuboid.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_hexahedron.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_quadrilateral.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_rectangle.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_segment.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_tetrahedron.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_triangle.png -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/intro.tex -text
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/main.tex -text
Linear_cell_complex/dont_submit -text
Linear_cell_complex/examples/Linear_cell_complex/CMakeLists.txt -text
Linear_cell_complex/examples/Linear_cell_complex/data/aircraft.off -text
Linear_cell_complex/examples/Linear_cell_complex/data/graph1.off -text
Linear_cell_complex/examples/Linear_cell_complex/data/graph2.off -text
Linear_cell_complex/examples/Linear_cell_complex/data/points -text
Linear_cell_complex/examples/Linear_cell_complex/data/small_points -text
Linear_cell_complex/examples/Linear_cell_complex/data/small_points2 -text
Linear_cell_complex/examples/Linear_cell_complex/exemple_incremental_builder.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_with_colored_vertices.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_4.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/map_3_iterators.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/map_3_subdivision.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/plane_graph_to_map_2.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/polyhedron_clear.cpp -text
Linear_cell_complex/examples/Linear_cell_complex/res-valid.txt -text
Linear_cell_complex/examples/Linear_cell_complex/test-all -text
Linear_cell_complex/examples/Linear_cell_complex/voronoi_3.cpp -text
Linear_cell_complex/include/CGAL/Cell_attribute_with_point.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_constructors.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_incremental_builder.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_min_items.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_operations.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_traits.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/CMakeMapViewerQt.inc -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/CMakeMapViewerVtk.inc -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/linear_cell_complex_viewer_qt_3.h -text
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/linear_cell_complex_viewer_vtk_3.h -text
Linear_cell_complex/package_info/Linear_cell_complex/description.txt -text
Linear_cell_complex/package_info/Linear_cell_complex/long_description.txt -text
Linear_cell_complex/package_info/Linear_cell_complex/maintainer -text
MacOSX/auxiliary/cgal_app.icns -text MacOSX/auxiliary/cgal_app.icns -text
Maintenance/MacOSX_Installer/CGAL-3.2-absolute.pmproj -text Maintenance/MacOSX_Installer/CGAL-3.2-absolute.pmproj -text
Maintenance/MacOSX_Installer/CGAL-3.2.pmproj -text Maintenance/MacOSX_Installer/CGAL-3.2.pmproj -text

View File

@ -1,60 +0,0 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
# cmake ../ -DCMAKE_BUILD_TYPE=Debug
project (Combinatorial_map_3_demo)
cmake_minimum_required(VERSION 2.4.5)
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -W")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true)
if ( COMMAND cmake_policy )
cmake_policy( SET CMP0003 NEW )
endif()
find_package(CGAL COMPONENTS Qt4)
include(${CGAL_USE_FILE})
set( QT_USE_QTXML TRUE )
set( QT_USE_QTMAIN TRUE )
set( QT_USE_QTSCRIPT TRUE )
set( QT_USE_QTOPENGL TRUE )
find_package(Qt4)
find_package(OpenGL)
find_package(QGLViewer)
if ( NOT (CGAL_FOUND AND CGAL_Qt4_FOUND AND QT4_FOUND AND OPENGL_FOUND AND QGLVIEWER_FOUND) )
MESSAGE(FATAL_ERROR "NOTICE: This demo requires CGAL, QGLViewer, OpenGL and Qt4, and will not be compiled.")
endif ( NOT (CGAL_FOUND AND CGAL_Qt4_FOUND AND QT4_FOUND AND OPENGL_FOUND AND QGLVIEWER_FOUND) )
include(${QT_USE_FILE})
include_directories(${QGLVIEWER_INCLUDE_DIR})
include_directories(BEFORE . ../../include/)
include_directories(BEFORE . ../../../Combinatorial_map/include/)
# ui file, created wih Qt Designer
qt4_wrap_ui( uis MainWindow.ui CreateMesh.ui)
# qrc files (resources files, that contain icons, at least)
qt4_add_resources ( RESOURCE_FILES ./Combinatorial_map_3.qrc )
qt4_automoc( MainWindow.cpp Viewer.cpp)
add_executable(Combinatorial_map_3
Combinatorial_map_3.cpp MainWindow.cpp
Viewer.cpp map_3_subdivision.cpp
${uis} ${RESOURCE_FILES} )
add_to_cached_list(CGAL_EXECUTABLE_TARGETS Combinatorial_map_3)
target_link_libraries(Combinatorial_map_3 ${CGAL_LIBRARIES}
${CGAL_3RD_PARTY_LIBRARIES})
target_link_libraries(Combinatorial_map_3 ${QT_LIBRARIES}
${QGLVIEWER_LIBRARIES} )
target_link_libraries(Combinatorial_map_3 ${OPENGL_gl_LIBRARY}
${OPENGL_glu_LIBRARY} )

View File

@ -1,42 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.cpp $
// $Id: Combinatorial_map_3.cpp 56872 2010-06-18 12:57:31Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#include "MainWindow.h"
#include "typedefs.h"
#include <QApplication>
int main(int argc, char** argv)
{
std::cout<<"Size of dart: "<<sizeof(Map::Dart)<<std::endl;
QApplication application(argc,argv);
application.setOrganizationDomain("geometryfactory.com");
application.setOrganizationName("GeometryFactory");
application.setApplicationName("3D Combinatorial Map");
// Import resources from libCGALQt4.
// See http://doc.trolltech.com/4.4/qdir.html#Q_INIT_RESOURCE
Q_INIT_RESOURCE(File);
Q_INIT_RESOURCE(Combinatorial_map_3);
Q_INIT_RESOURCE(CGAL);
MainWindow mw;
mw.show();
return application.exec();
}

View File

@ -1,5 +0,0 @@
<RCC>
<qresource prefix="/cgal/help" >
<file>about_Combinatorial_map_3.html</file>
</qresource>
</RCC>

View File

@ -1,149 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>createMesh</class>
<widget class="QDialog" name="createMesh">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>220</width>
<height>65</height>
</rect>
</property>
<property name="sizePolicy">
<sizepolicy hsizetype="Fixed" vsizetype="Fixed">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>220</width>
<height>65</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>220</width>
<height>65</height>
</size>
</property>
<property name="windowTitle">
<string>Creare Mesh</string>
</property>
<property name="locale">
<locale language="English" country="UnitedStates"/>
</property>
<widget class="QDialogButtonBox" name="buttonBox">
<property name="geometry">
<rect>
<x>20</x>
<y>30</y>
<width>171</width>
<height>32</height>
</rect>
</property>
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="standardButtons">
<set>QDialogButtonBox::Cancel|QDialogButtonBox::Ok</set>
</property>
<property name="centerButtons">
<bool>true</bool>
</property>
</widget>
<widget class="QWidget" name="horizontalLayoutWidget_2">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>221</width>
<height>31</height>
</rect>
</property>
<layout class="QHBoxLayout" name="horizontalLayout_2">
<item>
<widget class="QLabel" name="label_3">
<property name="text">
<string>X</string>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="xvalue">
<property name="minimum">
<number>1</number>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="label_4">
<property name="text">
<string>Y</string>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="yvalue">
<property name="minimum">
<number>1</number>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="label_2">
<property name="text">
<string>Z</string>
</property>
</widget>
</item>
<item>
<widget class="QSpinBox" name="zvalue">
<property name="minimum">
<number>1</number>
</property>
</widget>
</item>
</layout>
</widget>
</widget>
<tabstops>
<tabstop>buttonBox</tabstop>
</tabstops>
<resources/>
<connections>
<connection>
<sender>buttonBox</sender>
<signal>accepted()</signal>
<receiver>createMesh</receiver>
<slot>accept()</slot>
<hints>
<hint type="sourcelabel">
<x>248</x>
<y>254</y>
</hint>
<hint type="destinationlabel">
<x>157</x>
<y>274</y>
</hint>
</hints>
</connection>
<connection>
<sender>buttonBox</sender>
<signal>rejected()</signal>
<receiver>createMesh</receiver>
<slot>reject()</slot>
<hints>
<hint type="sourcelabel">
<x>316</x>
<y>260</y>
</hint>
<hint type="destinationlabel">
<x>286</x>
<y>274</y>
</hint>
</hints>
</connection>
</connections>
</ui>

View File

@ -1,481 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/MainWindow.cpp $
// $Id: MainWindow.cpp 65446 2011-09-20 16:55:42Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#include "MainWindow.h"
#include <CGAL/Delaunay_triangulation_3.h>
// Function defined in map_3_subivision.cpp
void subdivide_map_3 (Map & m);
#define DELAY_STATUSMSG 1500
MainWindow::MainWindow (QWidget * parent):CGAL::Qt::DemosMainWindow (parent),
nbcube (0),
tdsdart(NULL),
dialogmesh(this)
{
setupUi (this);
scene.map = new Map;
this->viewer->setScene (&scene);
connectActions ();
this->addAboutDemo (":/cgal/help/about_Combinatorial_map_3.html");
this->addAboutCGAL ();
this->addRecentFiles (this->menuFile, this->actionQuit);
connect (this, SIGNAL (openRecentFile (QString)),
this, SLOT (load_off (QString)));
statusMessage = new QLabel ("Darts: 0, Vertices: 0 (Points: 0), Edges: 0, Facets: 0,"
" Volume: 0 (Vol color: 0), Connected components: 0");
statusBar ()->addWidget (statusMessage);
}
void MainWindow::connectActions ()
{
QObject::connect (this->actionImportOFF, SIGNAL (triggered ()),
this, SLOT (import_off ()));
QObject::connect (this->actionAddOFF, SIGNAL (triggered ()),
this, SLOT (add_off ()));
QObject::connect (this->actionImport3DTDS, SIGNAL (triggered ()),
this, SLOT (import_3DTDS ()));
QObject::connect (this->actionQuit, SIGNAL (triggered ()),
qApp, SLOT (quit ()));
QObject::connect (this->actionSubdivide, SIGNAL (triggered ()),
this, SLOT (subdivide ()));
QObject::connect (this->actionCreate_cube, SIGNAL (triggered ()),
this, SLOT (create_cube ()));
QObject::connect (this->actionCreate_mesh, SIGNAL (triggered ()),
this, SLOT (create_mesh ()));
QObject::connect (this->actionCreate3Cubes, SIGNAL (triggered ()),
this, SLOT (create_3cubes ()));
QObject::connect (this->actionCreate2Volumes, SIGNAL (triggered ()),
this, SLOT (create_2volumes ()));
QObject::connect (this, SIGNAL (sceneChanged ()),
this, SLOT (onSceneChanged ()));
QObject::connect (this->actionClear, SIGNAL (triggered ()),
this, SLOT (clear ()));
QObject::connect (this->actionDual_3, SIGNAL (triggered ()),
this, SLOT (dual_3 ()));
QObject::connect (this->actionClose_volume, SIGNAL (triggered ()),
this, SLOT (close_volume ()));
QObject::connect (this->actionRemove_current_volume, SIGNAL (triggered ()),
this, SLOT (remove_current_volume ()));
QObject::connect (this->actionSew3_same_facets, SIGNAL (triggered ()),
this, SLOT (sew3_same_facets ()));
QObject::connect (this->actionUnsew3_all, SIGNAL (triggered ()),
this, SLOT (unsew3_all ()));
QObject::connect (this->actionTriangulate_all_facets, SIGNAL (triggered ()),
this, SLOT (triangulate_all_facets ()));
}
void MainWindow::onSceneChanged ()
{
int mark = scene.map->get_new_mark ();
scene.map->negate_mark (mark);
std::vector<unsigned int> cells;
cells.push_back(0);
cells.push_back(1);
cells.push_back(2);
cells.push_back(3);
cells.push_back(4);
std::vector<unsigned int> res = scene.map->count_cells (cells);
std::ostringstream os;
os << "Darts: " << scene.map->number_of_darts ()
<< ", Vertices:" << res[0]
<<", (Points:"<<scene.map->number_of_attributes<0>()<<")"
<< ", Edges:" << res[1]
<< ", Facets:" << res[2]
<< ", Volumes:" << res[3]
#ifdef COLOR_VOLUME
<<", (Vol color:"<<scene.map->number_of_attributes<3>()<<")"
#endif
<< ", Connected components:" << res[4]
<<", Valid:"<<(scene.map->is_valid()?"true":"FALSE");
scene.map->negate_mark (mark);
scene.map->free_mark (mark);
viewer->sceneChanged ();
statusMessage->setText (os.str().c_str ());
}
void MainWindow::import_off ()
{
QString fileName = QFileDialog::getOpenFileName (this,
tr ("Import OFF"),
"./off",
tr ("off files (*.off)"));
if (!fileName.isEmpty ())
{
load_off (fileName, true);
}
}
void MainWindow::import_3DTDS ()
{
QString fileName = QFileDialog::getOpenFileName (this,
tr ("Import 3DTDS"),
".",
tr ("Data file (*)"));
if (!fileName.isEmpty ())
{
load_3DTDS (fileName, true);
statusBar ()->showMessage (QString ("Import 3DTDS file") + fileName,
DELAY_STATUSMSG);
}
}
void MainWindow::add_off ()
{
QString fileName = QFileDialog::getOpenFileName (this,
tr ("Add OFF"),
"./off",
tr ("off files (*.off)"));
if (!fileName.isEmpty ())
{
load_off (fileName, false);
}
}
void MainWindow::load_off (const QString & fileName, bool clear)
{
QApplication::setOverrideCursor (Qt::WaitCursor);
if (clear)
scene.map->clear ();
std::ifstream ifs (qPrintable (fileName));
CGAL::import_from_polyhedron_flux < Map > (*scene.map, ifs);
initAllVolumesRandomColor();
this->addToRecentFiles (fileName);
QApplication::restoreOverrideCursor ();
if (clear)
statusBar ()->showMessage (QString ("Load off file") + fileName,
DELAY_STATUSMSG);
else
statusBar ()->showMessage (QString ("Add off file") + fileName,
DELAY_STATUSMSG);
tdsdart = NULL;
emit (sceneChanged ());
}
void MainWindow::initVolumeRandomColor(Dart_handle adart)
{
#ifdef COLOR_VOLUME
scene.map->set_attribute<3>(adart,scene.map->create_attribute<3>(CGAL::Color(random.get_int(0,256),
random.get_int(0,256),
random.get_int(0,256))));
#endif
}
void MainWindow::initAllVolumesRandomColor()
{
#ifdef COLOR_VOLUME
for (Map::One_dart_per_cell_range<3>::iterator
it(scene.map->one_dart_per_cell<3>().begin());
it.cont(); ++it)
if ( it->attribute<3>()==NULL ) initVolumeRandomColor(it);
#endif
}
void MainWindow::load_3DTDS (const QString & fileName, bool clear)
{
QApplication::setOverrideCursor (Qt::WaitCursor);
if (clear)
scene.map->clear ();
typedef CGAL::Delaunay_triangulation_3 < Map::Traits > Triangulation;
Triangulation T;
std::ifstream ifs (qPrintable (fileName));
std::istream_iterator < Point_3 > begin (ifs), end;
T.insert (begin, end);
tdsdart = CGAL::import_from_triangulation_3 < Map, Triangulation > (*scene.map, T);
initAllVolumesRandomColor();
QApplication::restoreOverrideCursor ();
emit (sceneChanged ());
}
Dart_handle MainWindow::make_iso_cuboid(const Point_3 basepoint, Map::FT lg)
{
return make_hexahedron(*scene.map,
basepoint,
Map::Construct_translated_point()(basepoint,Map::Vector(lg,0,0)),
Map::Construct_translated_point()(basepoint,Map::Vector(lg,lg,0)),
Map::Construct_translated_point()(basepoint,Map::Vector(0,lg,0)),
Map::Construct_translated_point()(basepoint,Map::Vector(0,lg,lg)),
Map::Construct_translated_point()(basepoint,Map::Vector(0,0,lg)),
Map::Construct_translated_point()(basepoint,Map::Vector(lg,0,lg)),
Map::Construct_translated_point()(basepoint,Map::Vector(lg,lg,lg)));
}
void MainWindow::create_cube ()
{
Point_3 basepoint(nbcube%5, (nbcube/5)%5, nbcube/25);
Dart_handle d = make_iso_cuboid(basepoint, 1);
// scene.map->display_characteristics(std::cout)<<std::endl;
initVolumeRandomColor(d);
++nbcube;
tdsdart = NULL;
statusBar ()->showMessage (QString ("Cube created"),DELAY_STATUSMSG);
emit (sceneChanged ());
}
void MainWindow::create_3cubes ()
{
Dart_handle d1 = make_iso_cuboid (Point_3 (nbcube, nbcube, nbcube),1);
Dart_handle d2 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube, nbcube),1);
Dart_handle d3 = make_iso_cuboid (Point_3 (nbcube, nbcube + 1, nbcube), 1);
initVolumeRandomColor(d1);
initVolumeRandomColor(d2);
initVolumeRandomColor(d3);
scene.map->sew<3> (d1->beta(1)->beta(1)->beta(2), d2->beta(2));
scene.map->sew<3> (d1->beta(2)->beta(1)->beta(1)->beta(2), d3);
++nbcube;
tdsdart = NULL;
statusBar ()->showMessage (QString ("3 cubes were created"),
DELAY_STATUSMSG);
emit (sceneChanged ());
}
void MainWindow::create_2volumes ()
{
Dart_handle d1 = make_iso_cuboid (Point_3 (nbcube, nbcube, nbcube),1);
Dart_handle d2 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube, nbcube), 1);
Dart_handle d3 = make_iso_cuboid (Point_3 (nbcube, nbcube + 1, nbcube), 1);
Dart_handle d4 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube + 1, nbcube), 1);
initVolumeRandomColor(d1);
initVolumeRandomColor(d2);
initVolumeRandomColor(d3);
initVolumeRandomColor(d4);
scene.map->sew<3>(d1->beta(1)->beta(1)->beta(2), d2->beta (2));
scene.map->sew<3>(d1->beta(2)->beta(1)->beta(1)->beta (2), d3);
scene.map->sew<3>(d3->beta(1)->beta(1)->beta(2), d4->beta (2));
scene.map->sew<3>(d2->beta(2)->beta(1)->beta(1)->beta (2), d4);
/* scene.map->display_characteristics(std::cout)
<<" is_valid="<<scene.map->is_valid()<<std::endl;
std::cout<<"AVANT"<<std::endl;
scene.map->display_darts(std::cout)<<std::endl;
std::cout<<" is_valid="<<scene.map->is_valid()<<std::endl;*/
CGAL::remove_cell<Map,2>(*scene.map, d3);
CGAL::remove_cell<Map,2>(*scene.map, d2->beta (2));
/* std::cout<<"APRES"<<std::endl;
scene.map->display_darts(std::cout)<<std::endl;
std::cout<<" is_valid="<<scene.map->is_valid()<<std::endl;
scene.map->display_characteristics(std::cout);*/
tdsdart = NULL;
++nbcube;
statusBar ()->showMessage (QString ("2 volumes were created"),
DELAY_STATUSMSG);
emit (sceneChanged ());
}
void MainWindow::create_mesh ()
{
if ( dialogmesh.exec()==QDialog::Accepted )
{
for (int x=0; x<dialogmesh.getX(); ++x)
for (int y=0; y<dialogmesh.getY(); ++y)
for (int z=0; z<dialogmesh.getZ(); ++z)
{
Dart_handle d = make_iso_cuboid (Point_3 (x+nbcube, y+nbcube, z+nbcube), 1);
initVolumeRandomColor(d);
}
++nbcube;
tdsdart = NULL;
statusBar ()->showMessage (QString ("mesh created"),DELAY_STATUSMSG);
emit (sceneChanged ());
}
}
void MainWindow::subdivide ()
{
subdivide_map_3 (*(scene.map));
tdsdart = NULL;
emit (sceneChanged ());
statusBar ()->showMessage (QString ("Objects were subdivided"),
DELAY_STATUSMSG);
}
void MainWindow::clear ()
{
scene.map->clear ();
tdsdart = NULL;
statusBar ()->showMessage (QString ("Scene was cleared"), DELAY_STATUSMSG);
emit (sceneChanged ());
}
void MainWindow::dual_3 ()
{
if ( !scene.map->is_without_boundary(3) )
{
statusBar()->showMessage (QString ("Dual impossible: the map has some 3-boundary"),
DELAY_STATUSMSG);
return;
}
Map* dualmap = new Map;
Dart_handle infinitevolume = CGAL::dual<Map>(*scene.map,*dualmap,tdsdart);
if ( tdsdart!=NULL )
CGAL::remove_cell<Map,3>(*dualmap,infinitevolume);
delete scene.map;
scene.map = dualmap;
this->viewer->setScene (&scene);
initAllVolumesRandomColor();
statusBar ()->showMessage (QString ("Dual_3 computed"), DELAY_STATUSMSG);
emit (sceneChanged ());
}
void MainWindow::close_volume()
{
tdsdart = NULL;
if ( scene.map->close(3) > 0 )
{
initAllVolumesRandomColor();
statusBar ()->showMessage (QString ("Volume are closed"), DELAY_STATUSMSG);
emit (sceneChanged ());
}
else
statusBar ()->showMessage (QString ("Map already 3-closed"), DELAY_STATUSMSG);
}
void MainWindow::sew3_same_facets()
{
tdsdart = NULL;
// timer.reset();
// timer.start();
if ( scene.map->sew3_same_facets() > 0 )
{
statusBar()->showMessage (QString ("Same facets are 3-sewn"), DELAY_STATUSMSG);
emit (sceneChanged ());
}
else
statusBar()->showMessage (QString ("No facets 3-sewn"), DELAY_STATUSMSG);
// timer.stop();
// std::cout<<"sew3_same_facets in "<<timer.time()<<" seconds."<<std::endl;
}
void MainWindow::unsew3_all()
{
tdsdart = NULL;
unsigned int nb=0;
for (Map::Dart_range::iterator it=scene.map->darts().begin();
it!=scene.map->darts().end(); ++it)
{
if ( !it->is_free(3) )
{ scene.map->unsew<3>(it); ++nb; }
}
if ( nb > 0 )
{
statusBar()->showMessage (QString ("All darts are 3-unsewn"), DELAY_STATUSMSG);
emit (sceneChanged ());
}
else
statusBar()->showMessage (QString ("No dart 3-unsewn"), DELAY_STATUSMSG);
}
void MainWindow::remove_current_volume()
{
if ( this->viewer->getCurrentDart()!=scene.map->darts().end() )
{
CGAL::remove_cell<Map,3>(*scene.map,this->viewer->getCurrentDart());
emit (sceneChanged ());
statusBar()->showMessage (QString ("Current volume removed"), DELAY_STATUSMSG);
}
else
statusBar()->showMessage (QString ("No volume removed"), DELAY_STATUSMSG);
}
void MainWindow::triangulate_all_facets()
{
std::vector<Map::Dart_handle> v;
for (Map::One_dart_per_cell_range<2>::iterator
it(scene.map->one_dart_per_cell<2>().begin()); it.cont(); ++it)
{
v.push_back(it);
}
for (std::vector<Map::Dart_handle>::iterator itv(v.begin());
itv!=v.end(); ++itv)
CGAL::insert_center_cell_0_in_cell_2(*scene.map,*itv);
emit (sceneChanged ());
statusBar()->showMessage (QString ("All facets were triangulated"), DELAY_STATUSMSG);
}
#undef DELAY_STATUSMSG
#include "MainWindow.moc"

View File

@ -1,107 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/MainWindow.h $
// $Id: MainWindow.h 65446 2011-09-20 16:55:42Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef MAIN_WINDOW_H
#define MAIN_WINDOW_H
#include "typedefs.h"
#include "ui_MainWindow.h"
#include "ui_CreateMesh.h"
#include <CGAL/Qt/DemosMainWindow.h>
#include <CGAL/Random.h>
#include <QDialog>
#include <QSlider>
#include <QLabel>
#include <QFileDialog>
class QWidget;
class DialogMesh : public QDialog, private Ui::createMesh
{
Q_OBJECT
public:
DialogMesh(QWidget* parent)
{
setupUi (this);
}
int getX() { return xvalue->value(); }
int getY() { return yvalue->value(); }
int getZ() { return zvalue->value(); }
};
class MainWindow : public CGAL::Qt::DemosMainWindow, private Ui::MainWindow
{
Q_OBJECT
public:
MainWindow(QWidget* parent = 0);
void connectActions();
Scene scene;
Timer timer;
public slots:
void import_off();
void add_off();
void load_off(const QString& fileName, bool clear=true);
void import_3DTDS();
void load_3DTDS(const QString& fileName, bool clear=true);
void clear();
void create_cube();
void create_3cubes();
void create_2volumes();
void create_mesh();
void subdivide();
void dual_3();
void close_volume();
void remove_current_volume();
void sew3_same_facets();
void unsew3_all();
void triangulate_all_facets();
void onSceneChanged();
signals:
void sceneChanged();
protected:
void initVolumeRandomColor(Dart_handle adart);
void initAllVolumesRandomColor();
Dart_handle make_iso_cuboid(const Point_3 basepoint, Map::FT lg);
private:
unsigned int nbcube;
QLabel* statusMessage;
Dart_handle tdsdart;
DialogMesh dialogmesh;
CGAL::Random random;
};
#endif

View File

@ -1,175 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>MainWindow</class>
<widget class="QMainWindow" name="MainWindow">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>635</width>
<height>504</height>
</rect>
</property>
<property name="windowTitle">
<string>CGAL 3D Combinatorial Map</string>
</property>
<property name="windowIcon">
<iconset>
<normaloff>:/cgal/logos/cgal_icon</normaloff>:/cgal/logos/cgal_icon</iconset>
</property>
<widget class="QWidget" name="centralwidget">
<layout class="QVBoxLayout">
<item>
<layout class="QHBoxLayout"/>
</item>
<item>
<widget class="Viewer" name="viewer" native="true"/>
</item>
</layout>
</widget>
<widget class="QMenuBar" name="menubar">
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>635</width>
<height>26</height>
</rect>
</property>
<widget class="QMenu" name="menuFile">
<property name="title">
<string>File</string>
</property>
<addaction name="actionImportOFF"/>
<addaction name="actionAddOFF"/>
<addaction name="separator"/>
<addaction name="actionImport3DTDS"/>
<addaction name="separator"/>
<addaction name="actionClear"/>
<addaction name="separator"/>
<addaction name="actionQuit"/>
</widget>
<widget class="QMenu" name="menuOperations">
<property name="title">
<string>Operations</string>
</property>
<addaction name="actionSubdivide"/>
<addaction name="actionDual_3"/>
<addaction name="actionClose_volume"/>
<addaction name="actionSew3_same_facets"/>
<addaction name="actionRemove_current_volume"/>
<addaction name="actionTriangulate_all_facets"/>
<addaction name="actionUnsew3_all"/>
</widget>
<widget class="QMenu" name="menuCreations">
<property name="title">
<string>Creations</string>
</property>
<addaction name="actionCreate_cube"/>
<addaction name="actionCreate3Cubes"/>
<addaction name="actionCreate2Volumes"/>
<addaction name="actionCreate_mesh"/>
</widget>
<addaction name="menuFile"/>
<addaction name="menuCreations"/>
<addaction name="menuOperations"/>
</widget>
<widget class="QStatusBar" name="statusbar"/>
<action name="actionImportOFF">
<property name="text">
<string>Import OFF</string>
</property>
</action>
<action name="actionAddOFF">
<property name="text">
<string>Add OFF</string>
</property>
</action>
<action name="actionQuit">
<property name="text">
<string>Quit</string>
</property>
</action>
<action name="actionSubdivide">
<property name="text">
<string>Subdivide</string>
</property>
</action>
<action name="actionCreate3Cubes">
<property name="text">
<string>Create 3 cubes</string>
</property>
</action>
<action name="actionImport3DTDS">
<property name="text">
<string>Import 3DTS</string>
</property>
</action>
<action name="actionDisplayInfo">
<property name="text">
<string>Display info</string>
</property>
</action>
<action name="actionClear">
<property name="text">
<string>Clear</string>
</property>
</action>
<action name="actionCreate2Volumes">
<property name="text">
<string>Create 2 volumes</string>
</property>
</action>
<action name="actionDual_3">
<property name="text">
<string>Dual_3</string>
</property>
</action>
<action name="actionClose_volume">
<property name="text">
<string>Close volume</string>
</property>
</action>
<action name="actionCreate_cube">
<property name="text">
<string>Create cube</string>
</property>
</action>
<action name="actionSew3_same_facets">
<property name="text">
<string>Sew3 same facets</string>
</property>
</action>
<action name="actionCreate_mesh">
<property name="text">
<string>Create mesh</string>
</property>
</action>
<action name="actionRemove_current_volume">
<property name="text">
<string>Remove current volume</string>
</property>
</action>
<action name="actionTriangulate_all_facets">
<property name="text">
<string>Triangulate all facets</string>
</property>
</action>
<action name="actionUnsew3_all">
<property name="text">
<string>Unsew3 all</string>
</property>
</action>
</widget>
<customwidgets>
<customwidget>
<class>Viewer</class>
<extends>QWidget</extends>
<header>Viewer.h</header>
</customwidget>
</customwidgets>
<resources>
<include location="Combinatorial_map_3.qrc"/>
</resources>
<connections/>
</ui>

View File

@ -1,548 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Viewer.cpp $
// $Id: Viewer.cpp 62338 2011-04-08 20:17:16Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#include "Viewer.h"
#include <vector>
#include <CGAL/bounding_box.h>
#include <QGLViewer/vec.h>
#include <CGAL/Linear_cell_complex_operations.h>
#define NB_FILLED_MODE 4
#define FILLED_ALL 0
#define FILLED_NON_FREE3 1
#define FILLED_VOL 2
#define FILLED_VOL_AND_V 3
template<class Map>
CGAL::Bbox_3 bbox(Map& amap)
{
CGAL::Bbox_3 bb;
typename Map::Vertex_attribute_range::iterator it = amap.vertex_attributes().begin(),
itend=amap.vertex_attributes().end();
if ( it!=itend )
{
bb = it->bbox();
for( ++it; it != itend; ++it)
{
bb = bb + it->bbox();
}
}
return bb;
}
void
Viewer::sceneChanged()
{
iteratorAllDarts = scene->map->darts().begin();
scene->map->unmark_all(markVolume);
CGAL::Bbox_3 bb = bbox(*scene->map);
this->camera()->setSceneBoundingBox(qglviewer::Vec(bb.xmin(),
bb.ymin(),
bb.zmin()),
qglviewer::Vec(bb.xmax(),
bb.ymax(),
bb.zmax()));
this->showEntireScene();
}
// Draw the facet given by ADart
void Viewer::drawFacet(Dart_handle ADart, int AMark)
{
Map &m = *scene->map;
::glBegin(GL_POLYGON);
#ifdef COLOR_VOLUME
assert( ADart->attribute<3>()!=NULL );
// double r = (double)ADart->attribute<3>()->info().r()/255.0;
double r = (double)ADart->attribute<3>()->info().r()/255.0;
double g = (double)ADart->attribute<3>()->info().g()/255.0;
double b = (double)ADart->attribute<3>()->info().b()/255.0;
if ( !ADart->is_free(3) )
{
r += (double)ADart->beta(3)->attribute<3>()->info().r()/255.0;
g += (double)ADart->beta(3)->attribute<3>()->info().g()/255.0;
b += (double)ADart->beta(3)->attribute<3>()->info().b()/255.0;
r /= 2; g /= 2; b /= 2;
}
::glColor3f(r,g,b);
#else
::glColor3f(.7,.7,.7);
#endif
// If Flat shading: 1 normal per polygon
if (flatShading)
{
Map::Vector n = CGAL::compute_normal_of_cell_2(m,ADart);
n = n/(CGAL::sqrt(n*n));
::glNormal3d(n.x(),n.y(),n.z());
}
for ( Map::Dart_of_orbit_range<1>::iterator it(m,ADart); it.cont(); ++it)
{
// If Gouraud shading: 1 normal per vertex
if (!flatShading)
{
Map::Vector n = CGAL::compute_normal_of_cell_0<Map>(m,it);
n = n/(CGAL::sqrt(n*n));
::glNormal3d(n.x(),n.y(),n.z());
}
Map::Point p = m.point(it);
::glVertex3d( p.x(),p.y(),p.z());
m.mark(it,AMark);
if ( !it->is_free(3) ) m.mark(it->beta(3),AMark);
}
::glEnd();
}
/// Draw all the edge of the facet given by ADart
void Viewer::drawEdges(Dart_handle ADart)
{
Map &m = *scene->map;
glBegin(GL_LINES);
glColor3f(.2,.2,.6);
for ( Map::Dart_of_orbit_range<1>::iterator it(m,ADart); it.cont(); ++it)
{
Map::Point p = m.point(it);
Dart_handle d2 = it->other_extremity();
if ( d2!=NULL )
{
Map::Point p2 = m.point(d2);
glVertex3f( p.x(),p.y(),p.z());
glVertex3f( p2.x(),p2.y(),p2.z());
}
}
glEnd();
}
void Viewer::draw_one_vol_filled_facets(Dart_handle adart,
int amarkvol, int amarkfacet)
{
Map &m = *scene->map;
for (CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it(m,adart,amarkvol); it.cont(); ++it)
{
if ( !m.is_marked(it,amarkfacet) )
{
drawFacet(it,amarkfacet);
}
}
}
void Viewer::draw_current_vol_filled_facets(Dart_handle adart)
{
Map &m = *scene->map;
unsigned int facettreated = m.get_new_mark();
unsigned int volmark = m.get_new_mark();
draw_one_vol_filled_facets(adart,volmark,facettreated);
m.negate_mark(volmark);
for (CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it(m,adart,volmark); it.cont(); ++it)
{
m.unmark(it,facettreated);
if ( !it->is_free(3) ) m.unmark(it->beta(3),facettreated);
}
m.negate_mark(volmark);
assert(m.is_whole_map_unmarked(volmark));
assert(m.is_whole_map_unmarked(facettreated));
m.free_mark(volmark);
m.free_mark(facettreated);
}
void Viewer::draw_current_vol_and_neighboors_filled_facets(Dart_handle adart)
{
Map &m = *scene->map;
unsigned int facettreated = m.get_new_mark();
unsigned int volmark = m.get_new_mark();
draw_one_vol_filled_facets(adart,volmark,facettreated);
CGAL::CMap_dart_iterator_of_cell<Map,3> it(m,adart);
for (; it.cont(); ++it)
{
if ( !it->is_free(3) && !m.is_marked(it->beta(3),volmark) )
{
draw_one_vol_filled_facets(it->beta(3),volmark,facettreated);
}
}
m.negate_mark(volmark);
for (it.rewind(); it.cont(); ++it)
{
m.mark(it,volmark);
if ( m.is_marked(it,facettreated))
CGAL::unmark_cell<Map,2>(m,it,facettreated);
if ( !it->is_free(3) && !m.is_marked(it->beta(3),volmark) )
{
CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it2(m,it->beta(3),volmark);
for (; it2.cont(); ++it2)
{
if ( m.is_marked(it2,facettreated))
CGAL::unmark_cell<Map,2>(m,it2,facettreated);
}
}
}
m.negate_mark(volmark);
assert(m.is_whole_map_unmarked(volmark));
assert(m.is_whole_map_unmarked(facettreated));
m.free_mark(volmark);
m.free_mark(facettreated);
}
void Viewer::draw()
{
Map &m = *scene->map;
if ( m.is_empty() ) return;
unsigned int facettreated = m.get_new_mark();
unsigned int vertextreated = -1;
if ( vertices) vertextreated=m.get_new_mark();
for(Map::Dart_range::iterator it=m.darts().begin(); it!=m.darts().end(); ++it)
{
if ( !m.is_marked(it,facettreated) )
{
if ( modeFilledFacet==FILLED_ALL ||
modeFilledFacet==FILLED_NON_FREE3 && !it->is_free(3) )
drawFacet(it,facettreated);
else
CGAL::mark_cell<Map,2>(m,it,facettreated);
if ( edges) drawEdges(it);
}
if (vertices)
{
if ( !m.is_marked(it, vertextreated) )
{
Map::Point p = m.point(it);
glBegin(GL_POINTS);
glColor3f(.6,.2,.8);
glVertex3f( p.x(),p.y(),p.z());
glEnd();
CGAL::mark_cell<Map,0>(m,it,vertextreated);
}
}
}
assert(m.is_whole_map_marked(facettreated));
if ( vertices)
{
assert(m.is_whole_map_marked(vertextreated));
m.free_mark(vertextreated);
}
m.free_mark(facettreated);
if ( modeFilledFacet==FILLED_VOL)
draw_current_vol_filled_facets(iteratorAllDarts);
else if ( modeFilledFacet==FILLED_VOL_AND_V)
draw_current_vol_and_neighboors_filled_facets(iteratorAllDarts);
}
/*
void
Viewer::draw()
{
// define material
float ambient[] = { 0.25f,
0.20725f,
0.20725f,
0.922f };
float diffuse[] = { 1.0f,
0.829f,
0.829f,
0.922f };
float specular[] = { 0.296648f,
0.296648f,
0.296648f,
0.522f };
float emission[] = { 0.3f,
0.3f,
0.3f,
1.0f };
float shininess[] = { 11.264f };
// apply material
::glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
::glMaterialfv( GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse);
::glMaterialfv( GL_FRONT_AND_BACK, GL_SPECULAR, specular);
::glMaterialfv( GL_FRONT_AND_BACK, GL_SHININESS, shininess);
::glMaterialfv( GL_FRONT_AND_BACK, GL_EMISSION, emission);
// anti-aliasing (if the OpenGL driver permits that)
::glEnable(GL_LINE_SMOOTH);
::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
// draw surface mesh
bool m_view_surface = true;
bool draw_triangles_edges = true;
if(m_view_surface)
{
::glEnable(GL_LIGHTING);
::glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
::glColor3f(0.2f, 0.2f, 1.f);
::glEnable(GL_POLYGON_OFFSET_FILL);
::glPolygonOffset(3.0f,-3.0f);
gl_draw_surface();
if(draw_triangles_edges)
{
::glDisable(GL_LIGHTING);
::glLineWidth(1.);
::glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
::glColor3ub(0,0,0);
::glDisable(GL_POLYGON_OFFSET_FILL);
gl_draw_surface();
}
}
}
void
Viewer::gl_draw_surface()
{
::glColor3f(1.0f, 0.0f, 0.0f);
::glDisable(GL_LIGHTING);
::glEnable(GL_POINT_SMOOTH);
::glPointSize(5);
::glBegin(GL_POINTS);
for(std::list<Point_3>::iterator it = scene->points.begin();
it != scene->points.end();
++it){
::glVertex3d(it->x(), it->y(), it->z());
}
::glEnd();
::glDisable(GL_POINT_SMOOTH);
::glEnable(GL_LIGHTING);
::glBegin(GL_TRIANGLES);
::glColor3f(0.2f, 1.0f, 0.2f);
std::list<Facett> facetts;
scene->alpha_shape.get_alpha_shape_facetts(std::back_inserter(facetts), Alpha_shape_3::REGULAR);
for(std::list<Facett>::iterator fit = facetts.begin();
fit != facetts.end();
++fit) {
const Cell_handle& ch = fit->first;
const int index = fit->second;
//const Vector_3& n = ch->normal(index); // must be unit vector
const Point_3& a = ch->vertex((index+1)&3)->point();
const Point_3& b = ch->vertex((index+2)&3)->point();
const Point_3& c = ch->vertex((index+3)&3)->point();
Vector_3 v = CGAL::unit_normal(a,b,c);
::glNormal3d(v.x(),v.y(),v.z());
::glVertex3d(a.x(),a.y(),a.z());
::glVertex3d(b.x(),b.y(),b.z());
::glVertex3d(c.x(),c.y(),c.z());
}
::glEnd();
}
*/
void Viewer::init()
{
// Restore previous viewer state.
restoreStateFromFile();
// Define 'Control+Q' as the new exit shortcut (default was 'Escape')
setShortcut(EXIT_VIEWER, Qt::CTRL+Qt::Key_Q);
// Add custom key description (see keyPressEvent).
setKeyDescription(Qt::Key_W, "Toggles wire frame display");
setKeyDescription(Qt::Key_F, "Toggles flat shading display");
setKeyDescription(Qt::Key_E, "Toggles edges display");
setKeyDescription(Qt::Key_V, "Toggles vertices display");
setKeyDescription(Qt::Key_Z, "Next mode filled facet");
setKeyDescription(Qt::Key_R, "Select next volume, used for filled facet");
// Light default parameters
::glLineWidth(1.4f);
::glPointSize(4.f);
::glEnable(GL_POLYGON_OFFSET_FILL);
::glPolygonOffset(1.0f,1.0f);
::glClearColor(1.0f,1.0f,1.0f,0.0f);
::glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
::glEnable(GL_LIGHTING);
::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
// ::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);
if (flatShading)
{
::glShadeModel(GL_FLAT);
::glDisable(GL_BLEND);
::glDisable(GL_LINE_SMOOTH);
::glDisable(GL_POLYGON_SMOOTH_HINT);
::glBlendFunc(GL_ONE, GL_ZERO);
::glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);
}
else
{
::glShadeModel(GL_SMOOTH);
::glEnable(GL_BLEND);
::glEnable(GL_LINE_SMOOTH);
::glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
}
void Viewer::keyPressEvent(QKeyEvent *e)
{
const Qt::KeyboardModifiers modifiers = e->modifiers();
bool handled = false;
if ((e->key()==Qt::Key_W) && (modifiers==Qt::NoButton))
{
wireframe = !wireframe;
if (wireframe)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
handled = true;
updateGL();
}
else if ((e->key()==Qt::Key_F) && (modifiers==Qt::NoButton))
{
flatShading = !flatShading;
if (flatShading)
{
::glShadeModel(GL_FLAT);
::glDisable(GL_BLEND);
::glDisable(GL_LINE_SMOOTH);
::glDisable(GL_POLYGON_SMOOTH_HINT);
::glBlendFunc(GL_ONE, GL_ZERO);
::glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);
}
else
{
::glShadeModel(GL_SMOOTH);
::glEnable(GL_BLEND);
::glEnable(GL_LINE_SMOOTH);
::glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
handled = true;
updateGL();
}
else if ((e->key()==Qt::Key_E) && (modifiers==Qt::NoButton))
{
edges = !edges;
handled = true;
updateGL();
}
else if ((e->key()==Qt::Key_V) && (modifiers==Qt::NoButton))
{
vertices = !vertices;
handled = true;
updateGL();
}
else if ((e->key()==Qt::Key_Z) && (modifiers==Qt::NoButton))
{
modeFilledFacet = (modeFilledFacet+1)%NB_FILLED_MODE;
handled = true;
updateGL();
}
else if ((e->key()==Qt::Key_R) && (modifiers==Qt::NoButton))
{
CGAL::mark_cell<Map,3>(*scene->map, iteratorAllDarts, markVolume);
while ( iteratorAllDarts!=scene->map->darts().end() &&
scene->map->is_marked(iteratorAllDarts,markVolume) )
{
++iteratorAllDarts;
}
if ( iteratorAllDarts==scene->map->darts().end() )
{
scene->map->negate_mark(markVolume);
assert( scene->map->is_whole_map_unmarked(markVolume) );
iteratorAllDarts=scene->map->darts().begin();
}
handled = true;
updateGL();
}
if (!handled)
QGLViewer::keyPressEvent(e);
}
QString Viewer::helpString() const
{
QString text("<h2>M a p V i e w e r</h2>");
text += "Use the mouse to move the camera around the object. ";
text += "You can respectively revolve around, zoom and translate with the three mouse buttons. ";
text += "Left and middle buttons pressed together rotate around the camera view direction axis<br><br>";
text += "Pressing <b>Alt</b> and one of the function keys (<b>F1</b>..<b>F12</b>) defines a camera keyFrame. ";
text += "Simply press the function key again to restore it. Several keyFrames define a ";
text += "camera path. Paths are saved when you quit the application and restored at next start.<br><br>";
text += "Press <b>F</b> to display the frame rate, <b>A</b> for the world axis, ";
text += "<b>Alt+Return</b> for full screen mode and <b>Control+S</b> to save a snapshot. ";
text += "See the <b>Keyboard</b> tab in this window for a complete shortcut list.<br><br>";
text += "Double clicks automates single click actions: A left button double click aligns the closer axis with the camera (if close enough). ";
text += "A middle button double click fits the zoom of the camera and the right button re-centers the scene.<br><br>";
text += "A left button double click while holding right button pressed defines the camera <i>Revolve Around Point</i>. ";
text += "In filled facet, there are four modes: all facets are filled; only facets between two volumes are filles; only the facets of current volume are filled; only the facets of current volume and all its adjacent volumes are filled.";
text += "See the <b>Mouse</b> tab and the documentation web pages for details.<br><br>";
text += "Press <b>Escape</b> to exit the viewer.";
return text;
}
#include "Viewer.moc"

View File

@ -1,85 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Viewer.h $
// $Id: Viewer.h 58880 2010-09-24 19:41:06Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef VIEWER_H
#define VIEWER_H
#include "typedefs.h"
#include <QGLViewer/qglviewer.h>
#include <QKeyEvent>
class Viewer : public QGLViewer
{
Q_OBJECT
CGAL::Timer timer;
Scene* scene;
bool wireframe;
bool flatShading;
bool edges;
bool vertices;
unsigned int modeFilledFacet;
int markVolume;
Map::Dart_range::iterator iteratorAllDarts;
typedef Map::Dart_handle Dart_handle;
public:
Viewer(QWidget* parent)
: QGLViewer(parent), wireframe(false), flatShading(true),
edges(true), vertices(true), modeFilledFacet(0)
{}
void setScene(Scene* scene_)
{
scene = scene_;
markVolume=scene->map->get_new_mark();
iteratorAllDarts=scene->map->darts().begin();
}
Map::Dart_range::iterator getCurrentDart() const
{ return iteratorAllDarts; }
// void clear();
public:
void draw();
virtual void init();
// void gl_draw_surface();
void keyPressEvent(QKeyEvent *e);
virtual QString helpString() const;
public slots :
void sceneChanged();
protected:
void drawFacet(Dart_handle ADart, int AMark);
void drawEdges(Dart_handle ADart);
void draw_one_vol_filled_facets(Dart_handle ADart,
int amarkvol, int amarkfacet);
void draw_current_vol_filled_facets(Dart_handle ADart);
void draw_current_vol_and_neighboors_filled_facets(Dart_handle ADart);
};
#endif

View File

@ -1,10 +0,0 @@
<html>
<body>
<h2>3D Combinatorial Map</h2>
<p>Copyright &copy; 2009 CNRS</p>
<p>This application illustrates the 3D Combinatorial Map
of <a href="http://www.cgal.org/">CGAL</a>.</p>
<p>See also <a href="http://www.cgal.org/Pkg/CombinatorialMap">the online
manual</a>.</p>
</body>
</html>

View File

@ -1,181 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#include "typedefs.h"
#define PI 3.1415926535897932
// Smoth a vertex depending on the vertices of its incident facet.
class Smooth_old_vertex
{
public:
/** Constructor.
* @param amap is the map to smooth
* @param amark is a mark designing old darts (i.e. darts not created during
* the triangulation step)
*/
Smooth_old_vertex (Map & amap, unsigned int amark):mmap (amap)
{
}
Vertex operator () (Vertex & v) const
{
Dart_handle d = v.dart ();
CGAL_assertion (d != NULL);
int degree = 0;
bool open = false;
Map::One_dart_per_incident_cell_range<1,0>::iterator it (mmap, d),
itend(mmap.one_dart_per_incident_cell<1,0>(d).end());
for (; it != itend; ++it)
{
++degree;
if (it->is_free (2)) open = true;
}
if (open)
return v;
Map::FT alpha = (4.0f - 2.0f *
(Map::FT) cos (2.0f * PI / (Map::FT) degree)) / 9.0f;
Map::Vector vec = (v - CGAL::ORIGIN) * (1.0f - alpha);
for (it.rewind (); it != itend; ++it)
{
CGAL_assertion (!it->is_free (2));
vec = vec + (mmap.point(it->beta(2)) - CGAL::ORIGIN)
* alpha / degree;
}
Vertex res (CGAL::ORIGIN + vec);
res.set_dart (d);
// std::cout<<"operator() "<<v.point()<<" -> "<<res.point()<<std::endl;
return res;
}
private:
Map & mmap;
};
// Flip an edge, work in 2D and in 3D.
Dart_handle
flip_edge (Map & m, Dart_handle d)
{
CGAL_assertion (d != NULL && !d->is_free (2));
if (!CGAL::is_removable<Map,1>(m,d))
return NULL;
Dart_handle d2 = d->beta(1)->beta(1);
CGAL::remove_cell<Map,1>(m, d);
insert_cell_1_in_cell_2(m, d2, d2->beta(1)->beta(1));
return d2->beta (0);
}
// Subdivide each facet of the map by using sqrt(3)-subdivision.
void
subdivide_map_3 (Map & m)
{
if (m.number_of_darts () == 0)
return;
unsigned int mark = m.get_new_mark ();
unsigned int treated = m.get_new_mark ();
m.negate_mark (mark); // All the old darts are marked in O(1).
// 1) We smoth the old vertices.
std::vector < Vertex > vertices; // smooth the old vertices
vertices.reserve (m.number_of_attributes<0> ()); // get intermediate space
std::transform (m.vertex_attributes().begin (),
m.vertex_attributes().end (),
std::back_inserter (vertices),
Smooth_old_vertex (m, mark));
// 2) We subdivide each facet.
m.negate_mark (treated); // All the darts are marked in O(1).
unsigned int nb = 0;
for (Map::Dart_range::iterator it (m.darts().begin ());
m.number_of_marked_darts (treated) > 0; ++it)
{
++nb;
if (m.is_marked (it, treated))
{
// We unmark the darts of the facet to process only once dart/facet.
CGAL::unmark_cell < Map, 2 > (m, it, treated);
// We triangulate the facet.
CGAL::insert_center_cell_0_in_cell_2(m, it);
}
}
CGAL_assertion (m.is_whole_map_unmarked (treated));
CGAL_assertion (m.is_valid ());
m.free_mark (treated);
// 3) We update the coordinates of old vertices.
for (std::vector < Vertex >::iterator vit = vertices.begin ();
vit != vertices.end (); ++vit)
{
m.point(vit->dart())=*vit;
}
// 4) We flip all the old edges.
m.negate_mark (mark); // Now only new darts are marked.
Dart_handle d2 = NULL;
for (Map::Dart_range::iterator it (m.darts().begin ()); it != m.darts().end ();)
{
d2 = it++;
CGAL_assertion (d2 != NULL);
if (!m.is_marked (d2, mark)) // This is an old dart.
{
// We process only the last dart of a same edge.
if (!d2->is_free(2) && (d2->beta(2)->beta(3)==d2->beta(3)->beta(2)))
{
if (m.is_marked(d2->beta(2), mark) &&
(d2->is_free(3) ||
(m.is_marked(d2->beta(3), mark) &&
m.is_marked(d2->beta(2)->beta(3), mark))))
{
m.negate_mark (mark); // thus new darts will be marked
flip_edge (m, d2);
m.negate_mark (mark);
}
else
m.mark (d2, mark);
}
else
m.mark (d2, mark);
}
}
/* CGAL::display_darts(m,std::cout)<<std::endl;
for (Map::Vertex_attribute_iterator it = m.vertex_attributes_begin();
it!=m.vertex_attributes_end(); ++it)
{
std::cout<<it->point()<<", ";
}
std::cout<<std::endl;*/
CGAL_assertion (m.is_whole_map_marked (mark));
m.free_mark (mark);
CGAL_postcondition ( m.is_valid ());
}

View File

@ -1,92 +0,0 @@
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/typedefs.h $
// $Id: typedefs.h 65446 2011-09-20 16:55:42Z gdamiand $
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef TYPEDEFS_H
#define TYPEDEFS_H
#include <CGAL/Linear_cell_complex.h>
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/IO/Color.h>
#include <CGAL/Timer.h>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <fstream>
#include <vector>
#include <list>
#define COLOR_VOLUME 1 // Pour activer la couleur des volumes
#ifdef COLOR_VOLUME
template<class Cell>
struct Average_functor : public std::binary_function<Cell,Cell,void>
{
void operator()(Cell& acell1,Cell& acell2)
{
acell1.attribute()=
CGAL::Color((acell1.attribute().r()+acell2.attribute().r())/2,
(acell1.attribute().g()+acell2.attribute().g())/2,
(acell1.attribute().b()+acell2.attribute().b())/2);
}
};
class Myitems
{
public:
// typedef CGAL::Exact_predicates_inexact_constructions_kernel Traits;
template < class Refs >
struct Dart_wrapper
{
typedef CGAL::Dart<3, Refs > Dart;
typedef CGAL::Cell_attribute_with_point< Refs > Vertex_attrib;
typedef CGAL::Cell_attribute< Refs, CGAL::Color > Volume_attrib;
typedef CGAL::cpp0x::tuple<Vertex_attrib,CGAL::Disabled,CGAL::Disabled,Volume_attrib>
Attributes;
};
};
#else // COLOR_VOLUME
typedef CGAL::Combinatorial_map_with_points_min_items<3,3> Myitems;
#endif
typedef CGAL::Linear_cell_complex_traits<3,CGAL::Exact_predicates_inexact_constructions_kernel> Mytraits;
typedef CGAL::Combinatorial_map_with_points<3,3,Mytraits,Myitems> Map;
typedef Map::Dart_handle Dart_handle;
typedef Map::Vertex_attribute Vertex;
typedef Map::Point Point_3;
typedef Map::Vector Vector_3;
typedef Map::Traits::Iso_cuboid_3 Iso_cuboid_3;
typedef CGAL::Timer Timer;
struct Scene {
Map* map;
};
#endif

View File

@ -1,979 +0,0 @@
\def\betats{\ccTexHtml{$\beta$}{&beta;}}
\def\betazero{\ccTexHtml{$\beta_0$}{&beta;<SUB>0</SUB>}}
\def\betaun{\ccTexHtml{$\beta_1$}{&beta;<SUB>1</SUB>}}
\def\betadeux{\ccTexHtml{$\beta_2$}{&beta;<SUB>2</SUB>}}
\def\betatrois{\ccTexHtml{$\beta_3$}{&beta;<SUB>3</SUB>}}
\def\betaquatre{\ccTexHtml{$\beta_4$}{&beta;<SUB>4</SUB>}}
\def\betai{\ccTexHtml{$\beta_i$}{&beta;<SUB>i</SUB>}}
\def\betad{\ccTexHtml{$\beta_d$}{&beta;<SUB>d</SUB>}}
\def\betadprim{\ccTexHtml{$\beta_{d'}$}{&beta;<SUB>d'</SUB>}}
\def\betaimun{\ccTexHtml{$\beta_{i-1}$}{&beta;<SUB>i-1</SUB>}}
\def\betaipun{\ccTexHtml{$\beta_{i+1}$}{&beta;<SUB>i+1</SUB>}}
\def\betaimdeux{\ccTexHtml{$\beta_{i-2}$}{&beta;<SUB>i-2</SUB>}}
\def\betaipdeux{\ccTexHtml{$\beta_{i+2}$}{&beta;<SUB>i+2</SUB>}}
\def\betaj{\ccTexHtml{$\beta_j$}{&beta;<SUB>j</SUB>}}
\def\betajmun{\ccTexHtml{$\beta_{j-1}$}{&beta;<SUB>j-1</SUB>}}
\def\betaiinv{\ccTexHtml{$\beta_i^{-1}$}{&beta;<sub>i</sub><sup>-1</sup>}}
\def\betajinv{\ccTexHtml{$\beta_j^{-1}$}{&beta;<sub>j</sub><sup>-1</sup>}}
\def\comp{\ccTexHtml{$\circ$}{&deg;}}
\def\pinv{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}}
\def\myith{\ccTexHtml{$i^{\mbox{th}}$}{i<SUP>th</SUP>}}
\def\myneq{\ccTexHtml{$\neq$}{&ne;}}
\def\myleq{\ccTexHtml{$\leq$}{&le;}}
\def\mylt{\ccTexHtml{$<$}{&lt;}}
\def\mygt{\ccTexHtml{$>$}{&gt;}}
\def\mygeq{\ccTexHtml{$\geq$}{&ge;}}
\def\mysubseteq{\ccTexHtml{$\subseteq$}{&sube;}}
\def\myforall{\ccTexHtml{$\forall$}{&forall;}}
\def\myemptyset{\ccTexHtml{$\emptyset$}{&empty;}}
\def\myRightarrow{\ccTexHtml{$\Rightarrow$}{&rArr;}}
\def\myrightarrow{\ccTexHtml{$\rightarrow$}{&rarr;}}
\def\myin{\ccTexHtml{$\in$}{&isin;}}
\def\mynotin{\ccTexHtml{$\notin$}{&notin;}}
\def\mycup{\ccTexHtml{$\cup$}{&cup;}}
\def\myphi{\ccTexHtml{$\phi$}{&phi;}}
\def\mysetminus{\ccTexHtml{$\setminus$}{\ }}
\def\myldots{\ccTexHtml{$\ldots$}{&hellip;}}
\def\mytimes{\ccTexHtml{$\times$}{&times;}}
%\def\myvarnothing{\ccTexHtml{$\varnothing$}{\varnothing}}
%\ccTexHtml{$\varnothing$}{\lcRawHtml{&#8709;}}}
\newcommand{\cell}[1]{\emph{#1}-cell}
\newcommand{\cells}[1]{\emph{#1}-cells}
\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{&lang;}#1\ccTexHtml{$\rangle{}$}{&rang;}}
\newcommand{\mb}[1]{\beta_{#1}}
\newcommand{\orb}[1]{\langle{}#1\rangle{}}
\section{Introduction}
A \emph{d}D linear cell complex allows to represent an orientable
subdivided \emph{d}D object having linear geometry: each vertex of the
subdivision is associated with a point. The geometry of each edge is a
segment whose end points are associated with the two vertices of the
edge, the geometry of each 2-cell is obtained from all the segments
associated to the edges describing the boundary of the 2-cell and so
on.
The combinatorial part of a linear cell complex is described by using
a \emph{d}D combinatorial map (see Chapter~\ref{ChapterCombinatorialMap}).
To add the linear geometrical embedding, a point (a model of
\ccc{CGAL::Point_2} or \ccc{CGAL::Point_3} or \ccc{CGAL::Point_d}) is
associated to each vertex of the combinatorial map.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure}[ht]
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=.3\textwidth]
{Linear_cell_complex/fig/pdf/object2d}
\qquad
\includegraphics[width=.53\textwidth]
{Linear_cell_complex/fig/pdf/intuitif-example-lcc-object}
% \includegraphics[width=.3\textwidth]
% {Linear_cell_complex/fig/pdf/4Dobject}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/object2d.png"><img src="fig/png/object2d.png" alt=""></A>
<A HREF="fig/png/intuitif-example-lcc-object.png"><img src="fig/png/intuitif-example-lcc-object.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\caption{Example of objects with linear geometry. \textbf{Left}:~A
2D object composed of three 2-cells, nine
1-cells and seven points associated to the seven 0-cells .
\textbf{Right}:~A
3D object composed of three 3-cells, twelve 2-cells, sixteen
1-cells and eight points associated to the eight 0-cells.
% \textbf{Right}: A 4D object (called
% Tesseract) composed of one 4-cell, eight 3-cells, twenty-four 2-cells,
% thirty-two 1-cells and sixteen 0-cells.
\label{fig-exemple-introductif}}
\end{figure}
%
If we reconsider the example introduced in the combinatorial map
package, recalled in Figure~\ref{fig-exemple-introductif} (Left), the
combinatorial part of the 3D object is described by a 3D combinatorial
map. As illustrated in Figure~\ref{fig-exemple-introductif-lcc}, the
geometrical part of the object is described by associating a point to
each vertex of the map.
%
\def\LargFig{.3\textwidth}
\begin{figure}[h]
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc}\qquad
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom}
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom2}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/intuitif-example-lcc.png">
<img src="fig/png/intuitif-example-lcc.png" alt=""></A>
<A HREF="fig/png/intuitif-example-lcc-zoom.png">
<img src="fig/png/intuitif-example-lcc-zoom.png" alt=""></A>
<A HREF="fig/png/intuitif-example-lcc-zoom2.png">
<img src="fig/png/intuitif-example-lcc-zoom2.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\caption{Example of 3D linear cell complex describing the object
given in Figure~\ref{fig-exemple-introductif} (Left).
\textbf{Left}:~The 3D linear cell complex which contains 54 darts
(18 for each 3-cell) where each vertex is associated with a
point, here a \ccc{CGAL::Point_3}. Blue segments represent \betatrois{} relations.
\textbf{Middle}:~Zoom around
the central edge which details the six darts belonging to the
edge and the associations between darts and points.
\textbf{Right}:~Zoom around the facet between light gray and
white 3-cells, which details the eight darts belonging to the
facet and the associations between darts and
points (given by red segments).\label{fig-exemple-introductif-lcc}}
\end{figure}
Note that the dimension of the combinatorial map \emph{d} is not
necessarily equal to the dimension of the ambient space
\emph{d2}. Indeed, we can use for example a 2D combinatorial map in a
2D ambient space to describe a planar graph
(\emph{d}=\emph{d2}=\emph{2}), or a 2D combinatorial map in a 3D
ambient space to describe a surface in 3D space (\emph{d}=2,
\emph{d2}=3) (case of the \ccc{Polyhedron_3} package), or a 3D
combinatorial map in a 3D ambient space (\emph{d}=\emph{d2}=3) and so
on.
\section{Software Design}
The diagram in Figure~\ref{fig-diagram_class_lcc} shows the main
classes of the package. \ccc{CGAL::Linear_cell_complex} is the main
class (see Section~\ref{ssec-linear-cell-complex}) which inherits from
the \ccc{CGAL::Combinatorial_map} class. Attributes can be associated
to some cells of the linear cell complex thanks to an items class (see
Section~\ref{ssec-lcc-item}), which defines the dart type and the
attribute types. These types may be different for different
dimensions, and they may also be void. In class
\ccc{CGAL::Linear_cell_complex}, it is required that
specific attributes are associated to all vertices of the
combinatorial map. These attributes must contain a point (a model of
\ccc{CGAL::Point_2} or \ccc{CGAL::Point_3} or \ccc{CGAL::Point_d}),
and can be represented by instances of class
\ccc{CGAL::Cell_attribute_with_point} (see
Section~\ref{ssec-attribute-wp}).
%
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=.95\textwidth]
{Linear_cell_complex/fig/pdf/Diagramme_class}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/Diagramme_class.png">
<img src="fig/png/Diagramme_class.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\caption{UML diagram of the main classes of the package. Gray
elements come from the \ccc{Combinatorial_map} package
(cf. Chapter~\ref{ChapterCombinatorialMap}).}
\label{fig-diagram_class_lcc}
\end{figure}
\subsection{Linear Cell Complex}\label{ssec-linear-cell-complex}
The \ccc{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>} class
is a model of the \ccc{CombinatorialMap} concept. It guarantees that
each vertex of the combinatorial map is associated with an attribute
containing a point. This class can be used in geometric algorithms (it
plays the same role as \ccc{Polyhedron_3} for \ccc{HalfedgeDS}).
This class has five template parameters standing for the dimension of
the combinatorial map, the dimension of the ambient space, a traits
class (a model of the \ccc{LinearCellComplexTraits} concept, see
Section~\ref{ssec-lcc-traits}), an items class (a model of the
\ccc{LinearCellComplexItems} concept, see
Section~\ref{ssec-lcc-item}), and an allocator which must be a model
of the allocator concept of {\stl}. Default classes are provided for
the traits, items and for the allocator classes, and by default
\ccc{d2=d}.
A linear cell complex is valid, if it is a valid combinatorial map
where each dart is associated with an attribute containing a point
(i.e. an instance of a model of the \ccc{CellAttributeWithPoint}
concept). Note that there are no validity constraint on the geometry
(test on self intersection, planarity of 2-cells...) because these
tests are complex, too slow (for example to detect a self
intersection, we have to simulate a Boolean operation), and often
false for inexact kernels. We can see two examples of
\ccc{CGAL::Linear_cell_complex} in
Figure~\ref{fig-combi_map_with_point}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure}
\begin{ccTexOnly}
\centerline{\includegraphics[width=.25\textwidth]
{Linear_cell_complex/fig/pdf/plane-graph}
\qquad
\includegraphics[width=.45\textwidth]
{Linear_cell_complex/fig/pdf/basic-example3D}}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/plane-graph.png">
<img src="fig/png/plane-graph.png" alt=""></A>
<A HREF="fig/png/basic-example3D.png">
<img src="fig/png/basic-example3D.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\caption{Examples of \ccc{CGAL::Linear_cell_complex}. Gray disks show the
attributes associated to vertices. Associations between darts and
attributes are drawn by small lines between darts and disks.
\textbf{Left:}~Example of \ccc{CGAL::Linear_cell_complex<2,2>}.
\textbf{Right:}~Example of \ccc{CGAL::Linear_cell_complex<3,3>}.}
\label{fig-combi_map_with_point}
\end{figure}
%
% \begin{figure}
% \begin{ccTexOnly}
% \centerline{\includegraphics[width=.45\textwidth]
% {Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2}}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/exemple-carte-with_point_3d-sew2.png">
% <img src="fig/png/exemple-carte-with_point_3d-sew2.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \caption{Example of \ccc{Linear_cell_complex<3,3>}. Circles show the
% attributes associated to vertices, containing 3D
% points. Associations between darts and attributes are drawn by small
% lines between darts and disks.}
% \label{fig-combi_map_with_point}
% \end{figure}
\subsection{Cell Attributes}\label{ssec-attribute-wp}
The
\ccc{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
class is a model of the \ccc{CellAttributeWithPoint} concept which is
a refinement of the \ccc{CellAttribute} concept. It represents an
attribute associated with a cell which can contain an information
(depending if \ccc{Info_==void} or not), but which always contain a
point, an instance of \ccc{LCC::Point}.
% . This
% class inherits from the type of point defined in \ccc{LCC}. Thus we
% can use an instance of \ccc{CGAL::Cell_attribute_with_point} everywhere an
% instance of \ccc{LCC::Point} is required.
% combinatorial map, see example in
% Section~\ref{ssec-exemple-color-vertices}).
% \end{enumerate}
\subsection{Linear Cell Complex Traits}\label{ssec-lcc-traits}
The \ccc{LinearCellComplexTraits} geometric traits concept defines the
required types and functors used in the \ccc{Linear_cell_complex}
class. For example it defines \ccc{Point}, the type of points used,
and \ccc{Vector}, the corresponding vector type. It also defines all
the required functors used for contructions and operations, as for
example \ccc{Construct_translated_point} or
\ccc{Construct_sum_of_vectors}.
The class \ccc{CGAL::Linear_cell_complex_traits<d,K>} is a model of
\ccc{LinearCellComplexTraits}. It defines the different types which
are obtained from \ccc{K} which, depending on \ccc{d}, is either a model of
the concept \ccc{Kernel} if \ccc{d==2} or \ccc{d==3}; a model of the
concept \ccc{Kernel_d} otherwise.
\subsection{Linear Cell Complex Items}\label{ssec-lcc-item}
The \ccc{LinearCellComplexItems} concept refines the
\ccc{CombinatorialMapItems} concept by adding the requirement that
0-attributes are enabled, and associated with a type of attribute
being a model of the \ccc{CellAttributeWithPoint} concept.
% In
% addition to the requirements of \ccc{CombinatorialMapItems}, the
% item class must also define the \ccc{Traits} type for the geometrical
% traits used, a model of the \ccc{Kernel} or the
% \ccc{Kernel_d} concept.
The class \ccc{CGAL::Linear_cell_complex_min_items<d>} is a
model of \ccc{LinearCellComplexItems}. It uses \ccc{CGAL::Dart<d>},
and it has instances of \ccc{CGAL::Cell_attribute_with_point}
which contain no information associated to each vertex. All other
attributes are void.
% By default, \ccc{d2} is equal to \ccc{d}. There
% is a default template argument for Traits class which depends on
% \ccc{d2}. This is
% \ccc{CGAL::Exact_predicates_inexact_constructions_kernel type} if
% \ccc{d2} is 2 or 3, and this is \ccc{CGAL::Cartesian_d<double>}
% otherwise.
\section{Operations}
Several operations defined in the combinatorial maps package can be
used on a linear cell complex. This is the case for all the iteration
operations that do not modify the model (see example in
Section~\ref{ssec-3D-lcc}). This is also the case for
all the operations that do not create new 0-cells: \ccc{sew},
\ccc{unsew}, \ccc{remove_cell}, \ccc{insert_cell_1_in_cell_2},
\ccc{insert_cell_2_in_cell_3}. Indeed, all these operations update
non void attributes, and thus update vertex attributes of a linear
cell complex. Note that some existing 0-attributes can be duplicated
by the \ccc{unsew} method, but these 0-attributes are not ``new'' but
copies of existing old 0-attributes.
However operations that create a new 0-cell can not be directly used
since the new 0-cell would not be associated with a vertex
attribute. Indeed, it is not possible for these operations to
automatically decide which point to create. These operations are:
\ccc{insert_cell_0_in_cell_1}, \ccc{insert_cell_0_in_cell_2}
\ccc{insert_dangling_cell_1_in_cell_2}, plus all the creation
operations. For these operations, refined versions are proposed taking
a point as additional parameter. Lastly, some new operations are
defined which use the geometry (see Sections~\ref{ssec-modif-op} and
\ref{ssec-constructions-op}).
% having
% an additional information allowing to create the new vertex attribute.
% This information can either be additional parameters, or a
% specialization to be able to compute the geometry of the new points.
% These
% operations are \ccc{barycenter}, \ccc{compute_normal_of_cell_2} and
% \ccc{compute_normal_of_cell_0} (these two last functions are defined
% only when \ccc{ambient_dimension==3}).
% Since these operations use some
% geometrical constructions, they have some specific requirements on the
% traits class used.
All the operations given in this section guarantee that given a valid
linear cell complex and a possible operation, the result is a valid
linear cell complex. As for a combinatorial map, it is also possible
to use low level operations but additional operations may be needed to
restore the validity conditions.
%\subsection{Iterating Over Orbits, Cells, and Attributes}\label{ssec-lcc-range}
\subsection{Sewing and Unsewing \label{ssec-lcc-link-darts}}
As explained in \ccc{Combinatorial_map} user manual (see
Chapter~\ref{ChapterCombinatorialMap}), it is possible to glue two
\emph{i}-cells along an (\emph{i}-1)-cell by using the \ccc{sew<i>}
method. Since this method updates non void attributes, and since
points are specific attributes, they are automatically updated during
the \ccc{sew<i>} method. Thus the sewing of two \emph{i}-cells could
deform the geometry of the concerned objects.
For example, in Figure~\ref{fig-lcc-exemple-sew}, we want to 3-sew the
two initial 3-cells. \ccc{sew<3>(1,5)} links by \betatrois{} the pairs
of darts (1,5), (2,8), (3,7) and (4,6). The eight vertex attributes
around the facet between the two 3-cells before the sew are merged by
pair during the sew operation (and the \ccc{On_merge} functor is
called four times). Thus, after the sew, there are only four
attributes around the facet. By default, the attributes associated
with the first dart of the sew operation are kept (but this can be
modified by defining your own functor in the attribute class as
explained in package \ccc{Combinatorial_map}). Intuitively, the
geometry of the second 2-cell is deformed to fit to the first 2-cell.
%
\def\LargFig{.45\textwidth}
\begin{figure}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew}\qquad
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/exemple-carte-with_point_3d-sew.png">
<img src="fig/png/exemple-carte-with_point_3d-sew.png" alt=""></A>
<A HREF="fig/png/exemple-carte-with_point_3d-sew2.png">
<img src="fig/png/exemple-carte-with_point_3d-sew2.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\caption{Example of 3-sew operation for linear cell complex.
\textbf{Left}: A 3D linear cell complex containing two 3-cells
that are not connected. Vertex attributes are drawn with circles
containing point coordinates. Associations between darts and
attributes are drawn with small lines between darts and
disks. \textbf{Right}: The 3D linear cell complex obtained as
result of \ccc{sew<3>(1,5)} (or \ccc{sew<3>(2,8)}, or
\ccc{sew<3>(3,7)}, or \ccc{sew<3>(4,6)}). The eight
0-attributes around the facet between the two 3-cells before the
sew operation, are merged into four 0-attributes after. The
geometry of the pyramid is deformed since its base is fitted on
the 2-cell of the cube.}
\label{fig-lcc-exemple-sew}
\end{figure}
This is similar for the unsew operation, which removes \betai{} links
of all the darts in
\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}}(\emph{d0}),
and updates
non void attributes which are no more associated to a same cell due to
the unlinks. If we take the linear cell complex given in
Figure~\ref{fig-lcc-exemple-sew} (Right), and we call
\ccc{unsew<3>(2)}, we obtain the linear cell complex in
Figure~\ref{fig-lcc-exemple-sew} (Left) (except for the coordinates of
the new four vertices, which by default are copies of original
vertices. This behavior can be modified thanks to the functor
\ccc{On_split} in the attribute class). The \ccc{unsew<3>} operation
has removed the four \betatrois{} links, and has duplicated the attributes
since vertices are cut in two after the unsew operation.
\subsection{Construction Operations}\label{ssec-constructions-op}
There are several member functions allowing to create specific
configurations of darts into a linear cell complex. These functions
% take an instance of a model of \ccc{LinearCellComplex} as first parameter, and
return a \ccc{Dart_handle} to the new object. Note
that the dimension of the linear cell complex must be large enough:
darts must contain all the \betats{} used by the operation. All these
method add new darts in the current linear cell complex, existing
darts are not modified. The existing functions
are \ccc{make_segment}, \ccc{make_triangle}, % \ccc{make_rectangle},
\ccc{make_tetrahedron}, and \ccc{make_hexahedron}. % and \ccc{make_isocuboid}.
% \begin{figure}
% \begin{ccTexOnly}
% \centerline{\includegraphics[width=.75\textwidth]
% {Linear_cell_complex/fig/pdf/creations}}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/creations.png">
% <img src="fig/png/creations.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \caption{Example of basic objets creation: \ccc{make_segment},
% \ccc{make_triangle}, \ccc{make_rectangle},
% \ccc{make_tetrahedron} and \ccc{make_iso_cuboid}.}
% \label{fig-basic-creation}
% \end{figure}
% \begin{itemize}
% \item \ccc{make_segment(lcc,p1,p2)}: creates an isolated segment in
% \ccc{lcc} between points \ccc{p1} and \ccc{p2};
% \item \ccc{make_triangle(lcc,p1,p2,p3)}: creates an isolated
% triangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2}, \ccc{p3} as geometry;
% \item \ccc{make_quadrangle(lcc,p1,p2,p3,p4)}: creates an isolated
% quadrangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2}, \ccc{p3},
% \ccc{p4} as geometry;
% \item \ccc{make_rectangle(lcc,p1,p2)}: creates an isolated
% rectangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2} as extreme points;
% \item \ccc{make_rectangle(lcc,r)}: creates an isolated
% rectangle in \ccc{lcc} having rectangle \ccc{r} as geometry;
% \item \ccc{make_rectangle(lcc,p,l1,l2)}: creates an isolated
% rectangle in \ccc{lcc} having points \ccc{p} as based point and
% \ccc{l1} and \ccc{l2} as width and height;
% \item \ccc{make_square(lcc,p,l)}: creates an isolated
% square in \ccc{lcc} having points \ccc{p} as based point
% and \ccc{l} as size,
% \item \ccc{make_tetrahedron(lcc,p1,p2,p3,p4)}: creates a tetrahedron
% having points \ccc{p1}, \ccc{p2}, \ccc{p3}, \ccc{p4} as geometry;
% \item \ccc{make_hexahedron(lcc,p1,p2,p3,p4,p5,p6,p7,p8)}: creates an
% hexahedron having points \ccc{p1}, \ccc{p2}, \ccc{p3}, \ccc{p4},
% \ccc{p5}, \ccc{p6}, \ccc{p7}, \ccc{p8} as geometry;
% \item \ccc{make_iso_cuboid(lcc,p1,p2)}: creates an isolated isocuboid
% having points \ccc{p1} and \ccc{p2} as extreme points;
% \item \ccc{make_iso_cuboid(lcc,ic)}: creates an isolated isocuboid
% having \ccc{ic} as geometry.
% \item \ccc{make_cube(lcc,p,l)}: creates an isolated cube
% having point \ccc{p} as based point and \ccc{l} as size.
%\end{itemize}
There are two functions allowing to build a linear cell complex
from two other \cgal\ data types:
\begin{itemize}
\item \ccc{import_from_triangulation_3(lcc,atr)}: adds in \ccc{lcc} all
the tetrahedra present in \ccc{atr}, a \ccc{CGAL::Triangulation_3};
\item \ccc{import_from_polyhedron(lcc,ap)}: adds in \ccc{lcc} all
the cells present in \ccc{ap}, a \ccc{CGAL::Polyhedron_3}.
\end{itemize}
Lastly, the function \ccc{import_from_plane_graph(lcc,ais)} adds in
\ccc{lcc} all the cells reconstructed from the planar graph read in
\ccc{ais}, a \ccc{std::istream}.
\subsection{Modification Operations}\label{ssec-modif-op}
Some methods are defined in \ccc{Linear_cell_complex} class and allow
to modify a linear cell complex and updating the vertex attributes. The
following versions exist.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure}[htb]
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=.75\textwidth]{Linear_cell_complex/fig/pdf/insert-vertex}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER> <A HREF="fig/png/insert-vertex.png"><img
src="fig/png/insert-vertex.png" alt=""></A> </CENTER>
\end{ccHtmlOnly}
\caption{Example of \ccc{insert_barycenter_in_cell<1>} and
\ccc{remove_cell<0>} operations. \textbf{Left}: Initial linear
cell complex. \textbf{Right}: After the insertion of a 0-cell in
the barycenter of the 1-cell containing dart \emph{d1}. Now if we
remove the 0-cell containing dart \emph{d2}, we obtain a linear
cell complex isomorphic to the initial one.}
\label{fig-lcc-insert-vertex}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ccc{lcc.insert_barycenter_in_cell<unsigned int i>(dh0)} adds a point
in the middle of the \emph{i}-cell containing dart \ccc{d0}. This
operation is possible if \ccc{d0}\myin{}\ccc{lcc.darts()} (see example
on Figure~\ref{fig-lcc-insert-vertex} and
Figure~\ref{fig-lcc-triangulate}).
\ccc{lcc.insert_point_in_cell<unsigned int i>(dh0,p)} is an
operation similar to the previous operation, the only difference being
that the coordinates of the new point is here given by \ccc{p} instead
of being computed as the barycenter of the \emph{i}-cell. Currently,
these two operations are only defined for \ccc{i=1} to insert a point
in an edge, or \ccc{i=2} to insert a point in a facet.
%
% \ccc{insert_center_cell_0_in_cell_2(lcc,dh0)} adds a 0-cell in the
% barycenter of the 2-cell containing dart \ccc{d0}. The 2-cell is
% split in triangles, one for each initial edge of the 2-cell. This
% operation is possible if \ccc{d0}\myin{}\ccc{lcc.darts()} (see example
% on Figure~\ref{fig-lcc-triangulate}).
\begin{figure}[htb]
\begin{ccTexOnly}
\centerline{\includegraphics[width=.85\textwidth]
{Linear_cell_complex/fig/pdf/triangulation}}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER> <A HREF="fig/png/triangulation.png"> <img
src="fig/png/triangulation.png" alt=""></A> </CENTER>
\end{ccHtmlOnly}
\caption{Example of \ccc{insert_barycenter_in_cell<2>} operation.}
\label{fig-lcc-triangulate}
\end{figure}
%
\ccc{lcc.insert_dangling_cell_1_in_cell_2(dh0,p)} adds a 1-cell in
the 2-cell containing dart \ccc{d0}, the 1-cell being attached by only
one of its vertex to the 0-cell containing dart \ccc{d0}. The second
vertex of the new edge is associated with a new 0-attribute containing
a copy of \ccc{p} as point. This operation is possible if
\ccc{d0}\myin{}\ccc{lcc.darts()} (see example on
Figure~\ref{fig-lcc-insert-dangling-edge}).
\begin{figure}[htb]
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=.72\textwidth]{Linear_cell_complex/fig/pdf/insert-edge}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER> <A HREF="fig/png/insert-edge.png"><img
src="fig/png/insert-edge.png" alt=""></A> </CENTER>
\end{ccHtmlOnly}
\caption{Example of \ccc{insert_dangling_cell_1_in_cell_2} and
\ccc{remove_cell<1>} operations. \textbf{Left}: Initial linear
cell complex. \textbf{Right}: After the insertion of a dangling
1-cell in the 2-cell containing dart \emph{d1}. Now if we remove
the 1-cell containing dart \emph{d2}, we obtain a linear cell
complex isomorphic to the initial one.}
\label{fig-lcc-insert-dangling-edge}
\end{figure}
% \end{itemize}
% \end{itemize}
Some examples of use of these operations are given in
Section~\ref{ssec-5dexample}.
% The operations defined on combinatorial maps can be used on linear
% cell complexes. However, only operations which does not create a new
% vertex ensure the validity of enabled cells: \ccc{remove_cell<i>},
% \ccc{insert_cell_1_in_cell_2}, \ccc{insert_cell_2_in_cell_3}.
% For other operations, you need to create 0-attributes and associate
% them to new vertices.
\section{Examples}
\subsection{A 3D Linear Cell Complex}\label{ssec-3D-lcc}
This example uses a 3-dimensional linear cell complex. It creates two
tetrahedra and displays all the points of the linear cell complex
thanks to a \ccc{Vertex_attribute_const_range}. Then, the two
tetrahedra are 3-sewn and we translate all the points of the second
tetrahedron along vector \ccc{v(3,1,1)}. Since the two tetrahedron
are 3-sewn, this translation moves also the 2-cell of the first
tetrahedron shared with the second one. This is illustrated by
displaying all the points of each 3-cell. For that we use a
\ccc{std::for_each} and the \ccc{Display_vol_vertices} functor.
%\ccIncludeExampleCode{Linear_cell_complex/map_3_with_points.cpp}
% TODO update the code to reflect the last modifs of the doc.
\begin{ccExampleCode}
typedef CGAL::Linear_cell_complex<3> LCC_3;
typedef LCC_3::Dart_handle Dart_handle;
typedef LCC_3::Point Point;
typedef LCC_3::FT FT;
// Functor used to display all the vertices of a given volume
template<class LCC>
struct Display_vol_vertices : public std::unary_function<LCC, void>
{
Display_vol_vertices(const LCC& alcc) :
lcc(alcc),
nb_volume(0)
{}
void operator() (typename LCC::Dart& d)
{
std::cout<<"Volume "<<++nb_volume<<" : ";
for (typename LCC::template One_dart_per_incident_cell_range<0,3>::
const_iterator it=lcc.template
one_dart_per_incident_cell<0,3>(lcc.dart_handle(d)).begin(),
itend=lcc.template one_dart_per_incident_cell<0,3>
(lcc.dart_handle(d)).end(); it!=itend; ++it)
{
std::cout << LCC_3::point(it) << "; ";
}
std::cout<<std::endl;
}
private:
const LCC& lcc;
unsigned int nb_volume;
};
int main()
{
LCC_3 lcc;
// Create two tetrahedra.
Dart_handle d1 = lcc.make_tetrahedron(Point(-1, 0, 0),
Point(0, 2, 0),
Point(1, 0, 0),
Point(1, 1, 2));
Dart_handle d2 = lcc.make_tetrahedron(Point(0, 2, -1),
Point(-1, 0, -1),
Point(1, 0, -1),
Point(1, 1, -3));
// Display all the vertices of the lcc by iterating on the
// vertex_attribute container.
CGAL::set_ascii_mode(std::cout);
std::cout<<"Vertices: ";
for (LCC_3::Vertex_attribute_const_range::iterator
v=lcc.vertex_attributes().begin(),
vend=lcc.vertex_attributes().end(); v!=vend; ++v)
std::cout << *v << "; ";
std::cout<<std::endl;
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// 3-Sew the 2 tetrahedra along one facet
lcc.sew<3>(d1, d2);
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// Translate the second tetrahedra by a given vector
LCC_3::Vector v(3,1,1);
for (LCC_3::One_dart_per_incident_cell_range<0,3>::iterator
it=lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end();
it!=itend; ++it)
{
LCC_3::point(it)=LCC_3::Traits::Construct_translated_point_3()
(LCC_3::point(it),v);
}
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// We display the lcc characteristics.
std::cout<<"LCC characteristics: ";
lcc.display_characteristics(std::cout) << ", valid="
<< lcc.is_valid() << std::endl;
return EXIT_SUCCESS;
}
\end{ccExampleCode}
The output is:
\begin{verbatim}
Vertices: 1 1 2; 1 0 0; 0 2 0; -1 0 0; 1 1 -3; 1 0 -1; -1 0 -1; 0 2 -1;
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
Volume 2 : 0 2 -1; -1 0 -1; 1 0 -1; 1 1 -3;
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
Volume 2 : 0 2 0; -1 0 0; 1 0 0; 1 1 -3;
Volume 1 : 2 1 1; 3 3 1; 4 1 1; 1 1 2;
Volume 2 : 3 3 1; 2 1 1; 4 1 1; 4 2 -2;
LCC characteristics: #Darts=24, #0-cells=5, #1-cells=9, #2-cells=7, #3-cells=2, #ccs=1, valid=1
\end{verbatim}
The first line gives the points of the linear cell complex before the
\ccc{sew<3>}. There are eight points, four for each tetrahedron.
After the sew, six vertices are merged two by two, thus there are five
vertices. We can see the points of each 3-cell (lines Volume 1 and
Volume 2) before the sew, after the sew and after the translation of
the second volume. We can see that this translation has also modified
the three common points between the two 3-cells. The last line shows
the number of cells of the linear cell complex, the number of
connected components, and finally a Boolean to show the validity of
the linear cell complex.
\subsection{A 4D Linear Cell Complex}\label{ssec-5dexample}
This example uses a 4-dimensional linear cell complex embedded in a
5-dimensional ambient space. It creates two tetrahedra having 5D
points, sew the two tetrahedra by \betaquatre{}. Then we use some high
level operations, displays the number of cells of the linear cell
complex, and checks its validity. Last we use the reverse operations
to get back to the initial configuration.
\begin{ccExampleCode}
typedef CGAL::Linear_cell_complex<4,5> LCC_4;
typedef LCC_4::Dart_handle Dart_handle;
typedef LCC_4::Point Point;
typedef LCC_4::Vector Vector;
typedef LCC_4::FT FT;
int main()
{
LCC_4 lcc;
// Create two tetrahedra.
FT p1[5]={ 0, 0, 0, 0, 0}; std::vector<FT> v1(p1,p1+5);
FT p2[5]={ 0, 2, 0, 0, 0}; std::vector<FT> v2(p2,p2+5);
FT p3[5]={ 0, 1, 2, 0, 0}; std::vector<FT> v3(p3,p3+5);
FT p4[5]={ 2, 1, 0, 0, 0}; std::vector<FT> v4(p4,p4+5);
FT p5[5]={-1, 0, 0, 0, 0}; std::vector<FT> v5(p5,p5+5);
FT p6[5]={-1, 2, 0, 0, 0}; std::vector<FT> v6(p6,p6+5);
FT p7[5]={-1, 1, 2, 0, 0}; std::vector<FT> v7(p7,p7+5);
FT p8[5]={-3, 1, 2, 0, 0}; std::vector<FT> v8(p8,p8+5);
Dart_handle d1 = lcc.make_tetrahedron(
Point(5, v1.begin(), v1.end()),
Point(5, v2.begin(), v2.end()),
Point(5, v3.begin(), v3.end()),
Point(5, v4.begin(), v4.end()));
Dart_handle d2 = lcc.make_tetrahedron(
Point(5, v5.begin(), v5.end()),
Point(5, v6.begin(), v6.end()),
Point(5, v7.begin(), v7.end()),
Point(5, v8.begin(), v8.end()));
lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
lcc.sew<4>(d1,d2);
lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
// Add one vertex on the middle of an edge.
Dart_handle d3 = lcc.insert_barycenter_in_cell<1>(lcc,d1);
CGAL_assertion( lcc.is_valid() );
lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
// Add one edge to cut the face in two.
Dart_handle d4 = CGAL::insert_cell_1_in_cell_2(lcc,d3,d1->beta(0));
CGAL_assertion( lcc.is_valid() );
lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
// We use the removal operations to get back to the initial cube.
CGAL::remove_cell<LCC_5,1>(lcc,d4);
CGAL_assertion( lcc.is_valid() );
CGAL::remove_cell<LCC_5,0>(lcc,d3);
CGAL_assertion( lcc.is_valid() );
lcc.unsew<4>(d1);
lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
return EXIT_SUCCESS;
}
\end{ccExampleCode}
The output is:
\begin{verbatim}
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1
#Darts=24, #0-cells=4, #1-cells=6, #2-cells=4, #3-cells=1, #4-cells=2, #ccs=1, valid=1
#Darts=32, #0-cells=5, #1-cells=8, #2-cells=5, #3-cells=1, #4-cells=2, #ccs=1, valid=1
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1
\end{verbatim}
\subsection{A 3D Linear Cell Complex with Colored Vertices}
\label{ssec-exemple-color-vertices}
This example illustrates the way to use a 3D linear cell complex by
adding another information to vertices. For that, we need to define
our own items class. The difference with the
\ccc{CGAL::Linear_cell_complex_min_items} class is about the definition of
the vertex attribute where we use a \ccc{CGAL::Cell_attribute_with_point}
with a non void info. In this example, the ``vextex color'' is just
given by an \ccc{int} (the second template parameter of the
\ccc{CGAL::Cell_attribute_with_point}). Lastly, we define the
\ccc{Average_functor} class in order to set the color of a vertex
resulting of the merging of two vertices to the average of the two
initial values. This functor is associated with the vertex attribute
by passing it as template parameter. Using this items class instead of
the default one is chosen during the instantiation of template
parameters of the \ccc{CGAL::Linear_cell_complex} class.
Now we can use \ccc{LCC_3} in which each vertex is associated with an
attribute containing both a point and an information. In the following
example, we create two cubes, and set the color of the vertices of the
first cube to 1 and of the second cube to 19 (by iterating through two
\ccc{Cell_of_cell_range<0, 3>} ranges). Then we \emph{3-sew} the two
cubes along one facet. This operation merges some vertices (as in the
example of Figure~\ref{fig-lcc-exemple-sew}). We insert a vertex in
the common 2-cell between the two cubes, and set the information of
the new 0-attribute to 5. In the last loop, we display the point and
the information of each vertex of the linear cell complex.
\begin{ccExampleCode}
struct Average_functor
{
template<class CellAttribute>
void operator()(CellAttribute& ca1,CellAttribute& ca2)
{ ca1.info()=(ca1.info()+ ca2.info())/2; }
};
struct Myitem
{
template<class Refs>
struct Dart_wrapper
{
typedef CGAL::Dart<3, Refs > Dart;
typedef CGAL::Cell_attribute_with_point< Refs, int, CGAL::Tag_true,
Average_functor > Vertex_attribute;
typedef CGAL::cpp0x::tuple<Vertex_attribute> Attributes;
};
};
typedef CGAL::Linear_cell_complex_traits<3,
CGAL::Exact_predicates_inexact_constructions_kernel> Traits;
typedef CGAL::Linear_cell_complex<3,3,Traits,Myitem> LCC_3;
typedef LCC_3::Dart_handle Dart_handle;
typedef LCC_3::Point Point;
typedef LCC_3::FT FT;
Dart_handle make_iso_cuboid(LCC_3& lcc, const Point& basepoint, FT lg)
{
return lcc.make_hexahedron(basepoint,
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(lg,0,0)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(lg,lg,0)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(0,lg,0)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(0,lg,lg)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(0,0,lg)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(lg,0,lg)),
LCC_3::Construct_translated_point()
(basepoint,LCC_3::Vector(lg,lg,lg)));
}
int main()
{
LCC_3 lcc;
// Create 2 cubes.
Dart_handle d1 = make_iso_cuboid(lcc, Point(-2, 0, 0), 1);
Dart_handle d2 = make_iso_cuboid(lcc, Point(0, 0, 0), 1);
// Set the color of all vertices of the first cube to 1
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator
it=lcc.one_dart_per_incident_cell<0,3>(d1).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d1).end();
it!=itend; ++it)
{ LCC_3::vertex_attribute(it)->info()=1; }
// Set the color of all vertices of the second cube to 19
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator it=
lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end();
it!=itend; ++it)
{ LCC_3::vertex_attribute(it)->info()=19; }
// 3-Sew the two cubes along one facet
lcc.sew<3>(d1->beta(1)->beta(1)->beta(2), d2->beta(2));
// Barycentric triangulation of the facet between the two cubes.
Dart_handle d3=lcc.insert_barycenter_in_cell<2>(d2->beta(2));
// Set the color of the new vertex to 5.
LCC_3::vertex_attribute(d3)->info()=5;
// Display all the vertices of the map.
for (LCC_3::One_dart_per_cell_range<0>::iterator
it=lcc.one_dart_per_cell<0>().begin(),
itend=lcc.one_dart_per_cell<0>().end();
it!=itend; ++it)
{
std::cout<<"point: "<<LCC_3::point(it)<<", "
<<"color: "<<LCC_3::vertex_attribute(it)->info()
<<std::endl;
}
return EXIT_SUCCESS;
}
\end{ccExampleCode}
The output is:
\begin{verbatim}
point: -2 0 0, color: 1
point: -2 0 1, color: 1
point: -1 0 1, color: 10
point: -1 0 0, color: 10
point: -1 1 1, color: 10
point: -1 1 0, color: 10
point: -2 1 1, color: 1
point: -2 1 0, color: 1
point: 1 0 1, color: 19
point: 1 0 0, color: 19
point: 1 1 1, color: 19
point: 1 1 0, color: 19
point: -1 0.5 0.5, color: 5
\end{verbatim}
Before applying the sew operation, the eight vertices of the first
cube are colored by 1, and the eight vertices of the second cube by
19. After the sew operation, there are eight vertices which are merged
two by two, and due to the average functor, the color of the four
resulting vertices are now 10. Then we insert a vertex in the center
of the common 2-cell between the two cubes. The coordinates of this
vertex are initialized with the barycenter of the 2-cell
(-1,0.5,0.5), and its color is not initialize by the method, thus we
set its color manually by using the result of
\ccc{insert_barycenter_in_cell<2>} which is a dart incident to the
new vertex.
\section{Design and Implementation History}
%
This package was develloped by Guillaume Damiand, with the help of
Andreas Fabri, S\'ebastien Loriot and Laurent Rineau. Monique
Teillaud and Bernd Gaertner contributed to the manual.

View File

@ -1,16 +0,0 @@
\begin{ccPkgDescription}{Linear cell complex\label{Pkg:LinearCellComplex}}
\ccPkgHowToCiteCgal{cgal:d-lcc-10} \ccPkgSummary{This package
implements linear cell complexes, objects in \emph{d}-dimension with
linear geometry. The combinatorial part of object is described by
combinatorial maps, representing all the cells of the object plus
the incidence and adjacency relations between cells. Geometry is
added on combinatorial map simply by associating a \ccc{Point_p} to each
vertex of the map.
Taking a 2D combinatorial map, and using 3D points, gives a
\ccc{Linear_cell_complex} equivalent to a \ccc{Polyhedron_3}.}
\ccPkgIntroducedInCGAL{3.8}
\ccPkgLicense{\ccLicenseLGPL}
\end{ccPkgDescription}

View File

@ -1,431 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
6 15 15 3984 4278
6 1215 905 3112 3037
6 1215 905 1847 2762
2 1 0 2 32 0 686 0 -1 0.000 1 0 7 0 0 2
1322 2742 1592 2380
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 0 0 2
1828 2065 1592 2380
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
1828 2065 1812 1518
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
1795 924 1812 1518
2 1 0 2 32 0 664 0 -1 0.000 1 0 7 0 0 2
1795 924 1536 1181
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 0 0 2
1235 1480 1536 1181
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
1235 1480 1281 2140
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
1322 2742 1281 2140
-6
6 1215 1461 2745 3037
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
1235 1480 1281 2140
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
1322 2742 1281 2140
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
1322 2742 1981 2876
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
2677 3018 1981 2876
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
2677 3018 2699 2396
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
2725 1710 2699 2396
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
2725 1710 1959 1592
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
1235 1480 1959 1592
-6
6 1215 905 3112 1730
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
2725 1710 1959 1592
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
1235 1480 1959 1592
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 0 0 2
1235 1480 1536 1181
2 1 0 2 32 0 664 0 -1 0.000 1 0 7 0 0 2
1795 924 1536 1181
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
1795 924 2428 1007
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
3092 1093 2428 1007
2 1 0 2 32 0 582 0 -1 0.000 1 0 7 0 0 2
3092 1093 2924 1377
2 1 0 2 32 0 444 0 -1 0.000 1 0 7 0 0 2
2725 1710 2924 1377
-6
6 1302 2045 3041 3037
2 1 0 2 32 0 686 0 -1 0.000 1 0 7 0 0 2
1322 2742 1592 2380
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 0 0 2
1828 2065 1592 2380
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
1828 2065 2411 2166
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
3021 2273 2411 2166
2 1 0 2 32 0 721 0 -1 0.000 1 0 7 0 0 2
3021 2273 2862 2618
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 0 0 2
2677 3018 2862 2618
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
2677 3018 1981 2876
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
1322 2742 1981 2876
-6
6 2657 1073 3112 3037
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 0 0 2
2677 3018 2862 2618
2 1 0 2 32 0 721 0 -1 0.000 1 0 7 0 0 2
3021 2273 2862 2618
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
3021 2273 3055 1708
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
3092 1093 3055 1708
2 1 0 2 32 0 582 0 -1 0.000 1 0 7 0 0 2
3092 1093 2924 1377
2 1 0 2 32 0 444 0 -1 0.000 1 0 7 0 0 2
2725 1710 2924 1377
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
2725 1710 2699 2396
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
2677 3018 2699 2396
-6
6 1775 905 3112 2292
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
1828 2065 1812 1518
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
1795 924 1812 1518
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
1795 924 2428 1007
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
3092 1093 2428 1007
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
3092 1093 3055 1708
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
3021 2273 3055 1708
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
3021 2273 2411 2166
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
1828 2065 2411 2166
-6
-6
6 1400 15 3984 2595
6 1775 905 3112 2292
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
1828 2065 1812 1518
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
1795 924 1812 1518
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
1795 924 2428 1007
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
3092 1093 2428 1007
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
3092 1093 3055 1708
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
3021 2273 3055 1708
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
3021 2273 2411 2166
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
1828 2065 2411 2166
-6
6 1509 2045 3723 2595
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
3021 2273 2411 2166
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
1828 2065 2411 2166
2 1 0 2 32 0 882 0 -1 0.000 1 0 7 0 0 2
1828 2065 1670 2128
2 1 0 2 32 0 960 0 -1 0.000 1 0 7 0 0 2
1529 2185 1670 2128
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
1529 2185 2571 2371
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
3703 2575 2571 2371
2 1 0 2 32 0 865 0 -1 0.000 1 0 7 0 0 2
3703 2575 3376 2430
2 1 0 2 32 0 808 0 -1 0.000 1 0 7 0 0 2
3021 2273 3376 2430
-6
6 3001 262 3984 2595
2 1 0 2 32 0 865 0 -1 0.000 1 0 7 0 0 2
3703 2575 3376 2430
2 1 0 2 32 0 808 0 -1 0.000 1 0 7 0 0 2
3021 2273 3376 2430
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
3021 2273 3055 1708
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
3092 1093 3055 1708
2 1 0 2 32 0 652 0 -1 0.000 1 0 7 0 0 2
3092 1093 3530 687
2 1 0 2 32 0 657 0 -1 0.000 1 0 7 0 0 2
3965 282 3530 687
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
3965 282 3823 1521
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
3703 2575 3823 1521
-6
6 1400 15 1847 2204
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
1828 2065 1812 1518
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
1795 924 1812 1518
2 1 0 2 32 0 745 0 -1 0.000 1 0 7 0 0 2
1795 924 1603 468
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
1420 35 1603 468
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
1420 35 1478 1189
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
1529 2185 1478 1189
2 1 0 2 32 0 960 0 -1 0.000 1 0 7 0 0 2
1529 2185 1670 2128
2 1 0 2 32 0 882 0 -1 0.000 1 0 7 0 0 2
1828 2065 1670 2128
-6
6 1400 15 3984 2595
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
1529 2185 1478 1189
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
1420 35 1478 1189
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
1420 35 2632 152
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
3965 282 2632 152
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
3965 282 3823 1521
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
3703 2575 3823 1521
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
3703 2575 2571 2371
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
1529 2185 2571 2371
-6
6 1400 15 3984 1112
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
1795 924 2428 1007
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
3092 1093 2428 1007
2 1 0 2 32 0 652 0 -1 0.000 1 0 7 0 0 2
3092 1093 3530 687
2 1 0 2 32 0 657 0 -1 0.000 1 0 7 0 0 2
3965 282 3530 687
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
3965 282 2632 152
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
1420 35 2632 152
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
1420 35 1603 468
2 1 0 2 32 0 745 0 -1 0.000 1 0 7 0 0 2
1795 924 1603 468
-6
-6
6 15 15 3984 4278
6 1215 1461 2745 3037
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
1235 1480 1959 1592
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
2725 1710 1959 1592
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
2725 1710 2699 2396
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
2677 3018 2699 2396
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
2677 3018 1981 2876
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
1322 2742 1981 2876
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
1322 2742 1281 2140
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
1235 1480 1281 2140
-6
6 15 927 1341 3599
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
1322 2742 1281 2140
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
1235 1480 1281 2140
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 0 0 2
1235 1480 667 1228
2 1 0 2 32 0 326 0 -1 0.000 1 0 7 0 0 2
35 947 667 1228
2 1 0 2 32 0 363 0 -1 0.000 1 0 7 0 0 2
35 947 248 2392
2 1 0 2 32 0 538 0 -1 0.000 1 0 7 0 0 2
423 3579 248 2392
2 1 0 2 32 0 628 0 -1 0.000 1 0 7 0 0 2
423 3579 873 3160
2 1 0 2 32 0 632 0 -1 0.000 1 0 7 0 0 2
1322 2742 873 3160
-6
6 403 2722 3219 4278
2 1 0 2 32 0 628 0 -1 0.000 1 0 7 0 0 2
423 3579 873 3160
2 1 0 2 32 0 632 0 -1 0.000 1 0 7 0 0 2
1322 2742 873 3160
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
1322 2742 1981 2876
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
2677 3018 1981 2876
2 1 0 2 32 0 523 0 -1 0.000 1 0 7 0 0 2
2677 3018 2930 3620
2 1 0 2 32 0 471 0 -1 0.000 1 0 7 0 0 2
3200 4258 2930 3620
2 1 0 2 32 0 490 0 -1 0.000 1 0 7 0 0 2
3200 4258 1737 3901
2 1 0 2 32 0 580 0 -1 0.000 1 0 7 0 0 2
423 3579 1737 3901
-6
6 15 927 3464 1730
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
1235 1480 1959 1592
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
2725 1710 1959 1592
2 1 0 2 32 0 281 0 -1 0.000 1 0 7 0 0 2
2725 1710 3051 1580
2 1 0 2 32 0 93 0 -1 0.000 1 0 7 0 0 2
3444 1425 3051 1580
2 1 0 2 32 0 68 0 -1 0.000 1 0 7 0 0 2
3444 1425 1628 1170
2 1 0 2 32 0 206 0 -1 0.000 1 0 7 0 0 2
35 947 1628 1170
2 1 0 2 32 0 326 0 -1 0.000 1 0 7 0 0 2
35 947 667 1228
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 0 0 2
1235 1480 667 1228
-6
6 15 15 3984 1445
2 1 0 2 32 0 206 0 -1 0.000 1 0 7 0 0 2
35 947 1628 1170
2 1 0 2 32 0 68 0 -1 0.000 1 0 7 0 0 2
3444 1425 1628 1170
2 1 0 2 32 0 164 0 -1 0.000 1 0 7 0 0 2
3444 1425 3749 755
2 1 0 2 32 0 494 0 -1 0.000 1 0 7 0 0 2
3965 282 3749 755
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
3965 282 2632 152
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
1420 35 2632 152
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 0 0 2
1420 35 834 420
2 1 0 2 32 0 407 0 -1 0.000 1 0 7 0 0 2
35 947 834 420
-6
6 3180 262 3984 4278
2 1 0 2 32 0 164 0 -1 0.000 1 0 7 0 0 2
3444 1425 3749 755
2 1 0 2 32 0 494 0 -1 0.000 1 0 7 0 0 2
3965 282 3749 755
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
3965 282 3823 1521
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
3703 2575 3823 1521
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
3703 2575 3487 3296
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 0 0 2
3200 4258 3487 3296
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 0 0 2
3200 4258 3309 2998
2 1 0 2 32 0 111 0 -1 0.000 1 0 7 0 0 2
3444 1425 3309 2998
-6
6 1400 15 3984 2595
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
3965 282 3823 1521
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
3703 2575 3823 1521
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
3703 2575 2571 2371
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
1529 2185 2571 2371
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
1529 2185 1478 1189
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
1420 35 1478 1189
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
1420 35 2632 152
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
3965 282 2632 152
-6
6 2657 1405 3464 4278
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
2725 1710 2699 2396
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
2677 3018 2699 2396
2 1 0 2 32 0 523 0 -1 0.000 1 0 7 0 0 2
2677 3018 2930 3620
2 1 0 2 32 0 471 0 -1 0.000 1 0 7 0 0 2
3200 4258 2930 3620
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 0 0 2
3200 4258 3309 2998
2 1 0 2 32 0 111 0 -1 0.000 1 0 7 0 0 2
3444 1425 3309 2998
2 1 0 2 32 0 93 0 -1 0.000 1 0 7 0 0 2
3444 1425 3051 1580
2 1 0 2 32 0 281 0 -1 0.000 1 0 7 0 0 2
2725 1710 3051 1580
-6
6 403 2165 3723 4278
2 1 0 2 32 0 490 0 -1 0.000 1 0 7 0 0 2
3200 4258 1737 3901
2 1 0 2 32 0 580 0 -1 0.000 1 0 7 0 0 2
423 3579 1737 3901
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 0 0 2
423 3579 1048 2790
2 1 0 2 32 0 905 0 -1 0.000 1 0 7 0 0 2
1529 2185 1048 2790
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
1529 2185 2571 2371
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
3703 2575 2571 2371
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
3703 2575 3487 3296
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 0 0 2
3200 4258 3487 3296
-6
6 15 15 1549 3599
2 1 0 2 32 0 363 0 -1 0.000 1 0 7 0 0 2
35 947 248 2392
2 1 0 2 32 0 538 0 -1 0.000 1 0 7 0 0 2
423 3579 248 2392
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 0 0 2
423 3579 1048 2790
2 1 0 2 32 0 905 0 -1 0.000 1 0 7 0 0 2
1529 2185 1048 2790
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
1529 2185 1478 1189
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
1420 35 1478 1189
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 0 0 2
1420 35 834 420
2 1 0 2 32 0 407 0 -1 0.000 1 0 7 0 0 2
35 947 834 420
-6
-6
-6
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1420 43 91 91 1420 43 1487 103
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 49 943 91 91 49 943 116 1003
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 417 3557 91 91 417 3557 484 3617
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3184 4229 91 91 3184 4229 3251 4290
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3699 2576 91 91 3699 2576 3766 2637
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3955 287 91 91 3955 287 4022 348
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3080 1095 91 91 3080 1095 3147 1156
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1795 924 91 91 1795 924 1862 985
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1244 1480 91 91 1244 1480 1311 1541
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1323 2735 91 91 1323 2735 1390 2796
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 2663 3018 91 91 2663 3018 2730 3078
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3013 2270 91 91 3013 2270 3080 2331
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1831 2062 91 91 1831 2062 1899 2123
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1527 2170 91 91 1527 2170 1594 2231
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3440 1430 91 91 3440 1430 3507 1491
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 2720 1725 91 91 2720 1725 2787 1785

View File

@ -1,104 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #707070
0 33 #8c8c8c
0 34 #8c8c8c
0 35 #424242
0 36 #8c8c8c
0 37 #424242
0 38 #8c8c8c
0 39 #424242
0 40 #8c8c8c
0 41 #424242
0 42 #8c8c8c
0 43 #424242
0 44 #8e8e8e
6 4050 4815 7785 6030
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4050 5850 7785 5850
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
4050 4815 7785 4815 7785 6030 4050 6030 4050 4815
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4050 5130 7785 5130
4 0 0 50 -1 3 16 0.0000 4 255 2925 4545 5040 LinearCellComplexItems\001
4 0 0 50 -1 2 12 0.0000 4 180 1155 4140 5310 + Type Traits\001
4 0 0 50 -1 2 12 0.0000 4 180 2970 4140 5535 + Type Dart_wrapper<LCC>::Dart\001
4 0 0 50 -1 2 12 0.0000 4 180 3495 4140 5760 + Types Dart_wrapper<LCC>::Attributes\001
-6
6 -180 4950 3510 6300
6 2475 4950 3510 5220
2 2 1 1 32 7 45 -1 20 4.000 0 0 -1 0 0 5
2475 4950 3510 4950 3510 5220 2475 5220 2475 4950
4 0 32 40 -1 1 10 0.0000 4 135 900 2520 5130 d, Items, Alloc\001
-6
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
-180 5490 3285 5490
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
-180 6075 3285 6075
2 2 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 5
-180 5130 3285 5130 3285 6300 -180 6300 -180 5130
4 0 32 50 -1 2 16 0.0000 4 255 2400 90 5400 Combinatorial_map\001
4 0 32 50 -1 2 12 0.0000 4 180 2220 -90 5715 + typedef Items::Dart Dart\001
4 0 32 50 -1 2 12 0.0000 4 180 3120 -90 5940 + typedef Items::Attributes Attributes\001
-6
6 3285 6750 7920 8100
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
3285 7290 6750 7290
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
3285 7875 6750 7875
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
3285 6930 6750 6930 6750 8100 3285 8100 3285 6930
2 2 1 1 0 7 45 -1 20 4.000 0 0 -1 0 0 5
5940 6750 7920 6750 7920 7020 5940 7020 5940 6750
4 0 0 50 -1 2 16 0.0000 4 255 2475 3555 7200 Linear_cell_complex\001
4 0 0 40 -1 1 10 0.0000 4 150 1800 5985 6930 d, d2, Traits_, Items_, Alloc_\001
-6
6 9000 6705 12210 7650
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
9000 7245 11970 7245
2 2 1 1 0 7 45 -1 20 4.000 0 0 -1 0 0 5
9945 6705 12150 6705 12150 6975 9945 6975 9945 6705
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
9000 6885 11970 6885 11970 7650 9000 7650 9000 6885
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
9000 7515 11970 7515
4 0 0 40 -1 1 10 0.0000 4 150 2085 9990 6885 LCC,Info_,Tag,OnMerge,OnSplit\001
4 0 0 50 -1 2 16 0.0000 4 255 3120 9090 7200 Cell_attribute_with_point\001
4 0 0 50 -1 2 12 0.0000 4 180 1725 9090 7425 - LCC:Point mpoint;\001
-6
6 8640 4815 11820 5850
6 8730 5490 9555 5625
4 0 32 50 -1 2 12 0.0000 4 135 825 8730 5625 - Info info\001
-6
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
8640 5355 10710 5355
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
8640 5715 10710 5715
2 2 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 5
8640 4995 10710 4995 10710 5850 8640 5850 8640 4995
2 2 1 1 32 7 45 -1 20 4.000 0 0 -1 0 0 5
9585 4815 11790 4815 11790 5085 9585 5085 9585 4815
4 0 32 50 -1 2 16 0.0000 4 255 1695 8775 5310 Cell_attribute\001
4 0 32 40 -1 1 10 0.0000 4 150 2190 9630 4995 CMap,Info_,Tag,OnMerge,OnSplit\001
-6
2 1 0 2 0 0 50 -1 -1 0.000 0 0 -1 1 0 2
1 0 2.00 210.00 210.00
9630 6885 9630 5850
2 1 1 2 0 0 50 -1 -1 6.000 0 0 -1 0 0 4
9000 7335 8235 7335 8235 5715 7605 5715
2 1 1 2 0 0 50 -1 -1 6.000 0 0 -1 0 0 2
8235 5711 8640 5715
2 1 0 2 0 0 50 -1 -1 0.000 0 0 -1 1 0 4
1 0 2.00 210.00 210.00
4455 6930 4455 6660 2610 6660 2610 6300
2 1 1 2 0 0 35 -1 -1 6.000 0 0 -1 0 0 2
7109 6826 7111 6018
4 0 0 50 -1 2 12 5.4978 4 135 1440 7785 5445 <<instances Of>>\001
4 0 0 50 -1 2 12 0.0000 4 135 1365 6345 6435 <<instance Of>>\001

View File

@ -1,291 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #9f9f9f
0 36 #000000
0 38 #787878
0 39 #ff0000
6 2527 1468 5109 4546
6 2819 3440 5090 4546
2 1 0 3 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3516 3535 2834 4531
2 1 0 3 36 0 596 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5075 3500 3516 3535
2 1 0 3 36 0 420 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2834 4531 5075 3500
-6
6 3421 1558 5071 3372
2 1 0 3 36 0 730 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3639 1573 3497 3339
2 1 0 3 36 0 517 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5056 3275 3639 1573
2 1 0 3 36 0 606 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3497 3339 5056 3275
-6
6 2527 1568 3516 4349
2 1 0 3 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3440 1583 2701 2346
2 1 0 3 36 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2701 2346 2610 4334
2 1 0 3 36 0 632 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2610 4334 3307 3356
2 1 0 3 36 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3307 3356 3440 1583
-6
6 2728 2433 5031 4471
2 1 0 3 36 0 297 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2743 4456 2839 2448
2 1 0 3 36 0 257 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2839 2448 5016 3408
2 1 0 3 36 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5016 3408 2743 4456
-6
6 2915 1468 5109 3217
2 1 0 3 36 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3660 1483 5094 3202
2 1 0 3 36 0 269 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5094 3202 2930 2236
2 1 0 3 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2930 2236 3660 1483
-6
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
3257 3838
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
4217 3263 4224 3546
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3824 3907 3932 4084
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2641 3226 2809 3284
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3872 2630 3739 2893
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
4242 2355 4366 2275
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3330 2525 3594 2579
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2920 3823 3280 3945
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3069 1938 3228 1930
-6
6 81 1052 3237 4406
6 373 2977 2962 4406
2 1 0 3 36 0 842 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1314 3024 388 3863
2 1 0 3 36 0 922 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2947 3406 1314 3024
2 1 0 3 36 0 687 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2203 4368 2947 3406
2 1 0 3 36 0 607 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
388 3863 2203 4368
-6
6 1289 1117 3192 3238
2 1 0 3 36 0 925 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1359 1178 1382 2825
2 1 0 3 36 0 775 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3113 1456 1359 1178
2 1 0 3 36 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3012 3191 3113 1456
2 1 0 3 36 0 933 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1382 2825 3012 3191
-6
6 89 1188 1231 3689
2 1 0 3 36 0 840 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
229 3674 1176 2857
2 1 0 3 36 0 913 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1176 2857 1137 1203
2 1 0 3 36 0 667 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1137 1203 104 1828
2 1 0 3 36 0 595 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
104 1828 229 3674
-6
6 2349 1524 3237 4273
2 1 0 3 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2445 2286 3222 1539
2 1 0 3 36 0 365 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2382 4258 2445 2286
2 1 0 3 36 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3111 3298 2382 4258
2 1 0 3 36 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3222 1539 3111 3298
-6
6 239 1052 3078 2073
2 1 0 3 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
254 1681 1279 1067
2 1 0 3 36 0 351 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2258 2058 254 1681
2 1 0 3 36 0 731 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1279 1067 3063 1344
2 1 0 3 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3063 1344 2258 2058
-6
6 81 1911 2224 4323
2 1 0 3 36 0 545 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
282 3799 160 1926
2 1 0 3 36 0 333 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
160 1926 2169 2325
2 1 0 3 36 0 345 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2169 2325 2131 4308
2 1 0 3 36 0 557 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2131 4308 282 3799
-6
-6
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 338 1848 85 85 338 1848 423 1848
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 1250 1249 85 85 1250 1249 1337 1249
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 1291 2909 85 85 1291 2909 1376 2909
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 169 3838 85 85 169 3838 255 3838
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 3253 3267 85 85 3253 3267 3339 3267
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 3345 1426 85 85 3345 1426 3430 1426
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 2586 2113 85 85 2586 2113 2672 2113
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 5183 3391 85 85 5183 3391 5269 3391
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 2420 4433 85 85 2420 4433 2507 4433
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1493 1901 1338 2214
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
665 3236 938 3415
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2087 2940 2025 3236
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2534 3877 2681 3877
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1344 4057 1165 4104
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2057 1164 2142 1344
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2689 1642 2909 1914
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
859 1304 859 1344 859 1383
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
125 2720 163 2735 188 2775 227 2791
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1125 1987 1359 1922
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2125 3164 2470 3174
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3002 2415 3197 2438
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
1033 1268 1084 1368 1226 1276
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1366 1372 1271 1284
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1371 1083 1258 1204
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
338 1622 455 1692 373 1809
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
229 1937 294 1860
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
105 1884 313 1831
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
265 3681 185 3843
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
294 3603 373 3681 218 3821
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
451 3885 310 3951 224 3850
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1266 3063 1279 2925
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1162 2757 1255 2868
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1459 2841 1343 2885
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2170 2411 2545 2320 2578 2163
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2159 2043 2227 2103 2549 2094
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3003 2174 2811 2098 2620 2094
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2900 2475 2902 2366 2601 2110
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2693 2429 2629 2347 2589 2154
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2492 2231 2465 2171 2513 2122
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3220 1632 3291 1464
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3047 1448 3296 1416
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3044 1379 3296 1379
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3703 1528 3641 1416 3357 1412
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3630 1714 3405 1460
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3364 1642 3316 1460
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3011 3067 3220 3213
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3052 3361 3112 3373 3188 3297
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2881 3392 2975 3308 3207 3259
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3486 3578 3291 3297
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3571 3336 3497 3385 3301 3257
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3324 3108 3240 3217
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
5021 3217 5117 3233 5182 3352
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
4869 3096 4849 3152 5191 3401
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
4941 3450 5131 3414
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
4852 3509 4872 3539 5175 3445
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2678 4248 2686 4321 2420 4396
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2751 4352 2490 4429
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2963 4473 2773 4489 2472 4437
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2263 4288 2392 4426
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2371 4144 2352 4268 2416 4388
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2007 4277 2042 4440 2371 4437

View File

@ -1,96 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #c10000
0 35 #008000
0 36 #0000ff
0 37 #000000
0 38 #000000
0 39 #000000
0 40 #000000
0 41 #000000
0 42 #000000
0 43 #000000
0 44 #000000
0 45 #000000
0 46 #000000
0 47 #000000
0 48 #000000
0 49 #dddddd
0 50 #000000
0 51 #000000
0 52 #a0a0a0
6 2219 1470 4406 3687
6 2219 1470 4406 3687
6 2219 1470 4406 3687
2 1 0 2 32 35 666 0 20 0.000 1 0 7 0 0 4
2237 2887 3955 1488 4388 3669 2237 2887
-6
-6
-6
6 4801 413 7163 2689
6 4801 413 7163 2689
6 4801 874 6665 2689
2 1 0 2 32 36 918 0 20 0.000 1 0 7 0 0 5
5825 892 4819 1605 5625 2671 6647 1903 5825 892
-6
6 5808 413 7163 1921
2 1 0 2 32 36 797 0 20 0.000 1 0 7 0 0 5
6647 1903 5825 892 6152 430 7145 1616 6647 1903
-6
6 5607 1598 7163 2689
2 1 0 2 32 36 692 0 20 0.000 1 0 7 0 0 5
7145 1616 6647 1903 5625 2671 5936 2528 7145 1616
-6
6 4801 413 6169 1623
2 1 0 2 32 36 774 0 20 0.000 1 0 7 0 0 5
5825 892 4819 1605 4963 1266 6152 430 5825 892
-6
6 4946 413 7163 2545
2 1 0 2 32 36 376 0 20 0.000 1 0 7 0 0 5
6152 430 4963 1266 5936 2528 7145 1616 6152 430
-6
6 4801 1248 5953 2689
2 1 0 2 32 36 666 0 20 0.000 1 0 7 0 0 5
4819 1605 5625 2671 5936 2528 4963 1266 4819 1605
-6
-6
-6
6 1501 115 3238 1682
6 1501 115 3238 1682
6 1501 115 3238 1682
2 1 0 2 32 34 815 0 20 0.000 1 0 7 0 0 5
3220 593 2646 1664 1519 1168 2126 133 3220 593
-6
-6
-6
6 60 1008 1880 3341
6 60 1008 1880 3341
6 60 3021 1880 3341
2 1 0 2 32 17 375 0 20 0.000 1 0 7 0 0 4
78 3039 278 3074 1862 3323 78 3039
-6
6 60 1008 1880 3341
2 1 0 2 32 17 736 0 20 0.000 1 0 7 0 0 4
1862 3323 78 3039 1302 1025 1862 3323
-6
6 260 1008 1880 3341
2 1 0 2 32 17 738 0 20 0.000 1 0 7 0 0 4
1302 1025 1862 3323 278 3074 1302 1025
-6
6 60 1008 1319 3092
2 1 0 2 32 17 375 0 20 0.000 1 0 7 0 0 4
78 3039 278 3074 1302 1025 78 3039
-6
-6
-6
2 1 0 2 0 17 50 -1 -1 0.000 0 0 -1 0 0 2
3657 850 5484 151

View File

@ -1,316 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #9f9f9f
0 34 #000000
0 35 #ff0000
0 36 #ff0000
6 2621 1473 4786 3977
6 2672 1539 3504 3832
2 1 0 4 32 0 632 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2755 3802 3321 3008
2 1 0 4 32 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3321 3008 3428 1569
2 1 0 4 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3428 1569 2828 2188
2 1 0 4 32 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2828 2188 2755 3802
-6
6 3399 1547 4755 3039
2 1 0 2 32 0 606 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3475 2994 4740 2943
2 1 0 2 32 0 730 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3590 1562 3475 2994
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4740 2943 3590 1562
-6
6 2842 2257 4722 3917
2 1 0 2 32 0 297 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2863 3902 2940 2272
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4707 3051 2863 3902
2 1 0 2 32 0 257 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2940 2272 4707 3051
-6
6 2921 3059 4770 3977
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3490 3154 2936 3962
2 1 0 2 32 0 596 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4755 3125 3490 3154
2 1 0 2 32 0 420 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2936 3962 4755 3125
-6
6 3000 1473 4786 2899
2 1 0 2 32 0 269 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4771 2884 3015 2099
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3606 1488 4771 2884
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3015 2099 3606 1488
-6
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
4059 2933 4065 3163
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3740 3456 3827 3599
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2779 2904 2916 2950
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3779 2419 3671 2633
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
4079 2196 4180 2131
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3339 2334 3552 2377
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3006 3387 3299 3487
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3127 1858 3256 1851
4 0 0 50 -1 0 16 0.0000 4 195 135 3408 2133 8\001
4 0 0 50 -1 0 16 0.0000 4 195 135 3090 1791 5\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2621 3322 6\001
4 0 0 50 -1 0 16 0.0000 4 195 135 3169 3436 7\001
-6
6 88 1046 2682 3779
6 88 1743 1859 3707
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
166 1758 1797 2083
2 1 0 2 32 0 545 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
266 3278 166 1758
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1766 3692 266 3278
2 1 0 2 32 0 345 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1797 2083 1766 3692
-6
6 106 1156 1053 3192
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
121 1679 223 3177
2 1 0 2 32 0 667 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
959 1171 121 1679
2 1 0 2 32 0 913 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
992 2514 959 1171
2 1 0 2 32 0 840 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
223 3177 992 2514
-6
6 228 1046 2538 1881
2 1 0 2 32 0 351 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1869 1866 243 1560
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2523 1286 1869 1866
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
243 1560 1075 1061
2 1 0 2 32 0 731 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1075 1061 2523 1286
-6
6 1066 1091 2643 2833
2 1 0 2 32 0 933 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1159 2489 2481 2785
2 1 0 2 32 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2481 2785 2564 1378
2 1 0 2 32 0 775 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2564 1378 1140 1152
2 1 0 2 32 0 925 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1140 1152 1159 2489
-6
6 337 2603 2444 3779
2 1 0 2 32 0 687 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1825 3741 2429 2959
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
352 3331 1825 3741
2 1 0 2 32 0 842 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1103 2650 352 3331
2 1 0 2 32 0 922 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2429 2959 1103 2650
-6
6 1925 1415 2682 3681
2 1 0 4 32 0 365 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1970 3651 2021 2050
2 1 0 4 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2021 2050 2652 1445
2 1 0 4 32 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2652 1445 2561 2872
2 1 0 4 32 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2561 2872 1970 3651
-6
-6
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 79 3414 188 188 79 3414 236 3518
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 110 1395 188 188 110 1395 266 1500
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1043 819 188 188 1043 819 1199 923
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1788 1570 188 188 1788 1570 1945 1675
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2727 1140 188 188 2727 1140 2884 1244
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3532 1273 188 188 3532 1273 3688 1378
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3132 2613 188 188 3132 2613 3288 2717
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3730 2741 188 188 3730 2741 3886 2846
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 5014 3062 188 188 5014 3062 5171 3167
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2633 4011 188 188 2633 4011 2790 4115
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1921 3967 188 188 1921 3967 2078 4071
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2297 2509 188 188 2297 2509 2454 2614
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 741 2376 188 188 741 2376 898 2480
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1249 1738 1123 1992
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
577 2822 798 2967
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1731 2581 1680 2822
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2093 3342 2214 3342
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1129 3488 982 3526
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1706 1140 1775 1286
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2219 1527 2398 1749
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
734 1254 734 1286 734 1318
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
139 2403 170 2416 190 2448 221 2461
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
950 1808 1140 1756
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1761 2763 2042 2771
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
3280 3400
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2473 2156 2632 2174
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1210 1086 1152 971
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
868 1228 899 1067 965 986
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1151 1262 1050 1181 1030 1001
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
124 1751 30 1644 15 1555
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
216 1766 217 1692 141 1578
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
324 3098 337 3204 242 3308
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
452 3360 392 3408 272 3394
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2476 1331 2609 1296
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2655 1595 2750 1437 2736 1323
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1880 3784 1866 3678
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1692 3676 1738 3774 1837 3801
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1968 3488 1910 3576 1917 3780
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3377 1610 3402 1494 3460 1449
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3670 1558 3665 1474 3613 1442
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3573 1711 3525 1646 3532 1466
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3063 2048 2971 2084 3067 2441
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2833 2251 2997 2469
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
3084 2336 3106 2426
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2815 3716 2771 3883
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2870 3792 2799 3916
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
3013 3859 2813 3971
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
3641 2992 3708 2930
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4695 2889 4791 2922 4839 2987
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
4653 3133 4823 3053
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4631 3083 4744 3059 4824 3022
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4695 2849 4823 2892 4866 2948
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1713 1842 1719 1744
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1802 2184 1865 2044 1806 1756
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2083 1978 2054 1792 1941 1690
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2171 2902 2215 2676
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2486 2707 2413 2659
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2494 2955 2325 2877 2299 2693
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2512 1365 2633 1343 2662 1308
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
346 1494 285 1466
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
995 2436 923 2440
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1024 2730 759 2638 730 2564
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1225 2505 1155 2549 878 2494
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3323 2951 3428 3047 3606 2893
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3427 3238 3437 3115 3658 2920
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
261 3198 183 3258
4 0 34 50 -1 0 9 0.0000 4 135 315 3583 2790 3,2,0\001
4 0 0 50 -1 0 16 0.0000 4 195 135 1863 2515 4\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2108 1855 1\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2657 1872 2\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2227 3509 3\001
4 0 34 50 -1 0 9 0.0000 4 135 315 -60 3468 0,0,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 603 2434 0,2,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 -41 1438 0,0,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 904 863 0,2,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 1651 1610 2,0,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 2592 1197 2,2,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 3403 1326 3,2,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 2984 2653 3,0,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 2161 2569 2,2,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 1776 4020 2,0,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 2504 4066 3,0,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 4883 3113 5,1,1\001

View File

@ -1,317 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #9f9f9f
0 34 #000000
0 35 #ff0000
0 36 #ff0000
0 37 #0000ff
6 2128 1425 4342 3997
6 2172 1493 3024 3848
2 1 0 4 32 0 632 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2255 3818 2837 3001
2 1 0 4 32 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2837 3001 2948 1523
2 1 0 4 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2948 1523 2331 2159
2 1 0 4 32 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2331 2159 2255 3818
-6
6 2426 3057 4325 3997
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3011 3152 2441 3982
2 1 0 2 32 0 596 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4310 3122 3011 3152
2 1 0 2 32 0 420 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2441 3982 4310 3122
-6
6 2919 1502 4310 3032
2 1 0 2 32 0 606 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2995 2988 4295 2935
2 1 0 2 32 0 730 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3113 1517 2995 2988
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4295 2935 3113 1517
-6
6 2347 2231 4276 3935
2 1 0 2 32 0 297 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2366 3920 2446 2246
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4261 3046 2366 3920
2 1 0 2 32 0 257 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2446 2246 4261 3046
-6
6 2507 1425 4342 2890
2 1 0 2 32 0 269 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4327 2875 2522 2068
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3130 1440 4327 2875
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2522 2068 3130 1440
-6
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3596 2925 3601 3161
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3267 3462 3357 3609
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2281 2895 2421 2942
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3307 2396 3196 2617
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3616 2168 3719 2101
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2856 2310 3074 2353
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2514 3391 2814 3494
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2638 1820 2770 1813
4 0 0 50 -1 0 16 0.0000 4 195 135 2930 2148 8\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2693 3410 7\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2128 3258 6\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2357 2021 5\001
-6
6 105 1058 2767 3864
6 121 1171 1092 3262
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
136 1708 242 3247
2 1 0 2 32 0 667 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
998 1186 136 1708
2 1 0 2 32 0 913 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1032 2565 998 1186
2 1 0 2 32 0 840 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
242 3247 1032 2565
-6
6 105 1774 1920 3791
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
183 1789 1859 2122
2 1 0 2 32 0 545 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
286 3351 183 1789
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1827 3776 286 3351
2 1 0 2 32 0 345 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1859 2122 1827 3776
-6
6 359 2658 2523 3864
2 1 0 2 32 0 687 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1887 3826 2508 3023
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
374 3405 1887 3826
2 1 0 2 32 0 842 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1146 2705 374 3405
2 1 0 2 32 0 922 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2508 3023 1146 2705
-6
6 1110 1105 2725 2892
2 1 0 2 32 0 933 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1202 2540 2562 2845
2 1 0 2 32 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2562 2845 2646 1398
2 1 0 2 32 0 775 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2646 1398 1184 1166
2 1 0 2 32 0 925 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1184 1166 1202 2540
-6
6 247 1058 2620 1914
2 1 0 2 32 0 351 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1933 1899 262 1585
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2605 1305 1933 1899
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
262 1585 1117 1073
2 1 0 2 32 0 731 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1117 1073 2605 1305
-6
6 1993 1438 2767 3765
2 1 0 4 32 0 365 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2037 3735 2089 2089
2 1 0 4 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2089 2089 2737 1468
2 1 0 4 32 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2737 1468 2644 2934
2 1 0 4 32 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2644 2934 2037 3735
-6
-6
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 111 3523 193 193 111 3523 272 3629
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 791 2399 193 193 791 2399 952 2506
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 36 1402 193 193 36 1402 197 1509
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1063 857 193 193 1063 857 1222 965
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1843 1613 193 193 1843 1613 2002 1720
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2910 1183 193 193 2910 1183 3071 1290
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3291 2759 193 193 3291 2759 3451 2867
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 4579 3043 193 193 4579 3043 4740 3151
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1988 4049 193 193 1988 4049 2148 4156
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1296 1768 1166 2029
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
604 2882 832 3031
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1791 2635 1738 2882
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2162 3416 2286 3416
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1171 3566 1022 3606
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1765 1154 1836 1305
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2292 1552 2476 1780
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
766 1271 766 1305 766 1337
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
155 2451 187 2464 207 2497 239 2511
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
988 1841 1184 1786
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1822 2821 2110 2830
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
3382 3476
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2553 2198 2716 2217
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1255 1098 1194 1001
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
904 1245 936 1079 977 1025
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1189 1276 1090 1196 1074 1046
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
140 1782 43 1672 34 1592
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
235 1797 236 1721 133 1565
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
345 3166 358 3274 239 3375
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
476 3435 416 3484 292 3468
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2555 1350 2738 1281
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2740 1621 2814 1469 2830 1348
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1946 3866 1929 3761
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1751 3759 1798 3860 1873 3892
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2034 3566 1975 3657 1996 3857
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1704 1859 1738 1773
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1856 2225 1785 2019 1818 1806
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2242 2965 3096 2790
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2565 2717 3098 2757
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2575 3018 2775 2909 3103 2821
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2593 1386 2694 1356 2768 1322
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
329 1543 205 1496
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
1035 2486 961 2492
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1065 2787 792 2693 745 2581
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
1270 2556 1199 2602 921 2538
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4249 2879 4347 2914 4393 2977
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
4205 3130 4388 3053
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4183 3079 4299 3054 4384 3015
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
4249 2838 4380 2882 4418 2938
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2876 1585 2920 1446 2904 1372
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3186 1500 3186 1421 3049 1311
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
3096 1669 3023 1595 2963 1366
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2573 2016 2078 1964 1940 1768
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2367 3842 2162 3968
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2521 3876 2181 4033
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
3147 2985 3201 2927
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2839 2943 2948 3042 3135 2877
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2947 3238 2956 3111 3169 2909
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2333 3710 2335 3810 2144 3924
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
2420 1760 2647 1836
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
2073 2894 2303 2911
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
2431 3202 2623 3304
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
2697 2277 2891 2309
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
280 3269 184 3345
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
2334 2309 1968 2100 1866 1804
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 4
2567 2303 2490 2140 2032 2027 1905 1792
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
2235 1943 1998 1731
4 0 0 50 -1 0 16 0.0000 4 195 135 2185 1883 1\001
4 0 0 50 -1 0 16 0.0000 4 195 135 1916 2644 4\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2720 2075 2\001
4 0 0 50 -1 0 16 0.0000 4 195 135 2548 3233 3\001
4 0 34 50 -1 0 9 0.0000 4 135 315 -28 3574 0,0,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 660 2452 0,2,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 -86 1453 0,0,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 933 908 0,2,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 1711 1661 2,0,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 2781 1243 2,2,2\001
4 0 34 50 -1 0 9 0.0000 4 135 315 3155 2796 2,2,0\001
4 0 34 50 -1 0 9 0.0000 4 135 315 4462 3092 5,1,1\001
4 0 34 50 -1 0 9 0.0000 4 135 315 1857 4092 2,0,0\001

View File

@ -1,383 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #535353
0 34 #787878
0 35 #9f9f9f
0 36 #ff0000
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4607.828 5141.248 3015 635 4311 371 5699 488
2 0 2.00 180.00 150.00
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4019.209 1002.002 5429 3263 4156 3663 2769 3355
2 0 2.00 180.00 150.00
6 -5 227 2881 3667
6 571 382 2787 2424
2 1 0 1 35 0 953 0 -1 0.000 1 0 7 0 0 2
1660 2424 1689 2189
2 1 0 1 35 0 770 0 -1 0.000 1 0 7 0 0 2
2787 1570 2629 1470
2 1 0 1 35 0 667 0 -1 0.000 1 0 7 0 0 2
1672 437 1704 533
2 1 0 1 35 0 860 0 -1 0.000 1 0 7 0 0 2
571 1375 783 1309
2 1 0 2 33 0 960 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
808 2103 2590 2276
2 1 0 2 33 0 703 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2667 608 760 458
2 1 0 4 32 0 791 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2590 2276 2667 608
2 1 0 4 32 0 872 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
760 458 808 2103
-6
6 -5 506 636 3221
2 1 0 1 35 0 762 0 -1 0.000 1 0 7 0 0 2
556 2830 374 2660
2 1 0 1 35 0 323 0 -1 0.000 1 0 7 0 0 2
209 2469 66 2344
2 1 0 1 35 0 445 0 -1 0.000 1 0 7 0 0 2
474 777 291 939
2 1 0 2 33 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
540 521 10 1413
2 1 0 2 33 0 349 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10 1413 117 3206
2 1 0 2 33 0 839 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
602 2174 540 521
2 1 0 2 33 0 740 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
117 3206 602 2174
-6
6 187 350 2726 1628
2 1 0 1 35 0 334 0 -1 0.000 1 0 7 0 0 2
2726 1143 2535 945
2 1 0 1 35 0 71 0 -1 0.000 1 0 7 0 0 2
1245 1628 1285 1340
2 1 0 2 33 0 409 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
202 1245 712 365
2 1 0 2 33 0 83 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2397 1439 202 1245
2 1 0 2 33 0 631 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
712 365 2654 511
2 1 0 2 33 0 305 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2654 511 2397 1439
-6
6 335 2265 2639 3571
2 1 0 1 35 0 667 0 -1 0.000 1 0 7 0 0 2
2639 2893 2448 3030
2 1 0 1 35 0 444 0 -1 0.000 1 0 7 0 0 2
1264 3451 1383 3406
2 1 0 2 33 0 757 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
773 2337 350 3293
2 1 0 2 33 0 483 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
359 3276 2363 3502
2 1 0 2 33 0 670 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2339 3502 2563 2513
2 1 0 2 33 0 945 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2563 2513 773 2337
-6
6 75 1499 2560 3583
2 1 0 1 35 0 206 0 -1 0.000 1 0 7 0 0 2
2560 2594 2328 2684
2 1 0 4 32 0 58 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
155 1529 2363 1730
2 1 0 2 33 0 176 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2363 1730 2297 3568
2 1 0 2 33 0 403 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2297 3568 255 3338
2 1 0 2 33 0 285 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
255 3338 155 1529
-6
6 2468 685 2878 3487
2 1 0 2 33 0 327 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2603 1646 2834 700
2 1 0 2 33 0 740 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2834 700 2746 2383
2 1 0 2 33 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2746 2383 2520 3472
2 1 0 2 33 0 222 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2520 3472 2603 1646
-6
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 576 299 72 72 576 299 633 343
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2609 2375 72 72 2609 2375 2667 2420
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 724 2222 72 72 724 2222 782 2267
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2425 1592 72 72 2425 1592 2481 1636
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 219 1389 72 72 219 1389 276 1434
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 130 3331 72 72 130 3331 187 3377
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2466 3595 72 72 2466 3595 2524 3640
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2805 503 72 72 2805 503 2862 547
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
729 2429 642 2318 658 2222
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
884 2116 783 2197
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
604 2084 701 2194
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2206 3568 2239 3620 2454 3642
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2382 3319 2441 3367 2454 3589
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2563 3306 2641 3415 2486 3559
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
2720 2528 2647 2409
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2619 2222 2670 2269 2645 2344
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2427 2490 2450 2439 2596 2383
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
247 3275 158 3311
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
484 3300 306 3410 159 3385
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
172 3104 199 3168 166 3334
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
23 1495 204 1411
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
304 1541 248 1429
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
255 1171 250 1353
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
811 361 739 302 610 297
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
719 582 582 511 579 353
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
457 656 429 516 525 338
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
2588 590 2762 539
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2614 661 2720 628 2794 562
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2836 837 2881 739 2843 544
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
2287 1432 2390 1557
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
2631 1534 2478 1553
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
2364 1837 2427 1799 2433 1600
-6
6 5388 266 8318 3673
6 5964 465 7953 2409
2 1 0 1 35 0 949 0 -1 0.000 1 0 7 0 0 2
7051 2409 7025 2216
2 1 0 1 35 0 831 0 -1 0.000 1 0 7 0 0 2
7147 1325 7030 1421
2 1 0 1 35 0 859 0 -1 0.000 1 0 7 0 0 2
5964 1360 6121 1340
2 1 0 4 32 0 839 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7923 2303 6095 495
2 1 0 2 33 0 876 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6095 495 6146 2131
2 1 0 2 33 0 962 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6146 2131 7923 2303
-6
6 5388 491 6028 3206
2 1 0 1 35 0 758 0 -1 0.000 1 0 7 0 0 2
5949 2816 5766 2645
2 1 0 1 35 0 338 0 -1 0.000 1 0 7 0 0 2
5536 2505 5459 2329
2 1 0 1 35 0 449 0 -1 0.000 1 0 7 0 0 2
5866 763 5684 924
2 1 0 2 33 0 452 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5932 506 5403 1398
2 1 0 2 33 0 356 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5403 1398 5510 3191
2 1 0 2 33 0 834 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5993 2158 5932 506
2 1 0 2 33 0 737 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5510 3191 5993 2158
-6
6 5579 335 8119 1557
2 1 0 1 35 0 660 0 -1 0.000 1 0 7 0 0 2
7156 465 7064 422
2 1 0 1 35 0 341 0 -1 0.000 1 0 7 0 0 2
8119 1128 7927 930
2 1 0 1 35 0 77 0 -1 0.000 1 0 7 0 0 2
6707 1557 6678 1325
2 1 0 2 33 0 414 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5594 1230 6104 350
2 1 0 2 33 0 96 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7790 1424 5594 1230
2 1 0 2 33 0 631 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6104 350 8046 496
2 1 0 2 33 0 313 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8046 496 7790 1424
-6
6 6180 316 8204 2246
2 1 0 2 32 0 689 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8124 542 6210 393
2 1 0 2 32 0 776 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8042 2216 8124 542
2 1 0 4 32 0 818 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6210 393 8042 2216
-6
6 5690 2250 8002 3662
2 1 0 1 32 0 455 0 -1 0.000 1 0 7 0 0 2
6591 3482 6694 3480
2 1 0 2 32 0 754 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6166 2322 5705 3367
2 1 0 2 32 0 487 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5705 3367 7708 3593
2 1 0 2 32 0 936 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7955 2498 6166 2322
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7708 3593 7955 2498
-6
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5480 3314 72 72 5480 3314 5536 3359
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 6911 2809 72 72 6911 2809 6969 2854
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 6070 2307 72 72 6070 2307 6128 2352
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5549 1413 72 72 5549 1413 5607 1457
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5939 338 72 72 5939 338 5995 382
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 8246 509 72 72 8246 509 8303 554
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 7872 1521 72 72 7872 1521 7930 1566
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 7900 3599 72 72 7900 3599 7956 3644
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 8012 2393 72 72 8012 2393 8070 2437
2 1 0 3 32 0 259 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5484 1570 6780 2798
2 1 0 1 35 0 209 0 -1 0.000 1 0 7 0 0 2
7953 2579 7791 2617
2 1 0 1 35 0 248 0 -1 0.000 1 0 7 0 0 2
6146 2209 6281 2107
2 1 0 1 35 0 761 0 -1 0.000 1 0 7 0 0 2
8083 1406 8180 1555
2 1 0 1 35 0 666 0 -1 0.000 1 0 7 0 0 2
7841 3015 8032 2879
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
5830 3364 5669 3466 5490 3372
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
5584 3194 5513 3283
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
5575 3034 5654 3245 5523 3316
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
5401 1531 5505 1434
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
5564 1617 5533 1442
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
5738 1465 5720 1411 5572 1402
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
5654 1130 5564 1166 5560 1402
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
6102 2485 6056 2365
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
5985 2140 6043 2280
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
6199 2135 6094 2263
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
6829 2594 6954 2651 6931 2777
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
5855 618 5802 486 5915 327
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
6234 346 6107 280 5962 310
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
6253 445 6148 435 5977 322
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
6121 649 6036 610 5942 365
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
8068 529 8218 473
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
8012 626 8246 539
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
8237 835 8277 707 8250 547
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
7689 1413 7723 1487 7834 1516
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
7825 1759 7880 1694 7849 1572
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
8017 1555 7876 1529
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
8055 2103 8101 2174 8022 2360
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
8134 2408 8040 2375
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
7867 2492 7966 2408
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
7721 3479 7876 3591
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
7647 3604 7740 3673 7861 3622
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
7942 3291 8012 3421 7910 3595
2 1 0 2 33 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8137 2369 7912 3457
2 1 0 2 33 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7995 1631 8226 686
2 1 0 2 33 0 737 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8226 686 8137 2369
2 1 0 2 32 0 57 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5613 1460 7829 1659
2 1 0 2 32 0 307 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5587 3370 5484 1570
2 1 0 2 32 0 422 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7759 3617 5587 3370
2 1 0 2 32 0 173 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7829 1659 7759 3627
2 1 0 4 32 0 231 0 -1 0.000 1 0 7 1 0 3
0 0 2.00 180.00 150.00
6770 2781 6860 2656 5613 1460
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
7887 2240 7984 2352
2 1 0 2 33 0 232 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7912 3457 7995 1631
4 0 0 50 -1 0 21 0.0000 4 225 540 6034 2898 dh4\001
4 0 0 50 -1 0 21 0.0000 4 240 540 6890 1031 dh5\001
-6
4 0 0 50 -1 0 15 0.0000 4 210 3000 3557 4244 remove_cell<LCC,1>(lcc,dh5)\001
4 0 0 50 -1 0 21 0.0000 4 225 540 1343 2021 dh1\001
4 0 0 50 -1 0 21 0.0000 4 225 540 1982 1036 dh3\001
4 0 0 50 -1 0 21 0.0000 4 225 540 833 1028 dh2\001
4 0 0 50 -1 0 15 0.0000 4 210 3000 3391 3950 remove_cell<LCC,1>(lcc,dh4)\001
4 0 0 50 -1 0 21 0.0000 4 225 180 6994 3030 p\001
4 0 0 50 -1 0 15 0.0000 4 225 4815 1927 -90 dh4=lcc.insert_dangling_cell_1_in_cell_2(dh1,p)\001
4 0 0 50 -1 0 15 0.0000 4 210 4830 2211 210 dh5=insert_cell_1_in_cell_2<LCC>(lcc,dh2,dh3)\001

View File

@ -1,602 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #9f9f9f
0 34 #000000
0 35 #575757
0 36 #5e5e5e
0 37 #535353
0 38 #787878
0 39 #ff0000
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4507.770 1910.299 5709 3869 4502 4208 3323 3879
2 0 2.00 180.00 150.00
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4402.683 3078.407 3330 1400 4358 1087 5515 1426
2 0 2.00 180.00 150.00
6 5029 1179 7818 4138
6 5029 1935 6935 4062
2 1 0 2 36 0 545 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5215 3598 5107 1950
2 1 0 2 36 0 333 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5107 1950 6876 2302
2 1 0 2 36 0 345 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6876 2302 6842 4047
2 1 0 2 36 0 557 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6842 4047 5215 3598
-6
6 5042 1298 6061 3504
2 1 0 2 36 0 840 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5168 3489 6002 2770
2 1 0 2 36 0 913 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6002 2770 5967 1313
2 1 0 2 36 0 667 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5967 1313 5057 1864
2 1 0 2 36 0 595 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5057 1864 5168 3489
-6
6 6090 1231 7786 3111
2 1 0 2 36 0 925 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6163 1292 6183 2742
2 1 0 2 36 0 775 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7707 1537 6163 1292
2 1 0 2 36 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7618 3064 7707 1537
2 1 0 2 36 0 933 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6183 2742 7618 3064
-6
6 5174 1179 7678 2097
2 1 0 2 36 0 351 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6954 2067 5189 1735
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5189 1735 6092 1194
2 1 0 2 36 0 731 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6092 1194 7663 1438
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7663 1442 7351 1717
2 1 0 5 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7351 1717 6954 2067
-6
6 7023 1595 7818 4018
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7119 2267 7500 1902
2 1 0 2 36 0 365 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7063 4003 7119 2267
2 1 0 2 36 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7705 3158 7063 4003
2 1 0 2 36 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7803 1610 7705 3158
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7497 1903 7798 1615
-6
6 5293 2870 7576 4138
2 1 0 2 36 0 842 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6123 2917 5308 3656
2 1 0 2 36 0 922 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7561 3252 6123 2917
2 1 0 2 36 0 687 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6906 4100 7561 3252
2 1 0 2 36 0 607 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5308 3656 6906 4100
-6
-6
6 7181 1545 9466 4258
6 7446 3272 9449 4258
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8062 3367 7461 4243
2 1 0 2 36 0 596 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9434 3335 8062 3367
2 1 0 2 36 0 420 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7461 4243 9434 3335
-6
6 7969 1625 9432 3234
2 1 0 2 36 0 730 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8170 1640 8045 3193
2 1 0 2 36 0 517 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9417 3138 8170 1640
2 1 0 2 36 0 606 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8045 3193 9417 3138
-6
6 7181 1633 8071 4085
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7689 1965 7344 2319
2 1 0 2 36 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7344 2319 7264 4070
2 1 0 2 36 0 632 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7264 4070 7878 3208
2 1 0 2 36 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7878 3208 7995 1648
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7982 1660 7687 1967
-6
6 7366 2395 9397 4193
2 1 0 2 36 0 297 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7381 4178 7466 2410
2 1 0 2 36 0 257 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7466 2410 9382 3255
2 1 0 2 36 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9382 3255 7381 4178
-6
6 7531 1545 9466 3089
2 1 0 2 36 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8187 1560 9451 3074
2 1 0 2 36 0 269 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9451 3074 7546 2223
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7854 1904 8187 1560
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7551 2214 7853 1903
-6
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
7834 3634
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
8679 3127 8685 3377
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
8333 3694 8428 3850
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7291 3095 7439 3146
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
8375 2570 8258 2802
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
8700 2328 8810 2258
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7898 2478 8130 2524
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7537 3620 7854 3728
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7668 1961 7808 1953
-6
6 67 1048 4643 4128
6 67 1048 2857 4007
6 214 1048 2732 1966
2 1 0 5 32 0 448 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2702 1307 1993 1936
2 1 0 2 36 0 351 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1993 1936 229 1604
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
229 1604 1131 1063
2 1 0 2 36 0 731 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1131 1063 2702 1307
-6
6 67 1804 1974 3931
2 1 0 2 36 0 545 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
254 3468 146 1819
2 1 0 2 36 0 333 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
146 1819 1915 2171
2 1 0 2 36 0 345 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1915 2171 1881 3916
2 1 0 2 36 0 557 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1881 3916 254 3468
-6
6 82 1168 1100 3373
2 1 0 2 36 0 840 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
207 3358 1041 2639
2 1 0 2 36 0 913 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1041 2639 1006 1183
2 1 0 2 36 0 667 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1006 1183 97 1733
2 1 0 2 36 0 595 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
97 1733 207 3358
-6
6 332 2739 2615 4007
2 1 0 2 36 0 842 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1162 2786 347 3525
2 1 0 2 36 0 922 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2600 3122 1162 2786
2 1 0 2 36 0 687 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1945 3969 2600 3122
2 1 0 2 36 0 607 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
347 3525 1945 3969
-6
6 2062 1464 2857 3887
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2158 2136 2842 1479
2 1 0 2 36 0 365 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2102 3872 2158 2136
2 1 0 2 36 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2744 3027 2102 3872
2 1 0 2 36 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2842 1479 2744 3027
-6
6 1129 1100 2825 2980
2 1 0 2 36 0 925 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1202 1161 1222 2611
2 1 0 2 36 0 775 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2746 1406 1202 1161
2 1 0 2 36 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2657 2933 2746 1406
2 1 0 2 36 0 933 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1222 2611 2657 2933
-6
-6
6 2220 1414 4505 4128
6 2220 1502 3110 3954
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3034 1517 2383 2189
2 1 0 2 36 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2383 2189 2303 3939
2 1 0 2 36 0 632 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2303 3939 2917 3078
2 1 0 2 36 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2917 3078 3034 1517
-6
6 2570 1414 4505 2958
2 1 0 2 36 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3227 1429 4490 2943
2 1 0 2 36 0 269 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4490 2943 2585 2092
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2585 2092 3227 1429
-6
6 2485 3141 4488 4128
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3101 3236 2500 4113
2 1 0 2 36 0 596 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4473 3205 3101 3236
2 1 0 2 36 0 420 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2500 4113 4473 3205
-6
6 3008 1494 4471 3104
2 1 0 2 36 0 730 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3209 1509 3084 3063
2 1 0 2 36 0 517 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4456 3007 3209 1509
2 1 0 2 36 0 606 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
3084 3063 4456 3007
-6
6 2405 2264 4436 4062
2 1 0 2 36 0 297 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2420 4047 2505 2279
2 1 0 2 36 0 257 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2505 2279 4421 3124
2 1 0 2 36 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4421 3124 2420 4047
-6
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
2873 3503
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3718 2996 3724 3246
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3372 3563 3467 3719
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2330 2964 2478 3015
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3414 2439 3297 2671
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
3740 2197 3849 2127
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2937 2347 3169 2394
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2576 3489 2893 3597
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2707 1830 2847 1823
-6
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 303 1751 75 75 303 1751 378 1751
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 1106 1223 75 75 1106 1223 1182 1223
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 1142 2685 75 75 1142 2685 1217 2685
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 154 3503 75 75 154 3503 230 3503
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2869 3000 75 75 2869 3000 2945 3000
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2950 1379 75 75 2950 1379 3025 1379
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2282 1984 75 75 2282 1984 2358 1984
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 4568 3109 75 75 4568 3109 4644 3109
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2136 4026 75 75 2136 4026 2212 4026
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1320 1797 1183 2073
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
591 2973 831 3130
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1843 2712 1788 2973
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2236 3537 2366 3537
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1189 3695 1031 3737
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1816 1149 1891 1307
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2373 1569 2566 1809
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
762 1272 762 1307 762 1341
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
115 2518 149 2532 171 2567 205 2581
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
996 1873 1202 1816
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
1876 2909 2180 2918
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
2648 2250 2820 2270
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
207 1829 264 1761
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
303 1552 406 1613 334 1716
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
98 1782 281 1736
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1028 2551 1110 2649
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1290 2625 1188 2664
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1120 2820 1131 2699
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
239 3364 168 3507
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
264 3296 334 3364 197 3488
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
402 3544 278 3602 203 3513
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
915 1240 960 1328 1085 1247
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1208 1332 1124 1254
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1212 1077 1113 1184
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2688 1399 2907 1370
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2685 1338 2907 1338
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2840 1561 2903 1413
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2967 1569 2925 1409
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3265 1469 3211 1370 2961 1367
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3201 1633 3003 1409
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2199 2088 2175 2035 2218 1992
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
1916 2246 2246 2166 2275 2028
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
1906 1922 1966 1975 2249 1967
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2376 2262 2320 2190 2285 2020
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2649 2038 2480 1971 2312 1967
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2558 2303 2560 2207 2295 1981
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2656 2824 2840 2952
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2932 2860 2858 2956
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2692 3083 2745 3093 2812 3026
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2542 3110 2624 3036 2829 2993
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
3149 3061 3084 3104 2911 2991
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
3074 3274 2903 3026
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
1998 3899 2111 4020
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2093 3772 2076 3881 2132 3987
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
1772 3889 1803 4033 2093 4030
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2363 3864 2370 3928 2136 3994
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
2427 3955 2197 4023
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
2614 4062 2447 4076 2182 4030
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
4292 2849 4274 2899 4575 3118
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
4426 2956 4510 2970 4567 3075
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
4355 3161 4522 3129
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
4277 3213 4294 3239 4561 3157
4 0 0 50 -1 0 16 0.0000 4 195 420 1866 1662 dh1\001
-6
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 9535 3237 75 75 9535 3237 9611 3237
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7977 1460 75 75 7977 1460 8053 1460
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7628 1775 75 75 7628 1775 7703 1775
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7234 2317 75 75 7234 2317 7310 2317
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 6011 1111 75 75 6011 1111 6086 1111
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 6099 2821 75 75 6099 2821 6174 2821
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7847 3092 75 75 7847 3092 7922 3092
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7121 4208 75 75 7121 4208 7196 4208
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 5118 3664 75 75 5118 3664 5193 3664
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 4966 1764 75 75 4966 1764 5041 1764
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
6281 1928 6144 2204
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
5552 3104 5792 3261
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
6804 2843 6749 3104
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7196 3667 7327 3667
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
6150 3826 5992 3867
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
6776 1279 6852 1438
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
5723 1403 5723 1438 5723 1472
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
5076 2649 5110 2663 5132 2698 5166 2712
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
5957 2004 6163 1947
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
6837 3040 7141 3049
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7609 2381 7781 2401
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
7483 1550 7677 1790
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
5068 1965 5011 1937 4968 1806
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
5163 1958 4983 1785
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
5262 1682 5003 1742
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6168 1201 6045 1121
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6162 1369 6016 1135
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
5914 1351 6006 1142
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7658 1527 7935 1478
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7623 1478 7956 1432
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7800 1708 7938 1488
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7935 1694 7959 1503
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
8157 1743 8001 1503
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
8224 1599 8186 1470 8019 1474
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7531 1877 7500 1820 7574 1742
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7326 1770 7595 1738
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7648 2007 7623 1820
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7906 1855 7640 1781
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
6866 2053 6909 2121 7254 2319
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7215 2160 7244 2277
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7588 2170 7396 2134 7244 2262
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7332 2456 7248 2333
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6880 2390 7198 2316
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7566 2450 7500 2357 7272 2326
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
5992 2650 6101 2798
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6271 2760 6133 2802
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6048 2978 6072 2837
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
5237 3432 5251 3499 5138 3641
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
5405 3693 5305 3728 5132 3689
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
5210 3480 5107 3611
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
6958 4023 7120 4208
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7071 3836 6989 3900 7120 4148
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
6766 4023 6788 4165 7092 4226
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7332 3971 7322 4074 7149 4176
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7389 4098 7152 4197
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7562 4201 7502 4289 7117 4232
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7669 3207 7839 3153
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7484 3229 7588 3164 7824 3112
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7623 2983 7824 3069
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
7899 2938 7843 2962 7832 3034
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
7987 3465 7878 3094
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
8140 3190 8037 3235 7888 3100
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
9279 2995 9297 3061 9519 3221
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
9357 3061 9499 3100 9534 3186
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
9300 3291 9499 3281
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
9283 3330 9530 3295
4 0 0 50 -1 0 16 0.0000 4 195 420 6718 1863 dh2\001
4 0 0 50 -1 0 16 0.0000 4 255 4320 2700 4500 CGAL::remove_cell<LCC,0>(lcc,dh2)\001
4 0 0 50 -1 0 16 0.0000 4 255 4890 2745 945 dh2=lcc.insert_barycenter_in_cell<1>(dh1)\001

View File

@ -1,213 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #505050
0 34 #ffffff
0 35 #808080
0 38 #000000
0 49 #dddddd
6 -2 1632 3997 4165
6 -2 1632 2576 2525
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
1908 2510 2561 1847
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
13 2218 1908 2510
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
938 1647 13 2218
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
2561 1847 938 1647
2 1 0 3 32 34 542 0 20 0.000 1 0 7 0 0 5
2561 1847 1908 2510 13 2218 938 1647 2561 1847
-6
6 -2 2203 3639 4165
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
1908 2510 13 2218
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
3624 4150 1908 2510
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
13 2218 3624 4150
2 1 0 3 32 34 397 0 20 0.000 1 0 7 0 0 4
13 2218 1908 2510 3624 4150 13 2218
-6
6 -2 1632 3997 4165
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
3624 4150 13 2218
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
3982 3157 3624 4150
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
938 1647 3982 3157
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
13 2218 938 1647
2 1 0 3 32 34 458 0 20 0.000 1 0 7 0 0 5
13 2218 3624 4150 3982 3157 938 1647 13 2218
-6
6 1893 1832 3997 4165
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
2561 1847 1908 2510
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
3982 3157 2561 1847
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
3624 4150 3982 3157
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
1908 2510 3624 4150
2 1 0 3 32 34 612 0 20 0.000 1 0 7 0 0 5
1908 2510 2561 1847 3982 3157 3624 4150 1908 2510
-6
6 923 1632 3997 3172
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
938 1647 2561 1847
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
3982 3157 938 1647
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
2561 1847 3982 3157
2 1 0 3 32 34 916 0 20 0.000 1 0 7 0 0 4
2561 1847 938 1647 3982 3157 2561 1847
-6
-6
6 -2 -2 2624 2525
6 -2 1632 2576 2525
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
1908 2510 13 2218
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
2561 1847 1908 2510
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
938 1647 2561 1847
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
13 2218 938 1647
2 1 0 3 32 33 542 0 20 0.000 1 0 7 0 0 5
13 2218 1908 2510 2561 1847 938 1647 13 2218
-6
6 1893 -2 2624 2525
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
1908 2510 2561 1847
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
1911 299 1908 2510
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
2609 13 1911 299
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
2561 1847 2609 13
2 1 0 3 32 33 369 0 20 0.000 1 0 7 0 0 5
2561 1847 1908 2510 1911 299 2609 13 2561 1847
-6
6 923 -2 2624 1862
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
2609 13 2561 1847
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
938 1647 2609 13
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
2561 1847 938 1647
2 1 0 3 32 33 741 0 20 0.000 1 0 7 0 0 4
2561 1847 2609 13 938 1647 2561 1847
-6
6 -2 284 1926 2525
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
13 2218 1908 2510
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
1911 299 13 2218
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
1908 2510 1911 299
2 1 0 3 32 33 397 0 20 0.000 1 0 7 0 0 4
1908 2510 13 2218 1911 299 1908 2510
-6
6 -2 -2 2624 2233
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
13 2218 1911 299
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
938 1647 13 2218
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
2609 13 938 1647
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
1911 299 2609 13
2 1 0 3 32 33 506 0 20 0.000 1 0 7 0 0 5
1911 299 13 2218 938 1647 2609 13 1911 299
-6
-6
6 1893 -2 3997 4165
6 1893 1832 3997 4165
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
1908 2510 2561 1847
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
3624 4150 1908 2510
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
3982 3157 3624 4150
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
2561 1847 3982 3157
2 1 0 3 32 49 410 0 20 0.000 1 0 7 0 0 5
2561 1847 1908 2510 3624 4150 3982 3157 2561 1847
-6
6 1893 284 3639 4165
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
1908 2510 3624 4150
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
1911 299 1908 2510
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
3624 4150 1911 299
2 1 0 3 32 49 199 0 20 0.000 1 0 7 0 0 4
3624 4150 1908 2510 1911 299 3624 4150
-6
6 1896 -2 3997 4165
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
1911 299 3624 4150
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
2609 13 1911 299
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
3982 3157 2609 13
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
3624 4150 3982 3157
2 1 0 3 32 49 258 0 20 0.000 1 0 7 0 0 5
3624 4150 1911 299 2609 13 3982 3157 3624 4150
-6
6 1893 -2 2624 2525
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
2561 1847 1908 2510
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
2609 13 2561 1847
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
1911 299 2609 13
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
1908 2510 1911 299
2 1 0 3 32 49 585 0 20 0.000 1 0 7 0 0 5
1908 2510 2561 1847 2609 13 1911 299 1908 2510
-6
6 2546 -2 3997 3172
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
3982 3157 2561 1847
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
2609 13 3982 3157
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
2561 1847 2609 13
2 1 0 3 32 49 782 0 20 0.000 1 0 7 0 0 4
2561 1847 3982 3157 2609 13 2561 1847
-6
-6
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 2604 22 91 91 2604 22 2671 82
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 1932 297 91 91 1932 297 1999 357
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 1914 2522 91 91 1914 2522 1981 2582
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 35 2211 91 91 35 2211 102 2271
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 3595 4151 91 91 3595 4151 3662 4211
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 4018 3177 91 91 4018 3177 4085 3237
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 941 1650 91 91 941 1650 1008 1710
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 2562 1866 91 91 2562 1866 2629 1926
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
1891 2527 2554 1865
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
2604 15 2564 1830
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
2573 1855 4024 3197
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
944 1654 3994 3167
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
935 1650 2585 27
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
13 2213 941 1646
2 1 0 3 32 35 50 -1 -1 8.000 0 0 -1 0 0 2
2525 1676 2674 2012
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
950 1648 2547 1847

View File

@ -1,130 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #b1b1b1
0 34 #343434
0 35 #2a2a2a
0 36 #5a5a5a
0 37 #ffffff
0 38 #ff0000
5 1 0 3 34 34 50 -1 -1 0.000 0 0 0 0 3146.229 3242.500 3452 3021 3452 3464 2898 3527
5 1 0 3 34 34 50 -1 -1 0.000 0 0 0 0 4035.984 1656.683 3833 1492 4196 1450 4042 1918
6 4169 1022 4528 1427
4 0 34 500 -1 -1 16 0.0000 4 195 135 4393 1427 2\001
4 0 34 500 -1 32 24 0.0000 4 390 225 4169 1322 b\001
-6
6 3571 3056 3915 3470
4 0 34 500 -1 32 24 0.0000 4 390 225 3571 3356 b\001
4 0 34 500 -1 -1 16 0.0000 4 195 135 3780 3470 3\001
-6
1 3 0 1 36 36 50 -1 20 0.000 1 0.0000 3541 1386 189 189 3541 1386 3730 1386
1 3 0 1 36 36 50 -1 20 0.000 1 0.0000 2645 3232 189 189 2645 3232 2835 3232
2 1 0 2 33 33 749 0 -1 0.000 1 0 7 0 0 10
3556 1721 3529 721 3425 1045 3221 1030 3224 1307 3029 1286
2983 1499 2837 1520 2898 2841 3549 1720
2 1 0 2 33 33 750 0 -1 0.000 1 0 7 0 0 10
3294 1542 3264 138 3143 604 2876 508 2852 1027 2479 913
2393 1350 2048 1230 2202 3088 3294 1542
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 9
3486 1862 1892 2155 1674 2365 1900 2612 1326 2917 1443 3373
915 3764 2458 3474 3486 1862
2 1 0 2 33 34 790 0 -1 0.000 1 0 7 0 0 10
4144 4126 4072 3604 4485 3516 4419 2966 4956 2909 4754 2518
5077 2502 3973 1490 3008 3166 4133 4157
2 1 0 2 33 34 790 0 -1 0.000 1 0 7 0 0 10
3910 4749 3934 4364 4376 4350 4259 3843 4716 3756 4580 3147
4862 3145 3486 1862 2458 3474 3939 4779
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
2760 3765 3743 2077
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
4165 1678 3218 3361
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
2973 2891 3999 1215
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 10
3301 1542 1935 1765 1957 2011 1559 2257 1638 2584 1189 2750
1276 3091 841 3345 2213 3090 3293 1538
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
2026 3117 1590 3198
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
1594 3198 1152 3278
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
1715 3615 1336 3674
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
2079 3560 1708 3619
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
2774 3751 3172 4089
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
3167 4087 3442 4333
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
3610 3706 3885 3953
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
3222 3347 3615 3704
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
4165 2500 3740 2092
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
4159 2494 4435 2742
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
4530 1990 4806 2238
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
4175 1683 4536 1997
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
3986 865 3988 1247
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
3965 564 3987 887
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
3265 354 3278 706
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
3298 1063 3285 653
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
2082 1685 2123 2095
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
2145 2460 2118 2082
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
2641 1650 2221 1715
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
3092 1578 2635 1650
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
2727 2011 2344 2074
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
3099 1950 2714 2011
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 179.06 179.06
2985 2850 2959 2407
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
2953 2103 2969 2432
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
3303 1044 2159 2507
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
2046 3103 3172 1553
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 223.82 179.06
3141 1938 2053 3560
2 1 0 4 38 36 55 -1 -1 0.000 0 0 -1 0 0 2
2698 3332 2947 3425
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 3
3136 2599 2689 2815 2629 3141
2 1 0 4 38 36 55 -1 -1 0.000 0 0 -1 0 0 2
2171 2940 2533 3185
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 3
3033 2082 3197 2082 3499 1445
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 2
3170 1162 3499 1360
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 2
4015 1911 3534 1403

View File

@ -1,86 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #b1b1b1
0 34 #343434
0 35 #5a5a5a
0 36 #ff0000
0 37 #ffffff
5 1 0 3 34 34 50 -1 -1 0.000 0 1 0 0 3227.055 2802.692 3509 2632 2985 2579 2921 2925
5 1 0 3 34 34 50 -1 -1 0.000 0 0 1 0 3507.636 2860.485 3535 2651 3718 2841 3601 3050
0 0 2.00 120.00 120.00
5 1 0 3 34 34 50 -1 -1 0.000 0 1 1 0 4002.298 2197.992 3823 2153 4020 2382 4184 2232
0 0 2.00 120.00 120.00
6 4001 2397 4344 2787
4 0 34 500 -1 -1 16 0.0000 4 195 135 4209 2768 0\001
4 0 34 500 -1 32 24 0.0000 4 390 225 4001 2697 b\001
-6
6 3742 2839 4078 3229
4 0 34 500 -1 -1 16 0.0000 4 195 135 3943 3196 1\001
4 0 34 500 -1 32 24 0.0000 4 390 225 3742 3139 b\001
-6
6 2486 2423 2843 2813
4 0 34 500 -1 -1 16 0.0000 4 195 135 2708 2780 3\001
4 0 34 500 -1 32 24 0.0000 4 390 225 2486 2723 b\001
-6
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 3581 2022 127 127 3581 2022 3708 2022
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 5310 3697 127 127 5310 3697 5437 3697
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 5148 4908 127 127 5148 4908 5275 4908
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 3184 3018 127 127 3184 3018 3311 3018
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
2834 3062 3291 2276
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 9
3221 1951 2153 2148 2007 2289 2158 2454 1774 2658 1852 2964
1498 3226 2533 3032 3221 1951
2 1 0 2 33 37 790 0 -1 0.000 1 0 7 0 0 5
4937 5157 5101 3692 3218 1961 2530 3042 4937 5157
2 1 0 2 33 33 749 0 -1 0.000 1 0 7 0 0 10
3865 1773 3806 712 3702 1036 3498 1021 3501 1298 3306 1277
3260 1490 3114 1511 3175 2832 3862 1762
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
3936 1974 3384 2848
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
3370 2867 5444 4625
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
5471 4644 5586 3588
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
5596 3563 3959 1997
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
3309 2249 4951 3726
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
4793 4825 2851 3073
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 150.00 120.00
4963 3717 4798 4795
2 1 0 2 33 37 790 0 -1 0.000 1 0 7 0 0 5
5583 4959 5747 3494 3864 1763 3176 2844 5583 4959
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 3
5490 4448 5587 4633 5192 4900
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 3
4678 4710 4745 4921 5115 4916
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
4945 3847 5305 3698
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
5469 3421 5310 3698
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
3671 2019 3871 2075
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
3394 2306 3522 2039
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
3265 3010 3455 2918
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
2957 2840 3142 2984

View File

@ -1,372 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 35 #a0a0a0
0 36 #0000ff
0 38 #000000
0 55 #5a5a5a
0 56 #ff0000
6 64 -2 4441 4360
2 1 0 2 38 0 417 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
79 1466 1267 134
2 1 0 2 38 0 826 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1875 13 766 1227
2 1 0 2 38 0 509 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1267 134 1875 13
2 1 0 2 38 0 734 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
766 1227 79 1466
2 1 0 2 38 0 314 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1230 373 196 1549
2 1 0 2 38 0 368 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
200 1554 1273 1620
2 1 0 2 38 0 238 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1266 1630 1232 386
2 1 0 2 35 0 369 0 -1 0.000 1 0 7 0 0 2
656 819 648 1028
2 1 0 2 38 0 901 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
978 1271 1960 222
2 1 0 2 38 0 941 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2000 1337 978 1271
2 1 0 2 35 0 866 0 -1 0.000 1 0 7 0 0 2
1307 635 1513 693
2 1 0 2 38 0 844 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1967 229 2000 1349
2 1 0 2 36 0 531 0 -1 0.000 1 0 7 0 0 2
2861 1863 1889 1439
2 1 0 2 36 0 252 0 -1 0.000 1 0 7 0 0 2
2598 1305 1571 868
2 1 0 2 36 0 692 0 -1 0.000 1 0 7 0 0 2
3086 1064 2147 675
2 1 0 2 36 0 435 0 -1 0.000 1 0 7 0 0 2
2850 478 1875 134
2 1 0 2 35 0 275 0 -1 0.000 1 0 7 0 0 2
1244 1008 1571 868
2 1 0 2 35 0 792 0 -1 0.000 1 0 7 0 0 2
1994 763 2147 675
2 1 0 2 35 0 505 0 -1 0.000 1 0 7 0 0 2
1587 70 1878 130
2 1 0 2 38 0 311 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1551 203 1591 1575
2 1 0 2 38 0 573 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1591 1575 2159 1316
2 1 0 2 38 0 739 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2159 1316 2134 84
2 1 0 2 38 0 478 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2143 80 1560 203
2 1 0 2 35 0 752 0 -1 0.000 1 0 7 0 0 2
439 1340 452 1613
2 1 0 2 35 0 607 0 -1 0.000 1 0 7 0 0 2
1889 1439 1633 1703
2 1 0 2 35 0 914 0 -1 0.000 1 0 7 0 0 2
1532 1307 1336 1527
2 1 0 2 35 0 430 0 -1 0.000 1 0 7 0 0 2
742 1589 699 1801
2 1 0 2 38 0 752 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
94 1752 777 1488
2 1 0 2 38 0 885 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
777 1488 1911 1569
2 1 0 2 38 0 489 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1324 1851 94 1752
2 1 0 2 38 0 621 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1911 1569 1324 1851
2 1 0 2 35 0 676 0 -1 0.000 1 0 7 0 0 2
3821 2309 3816 2631
2 1 0 2 35 0 621 0 -1 0.000 1 0 7 0 0 2
3895 1591 3824 1697
2 1 0 2 35 0 682 0 -1 0.000 1 0 7 0 0 2
3321 1233 3086 1064
2 1 0 2 35 0 368 0 -1 0.000 1 0 7 0 0 2
2850 478 3082 674
2 1 0 2 35 0 133 0 -1 0.000 1 0 7 0 0 2
2598 1305 2689 1644
2 1 0 2 35 0 478 0 -1 0.000 1 0 7 0 0 2
2861 1863 3088 2352
2 1 0 2 35 0 55 0 -1 0.000 1 0 7 0 0 2
3410 2014 3224 2125
2 1 0 2 35 0 354 0 -1 0.000 1 0 7 0 0 2
4175 3025 4172 3316
2 1 0 2 35 0 125 0 -1 0.000 1 0 7 0 0 2
3225 2864 3464 2992
2 1 0 2 38 0 65 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2701 2400 3814 3395
2 1 0 2 38 0 183 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
4028 3505 2918 2514
2 1 0 2 38 0 7 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3814 3395 2697 992
2 1 0 2 38 0 72 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2689 992 2720 2421
2 1 0 2 38 0 465 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2914 2506 3304 2181
2 1 0 2 38 0 192 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2607 2026 2590 566
2 1 0 2 38 0 468 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3089 1716 2607 2026
2 1 0 2 38 0 643 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3084 398 3089 1716
2 1 0 2 38 0 368 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2590 566 3084 398
2 1 0 2 38 0 343 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3423 530 2833 775
2 1 0 2 38 0 103 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2833 775 3988 3258
2 1 0 2 38 0 721 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3321 1871 3319 718
2 1 0 2 38 0 715 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
4335 2757 3321 1871
2 1 0 2 38 0 635 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3304 2181 4340 3093
2 1 0 2 38 0 330 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3988 3258 4422 2716
2 1 0 2 38 0 353 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
4340 3093 4031 3498
2 1 0 2 38 0 571 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
4426 2716 3386 542
2 1 0 2 38 0 672 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3331 714 4335 2757
2 1 0 2 36 0 884 0 -1 0.000 1 0 7 0 0 2
1350 1532 1438 2641
2 1 0 2 36 0 629 0 -1 0.000 1 0 7 0 0 2
1607 1708 1763 2875
2 1 0 2 36 0 488 0 -1 0.000 1 0 7 0 0 2
710 1794 843 3004
2 1 0 2 36 0 759 0 -1 0.000 1 0 7 0 0 2
462 1617 567 2755
2 1 0 2 36 0 526 0 -1 0.000 1 0 7 0 0 2
3083 2362 2247 3100
2 1 0 2 36 0 682 0 -1 0.000 1 0 7 0 0 2
3809 2629 2978 3353
2 1 0 2 36 0 240 0 -1 0.000 1 0 7 0 0 2
3465 2997 2523 3811
2 1 0 2 36 0 417 0 -1 0.000 1 0 7 0 0 2
4166 3307 3290 4053
2 1 0 2 35 0 485 0 -1 0.000 1 0 7 0 0 2
3290 4053 3006 4018
2 1 0 2 35 0 261 0 -1 0.000 1 0 7 0 0 2
2523 3811 2135 3823
2 1 0 2 35 0 601 0 -1 0.000 1 0 7 0 0 2
2247 3100 1763 2875
2 1 0 2 35 0 747 0 -1 0.000 1 0 7 0 0 2
769 2945 567 2755
2 1 0 2 35 0 423 0 -1 0.000 1 0 7 0 0 2
938 3242 843 3004
2 1 0 2 35 0 855 0 -1 0.000 1 0 7 0 0 2
2212 3169 2109 3259
2 1 0 2 38 0 361 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1592 3315 305 3172
2 1 0 2 38 0 223 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2694 4345 1592 3315
2 1 0 2 38 0 300 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
305 3172 2694 4345
2 1 0 2 38 0 402 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2779 4284 439 3140
2 1 0 2 38 0 727 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
439 3140 1067 2768
2 1 0 2 38 0 484 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
229 2940 1477 3072
2 1 0 2 38 0 814 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1067 2768 3212 3779
2 1 0 2 38 0 748 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
874 2587 229 2940
2 1 0 2 38 0 617 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1477 3072 2022 2695
2 1 0 2 38 0 458 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3077 4324 3484 3810
2 1 0 2 38 0 296 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1982 3312 3077 4324
2 1 0 2 38 0 489 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3212 3779 2779 4284
2 1 0 2 35 0 355 0 -1 0.000 1 0 7 0 0 2
1574 3695 1462 3740
2 1 0 2 35 0 909 0 -1 0.000 1 0 7 0 0 2
1805 2782 1438 2641
2 1 0 2 35 0 781 0 -1 0.000 1 0 7 0 0 2
2752 3238 2978 3353
2 1 0 2 38 0 881 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2016 2704 868 2595
2 1 0 2 38 0 890 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3145 3622 1322 2757
2 1 0 2 38 0 727 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
3484 3810 2484 2907
2 1 0 2 38 0 565 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2484 2907 1982 3312
2 1 0 2 38 0 833 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
2241 2765 3163 3618
2 1 0 2 38 0 936 0 -1 0.000 1 0 7 0 1 2
0 0 2.00 139.76 139.76
1303 2751 2315 2832
-6
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 3944 3738 148 148 3944 3738 4092 3738
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 3414 4418 148 148 3414 4418 3562 4418
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 769 2053 148 148 769 2053 917 2053
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 150 2480 148 148 150 2480 298 2480
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2332 1869 148 148 2332 1869 2480 1869
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 1931 2304 148 148 1931 2304 2079 2304
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2339 511 148 148 2339 511 2487 511
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2707 129 148 148 2707 129 2855 129
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
3474 713 3467 380 2720 74
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
3331 944 3148 373 2734 95
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2992 428 2700 122
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1700 33 2183 -42 2624 88
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2135 176 2597 122
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1782 408 2216 237 2590 169
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2591 756 2373 525
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2926 756 2373 530
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2789 1186 2694 735 2400 551
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1629 176 1861 477 2332 558
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1186 217 1799 551 2257 572
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1246 578 1792 654 2257 585
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1990 1241 2236 1773
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2093 1336 2325 1787
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1697 1548 1759 1800 2250 1828
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1431 1773 1902 2244
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1561 1391 1486 1664 1923 2189
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1124 1589 1840 2271
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
373 1766 141 2387
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
305 1425 31 1711 86 2401
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
257 1391 121 2360
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
653 1506 708 2033
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
830 1159 735 1991
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1103 1282 797 1943
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
353 2858 217 2510
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
537 3186 203 3063 196 2551
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
530 3207 114 3118 114 2572
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
988 2599 830 2060
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
953 2832 797 2101
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1486 2838 1151 2715 871 2073
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
1943 2756 2175 2722 2263 1910
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2215 2825 2338 1968
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2544 2961 2375 1956
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
4208 2493 3950 3714
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
4365 2813 4447 3093 4045 3707
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
4250 3025 3983 3667
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
3124 3727 3969 3803
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
3007 3482 3840 3701
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
3389 3912 3922 3830
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2816 4219 3025 4405 3389 4451
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2993 4219 3083 4158 3382 4410
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2489 4254 2557 4417 3329 4526
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
3643 3263 3389 4284
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
4095 3414 3718 3500 3472 4393
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
3951 3133 3677 3441 3430 4353
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2108 3223 1971 2353
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1799 3490 1923 2401
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
1383 3058 1882 2394
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
2724 2311 2006 2256
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2650 1997 2629 2175 1999 2216
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
2999 2579 2670 2579 1992 2311
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
3088 1579 2828 1579 2369 1783
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 4
3437 1962 3061 2078 2793 1722 2410 1845
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
3211 2263 2533 2092 2389 1949

View File

@ -1,46 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #ffffff
0 35 #505050
0 37 #000000
0 49 #dddddd
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 237 2526 91 91 237 2526 328 2526
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 525 548 91 91 525 548 616 548
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 2431 666 91 91 2431 666 2522 666
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 2575 2094 91 91 2575 2094 2666 2094
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 3165 3699 91 91 3165 3699 3256 3699
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 4239 2225 91 91 4239 2225 4330 2225
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 3656 797 91 91 3656 797 3747 797
2 1 0 5 37 34 50 -1 -1 0.000 0 0 -1 0 0 2
2575 2055 2438 679
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
283 2526 2536 2081
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
558 548 2418 666
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
2471 679 3656 771
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
3676 804 4246 2173
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
4278 2212 3237 3614
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
519 555 237 2441
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
270 2579 3132 3699
2 1 0 1 32 49 500 0 20 0.000 1 0 7 0 0 4
2595 2081 198 2540 3185 3725 2575 2094
2 1 0 1 32 34 500 0 20 0.000 1 0 7 0 0 6
3172 3706 4252 2225 3669 778 2438 673 2589 2094 3178 3666
2 1 0 5 37 34 50 -1 -1 0.000 0 0 -1 0 0 2
3172 3666 2595 2140
2 1 0 1 35 35 500 0 20 0.000 1 0 7 0 0 5
2431 673 2575 2075 217 2540 519 542 2425 673

View File

@ -1,147 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #565656
0 33 #808080
0 34 #ff0000
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1540 2918 77 77 1540 2918 1618 2918
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 158 1854 77 77 158 1854 237 1854
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 653 277 77 77 653 277 730 277
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 3144 156 77 77 3144 156 3222 156
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 2781 1456 77 77 2781 1456 2860 1456
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 3144 2445 77 77 3144 2445 3222 2445
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 426 3142 77 77 426 3142 504 3142
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 362 4023 77 77 362 4023 439 4023
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1454 4194 77 77 1454 4194 1532 4194
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 2853 3729 77 77 2853 3729 2931 3729
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1235 1626 77 77 1235 1626 1311 1626
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1065 1738 1069 1649 1218 1620
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1432 1540 1425 1626 1274 1598
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1352 1812 1274 1819 1274 1668
2 1 0 4 34 32 65 -1 -1 0.000 0 0 -1 0 0 3
734 507 786 374 712 277
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
3198 357 3081 320 3103 183
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2969 1552 2847 1562 2797 1482
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2633 1557 2627 1461 2728 1440
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2735 1273 2819 1316 2797 1396
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2969 2231 3081 2226 3133 2418
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2920 2534 2942 2434 3103 2434
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
3379 2310 3347 2412 3187 2429
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2839 3437 2931 3571 2868 3709
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
2573 3689 2665 3625 2830 3716
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1625 4056 1625 4164 1464 4207
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1274 3020 1289 2918 1512 2908
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1321 2689 1443 2764 1512 2877
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1693 2792 1705 2859 1555 2881
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
1812 3041 1729 2924 1588 2924
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
579 2985 595 3076 428 3103
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
551 3299 449 3299 417 3194
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
297 2019 204 2019 141 1859
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
590 4004 529 4078 387 4046
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1450 4069 2712 3778
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
2712 3778 1352 3002
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
3002 2517 1742 3002
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1742 3002 2808 3584
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
2808 3584 3002 2517
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
3294 2324 3869 2170
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
2905 1449 3294 2324
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
3002 2324 2712 1547
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1546 2808 3002 2324
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
2712 1547 1352 1741
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1352 1547 2712 1353
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
2712 1353 3002 188
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
3196 286 2905 1449
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
673 383 1352 1547
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1159 1741 286 1934
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1352 2808 1159 1741
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1352 1741 1546 2808
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
480 3002 1352 2808
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
286 1934 480 3002
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
1352 3002 577 3196
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
577 3196 480 3971
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
0 0 2.00 258.68 258.68
480 3971 1450 4069
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
1991 1325 2101 1819
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
2737 704 3222 819
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
2761 2028 3198 1786
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
2232 2465 2435 2852
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
1139 2333 1551 2202
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
837 2827 997 3239
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
1926 3509 2314 3190

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

View File

@ -1,865 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #ff0000
0 35 #5050ff
0 36 #ff5050
0 37 #000000
0 38 #000000
0 39 #000000
0 40 #000000
0 41 #000000
0 42 #000000
0 43 #000000
0 44 #000000
0 45 #000000
0 46 #000000
0 47 #000000
0 48 #000000
0 49 #dddddd
0 50 #000000
0 51 #000000
0 52 #a0a0a0
0 53 #535353
0 54 #9f9f9f
0 55 #dd9d93
0 56 #f1ece0
0 57 #c3c3c3
0 58 #e2c8a8
0 59 #e1e1e1
0 60 #d2d2d2
0 61 #ededed
0 62 #da7a1a
0 63 #f1e41a
0 64 #887dc2
0 65 #b0a193
0 66 #837cdd
0 67 #d6d6d6
0 68 #8c8ca5
0 69 #4a4a4a
0 70 #8c6b6b
0 71 #5a5a5a
0 72 #636363
0 73 #8e8e8e
0 74 #b79b73
0 75 #4193ff
0 76 #bf703b
0 77 #db7700
0 78 #dab800
0 79 #006400
0 80 #5a6b3b
0 81 #d3d3d3
0 82 #aaaaaa
0 83 #8e8ea4
0 84 #f3b95d
0 85 #89996b
0 86 #646464
0 87 #b7e6ff
0 88 #86c0ec
0 89 #bdbdbd
0 90 #d39552
0 91 #98d2fe
0 92 #616161
0 93 #aeb2ae
0 94 #717171
0 95 #ff9a00
0 96 #8c9c6b
0 97 #f76b00
0 98 #5a6b39
0 99 #8c9c6b
0 100 #8c9c7b
0 101 #184a18
0 102 #adadad
0 103 #f7bd5a
0 104 #636b9c
0 105 #f7f7f7
0 106 #de0000
0 107 #adadad
0 108 #f7bd5a
0 109 #adadad
0 110 #f7bd5a
0 111 #636b9c
0 112 #526b29
0 113 #949494
0 114 #006300
0 115 #00634a
0 116 #7b844a
0 117 #e7bd7b
0 118 #a5b5c6
0 119 #6b6b94
0 120 #846b6b
0 121 #529c4a
0 122 #d6e7e7
0 123 #526363
0 124 #186b4a
0 125 #9ca5b5
0 126 #ff9400
0 127 #ff9400
0 128 #00634a
0 129 #7b844a
0 130 #63737b
0 131 #e7bd7b
0 132 #184a18
0 133 #f7bd5a
0 134 #f73829
0 135 #ffff52
0 136 #52794a
0 137 #639a5a
0 138 #c66142
0 139 #e76942
0 140 #ff7952
0 141 #dedede
0 142 #f3eed3
0 143 #f5ae5d
0 144 #95ce99
0 145 #b5157d
0 146 #eeeeee
0 147 #848484
0 148 #7b7b7b
0 149 #005a00
0 150 #e77373
0 151 #ffcb31
0 152 #29794a
0 153 #de2821
0 154 #2159c6
0 155 #f8f8f8
0 156 #e6e6e6
0 157 #21845a
0 158 #c2c2c2
0 159 #6e6e6e
0 160 #444444
0 161 #8e8f8e
0 162 #aeaeae
0 163 #333333
0 164 #949395
0 165 #747075
0 166 #555555
0 167 #b3b3b3
0 168 #6d6d6d
0 169 #454545
0 170 #9c0000
0 171 #8c8c8c
0 172 #424242
0 173 #8c8c8c
0 174 #424242
0 175 #8c8c8c
0 176 #424242
0 177 #8c8c8c
0 178 #424242
0 179 #8c8c8c
0 180 #424242
0 181 #8c8c8c
0 182 #424242
0 183 #575757
0 184 #5e5e5e
0 185 #787878
5 1 0 3 0 7 50 -1 -1 0.000 0 0 1 0 5499.845 6202.546 3872 484 5546 257 7275 528
2 0 1.00 210.00 210.00
5 1 0 3 0 7 50 -1 -1 0.000 0 0 1 0 5558.766 -2165.193 7505 3338 5883 3663 4329 3541
2 0 1.00 210.00 210.00
6 5378 520 10598 3747
6 5470 520 8385 3199
6 5596 520 8217 1017
2 1 0 2 32 0 462 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7246 984 5611 812
2 1 0 2 32 0 725 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5611 812 6717 569
2 1 0 2 32 0 799 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6717 569 8202 695
2 1 0 2 32 0 537 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8202 695 7246 984
-6
6 5522 640 6741 2719
2 1 0 2 32 0 857 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5671 2704 6705 2232
2 1 0 2 32 0 943 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6705 2232 6645 655
2 1 0 2 32 0 741 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6645 655 5537 910
2 1 0 2 32 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5537 910 5671 2704
-6
6 5470 921 7312 3101
2 1 0 2 32 0 627 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5683 2751 5547 936
2 1 0 2 32 0 599 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7227 3086 5683 2751
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7186 1120 7227 3086
2 1 0 2 32 0 449 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5547 936 7186 1120
-6
6 6730 575 8333 2523
2 1 0 2 32 0 821 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8246 781 6773 649
2 1 0 2 32 0 801 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8222 2466 8246 781
2 1 0 2 32 0 929 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6827 2222 8222 2466
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6773 649 6827 2222
-6
6 5741 2271 8193 3199
2 1 0 2 32 0 855 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
6780 2328 5756 2814
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8178 2581 6780 2328
2 1 0 2 32 0 691 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7287 3151 8178 2581
2 1 0 2 32 0 626 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
5756 2814 7287 3151
-6
6 7349 1922 8293 3167
2 1 0 4 35 0 678 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8263 2566 7379 3137
2 1 0 4 35 0 732 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7855 1952 8263 2566
2 1 0 4 35 0 571 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7379 3137 7855 1952
-6
6 7220 1094 7851 3124
2 1 0 4 35 0 416 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7340 3094 7307 1124
2 1 0 4 35 0 470 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7307 1124 7821 1901
2 1 0 4 35 0 552 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7821 1901 7340 3094
-6
6 7317 715 8283 1829
2 1 0 4 35 0 528 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7347 1033 8245 752
2 1 0 4 35 0 479 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7845 1795 7347 1033
2 1 0 4 35 0 663 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8253 745 7834 1799
-6
6 7859 763 8385 2519
2 1 0 4 36 0 680 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7889 1868 8320 793
2 1 0 4 35 0 738 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8292 2489 7889 1868
2 1 0 4 35 0 787 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8320 793 8292 2489
-6
-6
6 7415 697 10564 3703
6 7415 1163 8000 3079
2 1 0 4 35 0 390 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7524 1215 7504 3026
2 1 0 4 35 0 445 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7970 1919 7510 1193
2 1 0 4 35 0 529 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7503 3049 7962 1894
-6
6 7530 736 8429 1823
2 1 0 4 35 0 454 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7560 1056 8019 1793
2 1 0 4 35 0 504 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8392 783 7560 1056
2 1 0 4 35 0 641 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8004 1788 8399 766
-6
6 7548 2014 8434 3211
2 1 0 4 35 0 548 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8024 2044 7578 3181
2 1 0 4 35 0 657 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7578 3181 8388 2632
2 1 0 4 35 0 711 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8404 2663 8012 2046
-6
6 9646 1490 10104 3630
2 1 0 4 35 0 104 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9680 3600 9817 1528
2 1 0 4 36 0 276 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10065 2322 9680 3600
2 1 0 4 35 0 172 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9805 1520 10074 2353
-6
6 9723 2401 10327 3631
2 1 0 4 35 0 432 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10283 2977 9755 3599
2 1 0 4 35 0 299 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9753 3601 10108 2438
2 1 0 4 35 0 498 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10113 2431 10295 3015
-6
6 10151 1070 10564 2879
2 1 0 4 35 0 567 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10531 1120 10347 2849
2 1 0 4 35 0 507 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10347 2849 10203 2227
2 1 0 4 35 0 435 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10181 2264 10531 1100
-6
6 9829 908 10495 2175
2 1 0 4 35 0 243 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9862 1302 10451 938
2 1 0 4 35 0 414 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10465 938 10126 2145
2 1 0 4 35 0 182 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10126 2145 9862 1302
-6
6 7515 1152 9700 3605
2 1 0 2 32 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9548 3590 7618 3171
2 1 0 2 32 0 110 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9685 1401 9548 3590
2 1 0 2 32 0 145 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7604 1167 9685 1401
2 1 0 2 32 0 369 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7618 3171 7604 1167
-6
6 7648 697 10408 1260
2 1 0 2 32 0 581 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8575 726 10393 881
2 1 0 2 32 0 489 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7663 1027 8575 726
2 1 0 2 32 0 162 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9737 1245 7663 1027
2 1 0 2 32 0 254 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10393 881 9737 1245
-6
6 8484 740 10486 2878
2 1 0 2 32 0 764 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8615 814 8570 2526
2 1 0 2 32 0 739 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8570 2526 10255 2821
2 1 0 2 32 0 584 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10255 2821 10413 974
2 1 0 2 32 0 609 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10413 974 8615 814
-6
6 8052 780 8594 2550
2 1 0 4 35 0 718 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8082 1896 8470 2520
2 1 0 4 35 0 659 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8509 810 8082 1896
2 1 0 4 35 0 767 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8470 2520 8509 810
-6
6 7659 2587 10232 3703
2 1 0 2 32 0 447 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
9583 3655 10217 2950
2 1 0 2 32 0 367 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
7674 3236 9583 3655
2 1 0 2 32 0 649 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
8527 2644 7674 3236
2 1 0 2 32 0 729 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
10217 2950 8527 2644
-6
-6
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 8324 670 60 60 8324 670 8384 670
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10538 845 60 60 10538 845 10598 845
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 9757 1322 60 60 9757 1322 9817 1322
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7468 1072 60 60 7468 1072 7528 1072
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7894 1872 60 60 7894 1872 7954 1872
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 6724 639 60 60 6724 639 6784 639
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 5438 871 60 60 5438 871 5498 871
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 6773 2253 60 60 6773 2253 6833 2253
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 5603 2803 60 60 5603 2803 5663 2803
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 8313 2572 60 60 8313 2572 8373 2572
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7407 3203 60 60 7407 3203 7467 3203
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10231 2183 60 60 10231 2183 10291 2183
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10440 2895 60 60 10440 2895 10500 2895
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 9652 3687 60 60 9652 3687 9712 3687
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
6552 675 6573 628 6741 618
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
6769 758 6710 637
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
6814 576 6755 644
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7201 975 7227 1022 7427 1074
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7538 972 7491 1043
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7401 1267 7451 1104
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7595 1121 7481 1067
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7524 1236 7463 1102
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7720 1182 7635 1083 7496 1064
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7781 989 7470 1050
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7191 1206 7451 1081
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8078 764 8297 679
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8618 729 8543 663 8368 660
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8382 776 8342 691
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8229 793 8321 708
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8319 943 8352 851 8333 721
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8477 891 8420 735 8352 686
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8623 884 8512 695 8342 679
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8076 730 8076 662 8316 650
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7802 1728 7819 1816 7866 1851
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7795 1945 7875 1901
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7887 1997 7892 1903
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7998 1870 7925 1865
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8080 1776 7927 1842
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8104 1941 7937 1896
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8005 2108 7904 1898
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7904 1791 7859 1801 7878 1839
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7161 3069 7156 3164 7371 3223
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7333 3041 7309 3091 7382 3173
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7301 3142 7382 3215
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7753 3256 7637 3282 7413 3223
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
7394 3068 7413 3176
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7576 3047 7562 3162 7430 3179
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7642 3136 7616 3219 7439 3218
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
7618 3133 7569 3187 7437 3196
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
6710 2166 6764 2227
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
6927 2236 6790 2251
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
6705 2368 6743 2281
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
5681 2708 5617 2795
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
5832 2831 5747 2859 5627 2828
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
5721 2682 5733 2712 5636 2804
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
5539 929 5412 873
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
5606 943 5547 875 5452 861
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
5756 776 5518 797 5464 835
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10308 929 10530 856
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10355 967 10534 861
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
10490 984 10530 955 10534 873
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
10506 1166 10579 1109 10556 866
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
9643 1239 9718 1298
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
9683 1451 9714 1442 9751 1338
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
9900 1272 9829 1265 9773 1298
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
9850 1451 9843 1359 9770 1319
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10261 2731 10442 2859
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
10310 2710 10442 2760 10435 2873
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
10294 2993 10369 2998 10417 2939
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
10134 2944 10216 2915 10438 2906
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
9631 3599 9655 3661
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
9445 3564 9487 3722 9631 3698
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
9683 3507 9643 3547 9678 3656
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
9768 3535 9690 3653
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10077 2307 10223 2186
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10176 2443 10218 2222
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10171 2096 10244 2179
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
10100 2044 10190 2179
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8124 2568 8167 2546 8296 2554
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8183 2611 8285 2609
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8389 2519 8336 2545
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8423 2716 8330 2590
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8474 2469 8527 2540 8351 2571
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
8632 2538 8497 2603 8343 2591
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8220 2432 8312 2576
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
8281 2469 8318 2559
-6
6 -526 -70 4948 3854
6 1949 418 4885 3770
6 1949 482 2794 3160
2 1 0 4 35 0 390 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2033 1470 2040 3130
2 1 0 4 35 0 424 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2712 512 2033 1470
2 1 0 4 35 0 746 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2649 2059 2712 512
2 1 0 4 35 0 712 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2040 3130 2649 2059
-6
6 4169 847 4885 3704
2 1 0 4 36 0 206 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4205 3674 4504 1970
2 1 0 4 35 0 610 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4855 877 4558 2472
2 1 0 4 35 0 245 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4504 1970 4855 877
2 1 0 4 35 0 571 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4558 2472 4205 3674
-6
6 2127 2106 4477 3770
2 1 0 2 32 0 822 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4444 2528 2736 2156
2 1 0 2 32 0 594 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4076 3728 4444 2528
2 1 0 2 32 0 492 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2142 3236 4076 3728
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2736 2156 2142 3236
-6
6 2014 1541 4362 3738
2 1 0 2 32 0 190 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4347 2015 4066 3723
2 1 0 2 32 0 95 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2105 1556 4347 2015
2 1 0 2 32 0 358 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2104 3224 2105 1556
2 1 0 2 32 0 453 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4066 3723 2104 3224
-6
6 2687 425 4816 2443
2 1 0 2 32 0 636 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4475 2393 4759 807
2 1 0 2 32 0 567 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4759 807 2844 484
2 1 0 2 32 0 757 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2844 484 2768 2027
2 1 0 2 32 0 825 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2768 2027 4475 2393
-6
6 2134 418 4774 1849
2 1 0 2 32 0 531 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2818 433 4759 758
2 1 0 2 32 0 397 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2149 1388 2818 433
2 1 0 2 32 0 100 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4390 1834 2149 1388
2 1 0 2 32 0 234 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
4759 758 4390 1834
-6
-6
6 -363 62 2543 3171
6 -358 139 766 2612
2 1 0 2 32 0 851 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
-77 2597 751 1650
2 1 0 2 32 0 568 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
-343 989 -77 2597
2 1 0 2 32 0 598 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
608 154 -343 989
2 1 0 2 32 0 881 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
751 1650 608 154
-6
6 -275 62 2407 1306
2 1 0 2 32 0 691 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
689 77 2392 362
2 1 0 2 32 0 433 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2392 362 1663 1291
2 1 0 2 32 0 317 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1663 1291 -260 908
2 1 0 2 32 0 575 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
-260 908 689 77
-6
6 10 1692 2374 3171
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1718 3129 2359 2073
2 1 0 2 32 0 656 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
25 2698 1718 3129
2 1 0 2 32 0 857 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
839 1742 25 2698
2 1 0 2 32 0 948 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2359 2073 839 1742
-6
6 -363 1049 1757 3130
2 1 0 2 32 0 395 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1619 1457 1674 3115
2 1 0 2 32 0 312 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
-305 1064 1619 1457
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
-40 2680 -305 1064
2 1 0 2 32 0 623 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1674 3115 -40 2680
-6
6 742 92 2481 1975
2 1 0 1 32 0 783 0 -1 0.000 1 0 7 1 0 2
0 0 1.00 120.00 120.00
2391 1946 2424 413
2 1 0 1 32 0 951 0 -1 0.000 1 0 7 1 0 2
0 0 1.00 120.00 120.00
872 1621 2391 1946
2 1 0 1 32 0 890 0 -1 0.000 1 0 7 1 0 2
0 0 1.00 120.00 120.00
742 129 872 1621
2 1 0 1 32 0 723 0 -1 0.000 1 0 7 1 0 2
0 0 1.00 120.00 120.00
2424 413 742 129
-6
6 1693 444 2543 3103
2 1 0 4 35 0 409 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1816 3073 1779 1419
2 1 0 4 35 0 726 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2449 2016 1816 3073
2 1 0 4 36 0 760 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
2489 474 2449 2016
2 1 0 4 35 0 443 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 180.00 150.00
1779 1419 2489 474
-6
-6
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 2631 383 60 60 2631 383 2691 383
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4888 777 60 60 4888 777 4948 777
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4403 1921 60 60 4403 1921 4463 1921
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4665 2521 60 60 4665 2521 4725 2521
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4163 3794 60 60 4163 3794 4223 3794
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 1900 3207 60 60 1900 3207 1960 3207
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 2552 2032 60 60 2552 2032 2612 2032
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 820 1677 60 60 820 1677 880 1677
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 -135 2774 60 60 -135 2774 -75 2774
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 679 -10 60 60 679 -10 739 -10
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 -466 993 60 60 -466 993 -406 993
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 1919 1455 60 60 1919 1455 1979 1455
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
-324 1067 -446 1008
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
-163 835 -253 816 -457 960
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
-237 1072 -264 1017 -449 984
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
-54 2621 -125 2751
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
-33 2542 -142 2640 -144 2735
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
147 2730 -112 2776
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
787 1810 768 1770 781 1702
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
738 1544 830 1647
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
969 1650 803 1680
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
781 94 697 2
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
754 217 716 192 681 21
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
531 203 645 10
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2336 419 2632 378
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2513 577 2630 359
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2646 601 2611 378
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
2880 443 2820 381 2657 372
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
1603 1283 1658 1357 1914 1444
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
1854 1313 1914 1430
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2034 1599 1949 1444
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
1622 1611 1881 1586 1916 1472
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2393 1818 2537 2006
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2643 1851 2554 2022
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
2815 2050 2747 2074 2570 2041
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2407 2093 2540 2041
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
1759 3067 1876 3171
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
1802 2991 1897 3056 1892 3184
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
2077 3073 2069 3190 1933 3184
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
2227 3252 1914 3214
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4691 797 4868 754
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4715 868 4857 800
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
4832 1064 4914 944 4892 814
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
4285 1808 4293 1865 4400 1920
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
4340 2080 4378 2009 4405 1939
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4541 1873 4386 1895
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
4489 2317 4661 2421 4666 2532
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4528 2592 4680 2540
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
4302 2500 4337 2459 4672 2516
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
3926 3688 4144 3819
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4119 3576 4155 3789
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
4220 3634 4166 3767
-6
4 0 0 50 -1 0 18 0.0000 4 255 6900 4247 3944 Vector<Dart_handle>v1 = {Dart_of_cell_range<0,2>(dh3)}\001
4 0 0 50 -1 0 22 0.0000 4 255 555 9465 2625 dh4\001
4 0 0 50 -1 0 18 0.0000 4 255 4935 4161 175 dh4=lcc.insert_barycenter_in_cell<2>(dh2)\001
4 0 0 50 -1 0 18 0.0000 4 255 4935 3780 -135 dh3=lcc.insert_barycenter_in_cell<2>(dh1)\001
4 0 0 50 -1 -1 18 0.0000 4 255 5985 4905 4635 dh in v1 U v2: CGAL::remove_cell<LCC,1>(lcc,dh)\001
4 0 0 50 -1 32 19 0.0000 4 210 225 4635 4635 "\001
4 0 0 50 -1 0 18 0.0000 4 255 6900 4365 4275 Vector<Dart_handle>v2 = {Dart_of_cell_range<0,2>(dh4)}\001
4 0 0 50 -1 0 22 0.0000 4 255 555 2430 270 dh1\001
4 0 0 50 -1 0 22 0.0000 4 255 555 4410 3285 dh2\001
4 0 0 50 -1 0 22 0.0000 4 255 555 7875 630 dh3\001

View File

@ -1,11 +0,0 @@
\ccUserChapter{Linear cell complex\label{Linear_cell_complex}}
\ccChapterAuthor{Guillaume Damiand}
\input{Linear_cell_complex/PkgDescription.tex}
\minitoc
\input{Linear_cell_complex/Linear_cell_complex.tex}

View File

@ -1,96 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: CombinatorialMapWithPoints.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefConcept}{CellAttributeWithPoint}
\ccDefinition
The concept \ccRefName\ is a refinement of the \ccc{CellAttribute}
concept, to represent a cell attribute containing a point.
% For that, it refines a point concept wich can be either
% \ccc{Kernel::Point_2} or \ccc{Kernel::Point_3} or \ccc{Kernel::Point_d} concept.
\ccRefines
\ccRefConceptPage{CellAttribute} % \\
% If \ccc{ambient_dimension==2} \ccRefConceptPage{Kernel::Point_2}\\
% If \ccc{ambient_dimension==3} \ccRefConceptPage{Kernel::Point_3}\\
% Otherwise \ccRefConceptPage{Kernel::Point_d}
\ccTypes
%\ccParameters
% \ccc{Refs} must be a model of the \ccc{CombinatorialMap} concept.
% \ccc{T} must be \ccc{Tag_true} to enable the storage of a
% \ccc{Dart_handle} within the class (to be set to a dart which is part of the cell),
% and \ccc{Tag_false} otherwise.
% \ccNestedType{Traits}{The traits class, a model of the \ccc{LinearCellComplexTraits} concept.}
% \ccGlue
\ccNestedType{Point}{Type of the used point.} % Equals to \ccc{Traits::Point}.}
% A model of
% \ccc{Kernel::Point_2} if \ccc{ambient_dimension==2},
% a model of \ccc{Kernel::Point_3} if \ccc{ambient_dimension==3},
% or a model of \ccc{Kernel::Point_d} otherwise.}
% \ccc{FunctorOnMerge} functor used when two cell attributes are merged. Must contains a method \ccc{operator ()} taking two \ccc{CellAttribute} as parameters.
% \ccc{FunctorOnSplit} functor used when one cell attribute was split in two. Must contains a method \ccc{operator ()} taking two \ccc{CellAttribute} as parameters.
% This concept does not have any restriction on the number
% of additional template parameters.
% \ccTypes
% \ccNestedType{Supports_cell_dart}
% {equal to T (\ccc{Tag_true} or \ccc{Tag_false}).}
% +-----------------------------------+
% \ccConstants
% \ccVariable{static unsigned int ambient_dimension;}{The dimension of the ambient space.}
% +-----------------------------------+
\ccCreation
\ccCreationVariable{cawp}
\ccConstructor{CellAttributeWithPoint();}{Default constructor.}
\ccConstructor{CellAttributeWithPoint(const Point&apoint);}
{Constructor initializing the point of \ccc{cawp} by the
copy contructor \ccc{Point(apoint)}.}
\ccConstructor{CellAttributeWithPoint(const Point&apoint, const Info& info);}
{Constructor initializing the point of \ccc{cawp} by the
copy contructor \ccc{Point(apoint)} and initializing the
information of \ccc{cawp} by the
copy contructor \ccc{Info(info)}.
Defined only if \ccc{Info} is different from \ccc{void}.}
% +-----------------------------------+
\ccHeading{Access Member Functions}
\ccMethod{Point& point();}
{Returns the point of \ccc{cawp}.}
\ccMethod{const Point& point() const;}
{Returns the point of \ccc{cawp}, when \ccc{cawp} is const.}
\ccHasModels
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}\\
\ccSeeAlso
%\ccRefConceptPage{LinearCellComplex}\\
\ccRefConceptPage{LinearCellComplexItems}
%\ccRefConceptPage{LinearCellComplexTraits}\\
\end{ccRefConcept}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,79 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Cell_attribute_with_point.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
\ccInclude{CGAL/Cell_attribute_with_point.h}
\ccDefinition
The class \ccRefName\ represents an attribute containing a point and
containing an information when \ccc{Info_} is different from void.
This class can typically be used to associate a point to each 0-cell
of a combinatorial map.
% It inherits from the type of point defined in
% \ccc{LCC} so that we can use an instance of
% \ccc{Cell_attribute_with_point} everywhere an instance of
% \ccc{LCC::Point} is required.
\ccIsModel
\ccRefConceptPage{CellAttributeWithPoint}
\ccInheritsFrom
\ccRefIdfierPage{CGAL::Cell_attribute<CMap,Info_,Tag,OnMerge,OnSplit>} %\\
%\ccc{LCC::Point} see \ccRefConceptPage{LinearCellComplex}
\ccParameters
\ccc{LCC} must be an instanciation of \ccc{Linear_cell_complex} class\\
\ccc{Info_} is the type of the information contained in the attribute, \ccc{void} for no information. \\
\ccc{Tag} is \ccc{Tag_true} to enable the storage of a
\ccc{Dart_handle} of the associated cell, \ccc{Tag_false} otherwise.\\
\ccc{OnMerge} is a functor called when two attributes are merged. \\
\ccc{OnSplit} is a functor called when one attribute is split in two.
By default, \ccc{OnMerge} and \ccc{OnSplit} are equal to
\ccc{Null_functor}; \ccc{Tag} is equal to
\ccc{Tag_true}; and \ccc{Info_} is equal to \ccc{void}.
\ccTypes
\ccThree{typedef LCC::Dart_const_handle;}{}{}
% \ccTypedef{typedef Info_ Info;}{}
% \ccGlue
% \ccTypedef{typedef Tag Supports_cell_dart;}{}
% \ccGlue
% \ccTypedef{typedef OnMerge On_merge;}{}
% \ccGlue
% \ccTypedef{typedef OnSplit On_split;}{}
%
% \ccTypedef{typedef LCC::Traits Traits;}{}
% \ccGlue
\ccTypedef{typedef LCC::Point Point;}{}
\ccGlue
%
%\ccTwo{typedef LCC::Dart_const_handle;;;;;}{}
%\ccThree{typedef LCC::Dart_const_handle;}{}{}
\ccTypedef{typedef LCC::Dart_handle Dart_handle;}{}
\ccGlue
\ccTypedef{typedef LCC::Dart_const_handle Dart_const_handle;}{}
\ccConstants
\ccVariable{static unsigned int ambient_dimension = LCC::ambient_dimension;}{}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
\ccRefIdfierPage{CGAL::Cell_attribute<CMap,Info_,Tag,OnMerge,OnSplit>}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,61 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: LinearCellComplexItems.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefConcept}{LinearCellComplexItems}
\ccDefinition The concept \ccRefName\ refines the concept of
\ccc{CombinatorialMapItems} by adding the requirement that
0-attributes are enabled, and associated with attributes which are a
model of the \ccc{CellAttributeWithPoint} concept.
% In addition to the requirements of \ccc{CombinatorialMapItems},
% the item class must also define the \ccc{Traits} type for the
% geometrical traits used, a model of the \ccc{LinearCellComplexTraits}
% concept.
% , and
% must define a \ccc{static const int ambient_dimension} for the
% dimension of the ambient space.
\ccRefines
\ccRefConceptPage{CombinatorialMapItems}
% +-----------------------------------+
\ccHeading{Requirements}
The first type in \ccc{Attributes} must be a model of the
\ccc{CellAttributeWithPoint} concept.
% \item \ccc{dimension}$\leq$\ccc{ambient_dimension} (?).
% \ccTypes
% \ccNestedType{Traits}{a model of the \ccc{LinearCellComplexTraits} concept.}
% \ccConstants
% \ccVariable{static unsigned int ambient_dimension;}
% {The dimension of the ambient space.}
\ccHasModels
%\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d,d2,Traits>}
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
\ccRefConceptPage{CellAttributeWithPoint}\\
%\ccRefConceptPage{LinearCellComplexTraits}\\
\ccRefIdfierPage{CGAL::Dart<d,CMap>}
\end{ccRefConcept}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,85 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: LinearCellComplexTraits.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefConcept}{LinearCellComplexTraits}
Required types and functors for the \ccRefName\ concept. This
geometric traits concept is used in the \ccc{Linear_cell_complex}
class.
% \ccRefines
% A model of the concept \ccc{Kernel} if \ccc{Ambiant_dimension==2} or
% \ccc{Ambiant_dimension==3}; a model of the concept \ccc{Kernel_d} otherwise.
% \ccc{CopyConstructable}, \ccc{Assignable}.
\ccConstants
\ccVariable{static unsigned int ambient_dimension;}
{The ambient dimension, must be \mygt{}1.}
\ccTypes
% \ccNestedType{Kernel}{kernel type.}
\ccNestedType{FT}{a number type that is a model for FieldNumberType.}
\ccGlue
\ccNestedType{Point}{point type.}
\ccGlue
\ccNestedType{Vector}{vector type.}
\ccGlue
\ccNestedType{Direction}{direction type.}
% \ccGlue
% \ccNestedType{Iso_cuboid}{iso cuboid type.}
\ccHeading{Constructions}
\ccNestedType{Construct_translated_point}{Functor with operator to construct the translation of a Point by a given Vector.}
\ccGlue
\ccNestedType{Construct_vector}{Functor with operator to construct a vector going from the origin to a given point.}
\ccGlue
\ccNestedType{Construct_vector}{Functor with operator to construct a vector given two points.}
\ccGlue
\ccNestedType{Construct_sum_of_vectors}{Functor with operator to construct a vector wich is the sum of the two given vectors.}
\ccGlue
\ccNestedType{Construct_scaled_vector}{Functor with operator to construct a vector which is equal to a given Vector scaled by a given number.}
\ccGlue
\ccNestedType{Construct_midpoint}{Functor with operator to construct a point equal to the middle of the two given points.}
\ccGlue
\ccNestedType{Construct_direction}{Functor with operator returning a direction corresponding to the given vector.}
% \ccGlue
% \ccNestedType{Construct_iso_cuboid}{Functor with operator returning an iso cuboid created from two points (min and max points of the iso cuboid).}
\ccHeading{Generalized Predicates}
\ccNestedType{Collinear}{Functor with operator returning true iff the three given points are colinear.}
\textbf{If \ccc{ambient_dimension==3}}
\ccTypes
\ccNestedType{Construct_normal_3}{a model of \ccc{ConstructNormal_3}}
\ccHasModels
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}.
\ccSeeAlso
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
%\ccRefConceptPage{LinearCellComplex}\\
\ccRefConceptPage{LinearCellComplexItems}\\
\end{ccRefConcept}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,366 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Linear_cell_complex.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}
\ccInclude{CGAL/Linear_cell_complex.h}
\ccDefinition
The class \ccRefName\ represents a linear cell complex in dimension \ccc{d},
in an ambient space of dimension \ccc{d2}. This is a model of the concept of
\ccc{CombinatorialMap} by adding a requirement to ensure that
each vertex of the map is associated with a
model of \ccc{CellAttributeWithPoint}.
% Darts and non void attributes are stored in memory using
% \ccc{CGAL::Compact_container}, using \ccc{Alloc} as allocator.
\ccIsModel
%\ccRefConceptPage{LinearCellComplex}
\ccRefConceptPage{CombinatorialMap}
\ccInheritsFrom
\ccRefIdfierPage{CGAL::Combinatorial_map<d,Items_,Alloc_>}
\ccParameters
\ccc{d} an integer for the dimension of the combinatorial map,\\
\ccc{d2} an integer for the dimension of the ambiant space,\\
\ccc{Traits_} must be a model of the \ccc{LinearCellComplexTraits} concept, satisfying \ccc{Traits_::ambiant_dimension==d2},\\
\ccc{Items_} must be a model of the \ccc{CombinatorialMapItems} concept,\\
\ccc{Alloc_} has to match the standard allocator requirements.
There are four default template arguments:
\ccc{d2} is equal to \ccc{d},
\ccc{Trait_} is equal to \ccc{CGAL::Linear_cell_complex_traits<d2,CGAL::Exact_predicates_inexact_constructions_kernel>} if
\ccc{d2} is 2 or 3, and this is \ccc{CGAL::Linear_cell_complex_traits<d2,CGAL::Cartesian_d<double>>} otherwise,
\ccc{Items_} is equal to \ccc{CGAL::Linear_cell_complex_min_items<d>} and
\ccc{Alloc_} is \ccc{CGAL_ALLOCATOR(int)}.
\begin{ccAdvanced}
Note that there is an additional, and undocumented, template
parameter \ccc{CMap} for
\ccc{Linear_cell_complex<d,d2,Traits_,Items_,Alloc_,CMap>} allowing
to inherit from any model of \ccc{CombinatorialMap} concept.
\end{ccAdvanced}
% +-----------------------------------+
\ccCreation
\ccCreationVariable{lcc}
\ccConstructor{LinearCellComplex();}{}
% +-----------------------------------+
\ccConstants
\ccVariable{static unsigned int ambient_dimension = d2;}{must be \mygt{}1.}
% +-----------------------------------+
\ccTypes
\ccThree{typedef Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}{}{}
\ccTypedef{typedef Linear_cell_complex<d,d2,Traits_,Items_,Alloc_> Self;}{}
\ccGlue
\ccTypedef{typedef Items::Dart_wrapper<Self>::Dart Dart;}{The type of dart, must satisfy \ccc{Dart::dimension==d}.}
\ccTypedef{typedef Traits_ Traits;}{}
\ccGlue
\ccTypedef{typedef Items_ Items;}{}
\ccGlue
\ccTypedef{typedef Alloc_ Alloc;}{}
\ccTypedef{typedef Traits::FT FT;}{}
\ccGlue
\ccTypedef{typedef Traits::Point Point;}{}
\ccGlue
\ccTypedef{typedef Traits::Vector Vector;}{}
\ccNestedType{Vertex_attribute}
{Type of 0-attributes, a model of \ccc{CellAttributeWithPoint} concept
(a shortcut for \ccc{Attribute_type_d<0>::type}).}
\ccGlue
\ccNestedType{Vertex_attribute_handle}
{Handle through 0-attributes
(a shortcut for \ccc{Attribute_handle_type_d<0>::type}).}
\ccGlue
\ccNestedType{Vertex_attribute_const_handle}
{Const handle through 0-attributes
(a shortcut for \ccc{Attribute_const_handle_type_d<0>::type}).}
\ccGlue
\ccNestedType{Vertex_attribute_range}
{Range of all the 0-attributes, a model of the \ccc{Range} concept
(a shortcut for \ccc{Attribute_range_d<0>::type}).
Iterator inner type is bidirectional iterator and value type is \ccc{Vertex_attribute}.}
\ccGlue
\ccNestedType{Vertex_attribute_const_range}
{Const range of all the 0-attributes, a model of the \ccc{ConstRange} concept
a shortcut for \ccc{Attribute_const_range_d<0>::type}).
Iterator inner type is bidirectional iterator and value type is \ccc{Vertex_attribute}.}
% \ccNestedType{Vertex_attribute}{First element of \ccc{Items::Dart_wrapper<Self>::Attributes}.}
% +-----------------------------------+
\ccHeading{Range Access Member Functions}
\ccMethod{Vertex_attribute_range& vertex_attributes();}
{Returns a range of all the 0-attributes in \ccc{lcc}
(a shortcut for \ccc{attributes<0>()}).}
\ccMethod{Vertex_attribute_const_range& vertex_attributes() const;}
{Returns a const range of all the 0-attributes in \ccc{lcc}
(a shortcut for \ccc{attributes<0>() const}).}
% +-----------------------------------+
\ccHeading{Access Member Functions}
\ccMethod{bool is_valid() const;}
{Returns true iff \ccc{lcc} is valid.}
A linear cell complex \ccc{lcc} is valid
if it is a valid combinatorial map, and if for all dart handle \emph{dh} such that
\ccc{*dh}\myin{}\ccc{lcc.darts()}: \ccc{dh->attribute<0>()!=NULL}.
\ccMethod{size_type number_of_vertex_attributes() const;}
{Returns the number of 0-attributes in \ccc{lcc}
(a shortcut for \ccc{number_of_attributes<0>()}).}
\ccHeading{Static Member Functions}
\ccMethod{static Vertex_attribute_handle vertex_attribute(Dart_handle dh);}
{Returns the 0-attribute associated with \ccc{dh}.
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccMethod{static Vertex_attribute_const_handle vertex_attribute(Dart_const_handle dh);}
{Returns the 0-attribute associated with \ccc{dh}, when \ccc{dh} is const.
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccMethod{static Point& point(Dart_handle dh);}
{Returns the point in the 0-attribute associated with the \ccc{dh}.
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccMethod{static const Point& point(Dart_const_handle dh);}
{Returns the point in the 0-attribute associated with the \ccc{dh},
when \ccc{dh} is const.
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
% +-----------------------------------+
\ccHeading{Modifiers}
\ccMethod{Dart_handle create_dart(Vertex_attribute_handle vh);}
{Creates a new dart in \ccc{lcc}, sets its associated 0-attribute
to \ccc{vh} and returns the corresponding handle.
\ccPrecond{\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
}
\ccMethod{Dart_handle create_dart(const Point& apoint);}
{Creates a new dart in \ccc{lcc}, creates a new 0-attribute
initialized with \ccc{apoint}, sets the associated 0-attribute
of the new dart to this new 0-attribute,
and returns the corresponding handle.}
\ccMethod{Vertex_attribute_handle create_vertex_attribute();}
{Creates a new 0-attribute in \ccc{lcc}, and returns the corresponding handle
(a shortcut for \ccc{create_attribute<0>()}).}
\ccMethod{Vertex_attribute_handle create_vertex_attribute(const Point& apoint);}
{Creates a new 0-attribute in \ccc{lcc} initialized with \ccc{apoint},
and returns the corresponding handle.}
\ccMethod{void erase_vertex_attribute(Vertex_attribute_handle vh);}
{Removes the 0-attribute pointed by \ccc{vh} from \ccc{cm}
(a shortcut for \ccc{erase_attribute<0>(vh)}).
\ccPrecond{\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
}
\ccMethod{void set_vertex_attribute(Dart_handle dh, Vertex_attribute_handle vh);}
{Associates the 0-attribute of all the darts of the 0-cell
containing \ccc{dh} to \ccc{vh}
(a shortcut for \ccc{set_attribute<0>(dh,vh)}).
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()} and
\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
}
% +-----------------------------------+
\ccHeading{Operations}
\ccMethod{template<unsigned int i> Point barycenter(Dart_const_handle dh) const;}
{Returns the barycenter of the \emph{i}-cell containing \ccc{dh}.
\ccPrecond{0\myleq{}\emph{i}\myleq{}\ccc{dimension} and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccMethod{template <unsigned int i> Dart_handle insert_point_in_cell(Dart_handle dh, Point p);}
{Inserts a point, copy of \ccc{p}, in the \emph{i}-cell containing \ccc{dh}.
Returns an handle on one dart of this cell.
\ccPrecond{\ccc{dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% \begin{ccAdvanced}
If \emph{i}-attributes are non void,
\ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
with \emph{a} the original \emph{i}-attribute associated
with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
% \end{ccAdvanced}
}
\ccMethod{template <unsigned int i> Dart_handle insert_barycenter_in_cell(Dart_handle dh);}
{Inserts a point in the barycenter of the \emph{i}-cell containing \ccc{dh}.
Returns an handle on one dart of this cell.
\ccPrecond{1\myleq{}\ccc{dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% \begin{ccAdvanced}
If \emph{i}-attributes are non void,
\ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
with \emph{a} the original \emph{i}-attribute associated
with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
% \end{ccAdvanced}
}
\ccMethod{Dart_handle insert_dangling_cell_1_in_cell_2(Dart_handle dh, Point p);}
{Inserts a 1-cell in a the 2-cell containing \ccc{adart}, the 1-cell
being attached only by one of its vertex to the 0-cell containing \ccc{dh}.
The second vertex is associated with a new 0-attribute containing a copy of
\ccc{p} as point. Returns an handle on one dart belonging to the new 0-cell.
\ccPrecond{\ccc{dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
% +-----------------------------------+
\ccHeading{Constructions}
\ccMethod{Dart_handle make_segment(const Point& p0, const Point& p1);}
{Creates an isolated segment in \ccc{lcc} (two darts linked by \betadeux{})
having \ccc{p0}, \ccc{p1} as geometry.
Returns an handle on the dart associated with \ccc{p0}.
\ccPrecond{\ccc{dimension}\mygeq{}2.}
}
%
\def\LargFig{.3\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_segment}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/make_segment.png">
<img src="../Linear_cell_complex_ref/fig/png/make_segment.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\centerline{Example of \ccc{r=lcc.make_segment(p0,p1)}.}
\ccMethod{Dart_handle make_triangle(const Point& p0, const Point& p1, const Point& p2);}
{Creates an isolated triangle in \ccc{lcc} having \ccc{p0}, \ccc{p1}, \ccc{p2} as geometry.
Returns an handle on the dart associated with \ccc{p0}.
\ccPrecond{\ccc{dimension}\mygeq{}1.}
}
%
\def\LargFig{.3\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_triangle}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/make_triangle.png">
<img src="../Linear_cell_complex_ref/fig/png/make_triangle.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\centerline{Example of \ccc{r=lcc.make_triangle(p0,p1,p2)}.}
\ccMethod{Dart_handle make_quadrangle(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3);}
{Creates an isolated quadrangle in \ccc{lcc} having \ccc{p0} ,\ccc{p1},
\ccc{p2}, \ccc{p3} as geometry.
Returns an handle on the dart associated with \ccc{p0}.
\ccPrecond{\ccc{dimension}\mygeq{}1.}
}
%
\def\LargFig{.3\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_quadrilateral}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/make_quadrilateral.png">
<img src="../Linear_cell_complex_ref/fig/png/make_quadrilateral.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\centerline{Example of \ccc{r=lcc.make_quadrangle(p0,p1,p2,p3)}.}
\ccMethod{Dart_handle make_tetrahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3);}
{Creates an isolated tetrahedron in \ccc{lcc} having \ccc{p0} ,\ccc{p1},\ccc{p2},\ccc{p3} as geometry.
Returns an handle on the dart associated with \ccc{p0} and
belonging to the 2-cell having \ccc{p0}, \ccc{p1}, \ccc{p2}
as coordinates.
\ccPrecond{\ccc{dimension}\mygeq{}2.}
}
%
\def\LargFig{.3\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_tetrahedron}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/make_tetrahedron.png">
<img src="../Linear_cell_complex_ref/fig/png/make_tetrahedron.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\centerline{Example of \ccc{r=lcc.make_tetrahedron(p0,p1,p2,p3)}.}
\ccFunction{Dart_handle make_hexahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3,
const Point& p4,
const Point& p5,
const Point& p6,
const Point& p7);}
{Creates an isolated hexahedron in \ccc{lcc} having \ccc{p0}, \ccc{p1},
\ccc{p2}, \ccc{p3}, \ccc{p4}, \ccc{p5}, \ccc{p6}, \ccc{p7} as geometry.
Returns an handle on the dart associated with \ccc{p0} and
belonging to the 2-cell having \ccc{p0}, \ccc{p5}, \ccc{p6}, \ccc{p1}
as coordinates.
\ccPrecond{\ccc{dimension}\mygeq{}2.}
}
\def\LargFig{.4\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_hexahedron}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/make_hexahedron.png">
<img src="../Linear_cell_complex_ref/fig/png/make_hexahedron.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\centerline{Example of \ccc{r=lcc.make_hexahedron(p0,p1,p2,p3,p4,p5,p6,p7)}.}
% +-----------------------------------+
\ccSeeAlso
\ccRefConceptPage{CombinatorialMap}\\
\ccRefIdfierPage{CGAL::Combinatorial_map<d,Items_,Alloc_>}\\
\ccRefConceptPage{Dart}\\
\ccRefConceptPage{LinearCellComplexItems}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
\ccRefConceptPage{LinearCellComplexTraits}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,551 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Linear_cell_complex_constructors.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Linear_cell_complex
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_segment<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_segment(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1);}
% {Creates an isolated segment in \ccc{lcc} (two darts linked by \betadeux{})
% having \ccc{p0}, \ccc{p1} as geometry.
% Returns an handle on the dart associated with \ccc{p0}.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_segment}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_segment.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_segment.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_segment(lcc,p0,p1)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_triangle<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_triangle(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1,
% const typename LCC::Point& p2);}
% {Creates an isolated triangle in \ccc{lcc} having \ccc{p0}, \ccc{p1}, \ccc{p2} as geometry.
% Returns an handle on the dart associated with \ccc{p0}.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_triangle}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_triangle.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_triangle.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_triangle(lcc,p0,p1,p2)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_quadrangle<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_quadrangle(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1,
% const typename LCC::Point& p2,
% const typename LCC::Point& p3);}
% {Creates an isolated quadrangle in \ccc{lcc} having \ccc{p0} ,\ccc{p1},
% \ccc{p2}, \ccc{p3} as geometry.
% Returns an handle on the dart associated with \ccc{p0}.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_quadrilateral}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_quadrilateral.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_quadrilateral.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_quadrangle(lcc,p0,p1,p2,p3)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_rectangle<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
% const typename LCC::Iso_rectangle& ir);}
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{ir} as geometry.
% Returns an handle on the dart associated with \ccc{ir[0]}.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
% }
% \ccHeading{Requirements}
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
%
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment}\\
% \ccRefIdfierPage{CGAL::make_triangle}\\
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
% %----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_rectangle}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1);}
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{p0} and \ccc{p1} as
% diagonal opposite points. Returns an handle on the dart associated with \ccc{p0}.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
% }
% \ccHeading{Requirements}
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
%
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_rectangle}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_rectangle.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_rectangle.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_rectangle(lcc,p0,p1)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_square}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_square(LCC& lcc,
% const typename LCC::Point& p,
% typename LCC::FT l);}
% {Creates an isolated square in \ccc{lcc} having \ccc{p} as based point, and \ccc{l}
% as size. Returns an handle on the dart associated with \ccc{p}.
% \ccPrecond{\ccc{LCC::dimension}$\geq 1$ and \ccc{LCC::ambient_dimension}$\geq 2$.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_square}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_square.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_square.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_square(lcc,p,l)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment}\\
% \ccRefIdfierPage{CGAL::make_triangle}\\
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
% \ccRefIdfierPage{CGAL::make_rectangle}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_tetrahedron<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_tetrahedron(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1,
% const typename LCC::Point& p2,
% const typename LCC::Point& p3);}
% {Creates an isolated tetrahedron in \ccc{lcc} having \ccc{p0} ,\ccc{p1},\ccc{p2},\ccc{p3} as geometry.
% Returns an handle on the dart associated with \ccc{p0} and
% belonging to the 2-cell having \ccc{p0}, \ccc{p1}, \ccc{p2}
% as coordinates.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_tetrahedron}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_tetrahedron.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_tetrahedron.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_tetrahedron(lcc,p0,p1,p2,p3)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_hexahedron<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_hexahedron(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1,
% const typename LCC::Point& p2,
% const typename LCC::Point& p3,
% const typename LCC::Point& p4,
% const typename LCC::Point& p5,
% const typename LCC::Point& p6,
% const typename LCC::Point& p7);}
% {Creates an isolated hexahedron in \ccc{lcc} having \ccc{p0}, \ccc{p1},
% \ccc{p2}, \ccc{p3}, \ccc{p4}, \ccc{p5}, \ccc{p6}, \ccc{p7} as geometry.
% Returns an handle on the dart associated with \ccc{p0} and
% belonging to the 2-cell having \ccc{p0}, \ccc{p5}, \ccc{p6}, \ccc{p1}
% as coordinates.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
% }
% \def\LargFig{.4\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_hexahedron}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_hexahedron.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_hexahedron.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_hexahedron(lcc,p0,p1,p2,p3,p4,p5,p6,p7)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_iso_cuboid<LCC>}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
% const typename LCC::Iso_cuboid& ic);}
% {Creates an isolated cuboid in \ccc{lcc} having points in \ccc{ic} as points.
% Returns an handle on the dart associated with \ccc{ic[0]},
% and belonging to the 2-cell having
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
% }
% \ccHeading{Requirements}
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
%
% \def\LargFig{.4\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_cuboid.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,ic)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment}\\
% \ccRefIdfierPage{CGAL::make_triangle}\\
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
% \ccRefIdfierPage{CGAL::make_rectangle}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
% %%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_iso_cuboid}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
% const typename LCC::Point& p0,
% const typename LCC::Point& p1);}
% {Creates an isolated cuboid in \ccc{lcc} given having \ccc{p0} and
% \ccc{p1} as diagonal opposite points. We denote by \ccc{ic} the
% \ccc{Iso_cuboid_3} build from \ccc{p0} and \ccc{p1}.
% Returns an handle on the dart associated with \ccc{ic[0]},
% and belonging to the 2-cell having
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
% }
% \ccHeading{Requirements}
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
%
% \def\LargFig{.4\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_cuboid.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,p0,p1)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
% %\ccRefIdfierPage{CGAL::make_cube}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
% \begin{ccRefFunction}{make_cube}
% \ccInclude{Linear_cell_complex_constructors.h}\\
% \ccFunction{typename LCC::Dart_handle make_cube(LCC& lcc,
% const typename LCC::Point& p,
% typename LCC::FT l);}
% {Creates an isolated cube in \ccc{lcc} having \ccc{p} as based point, and
% \ccc{l} as size.
% Returns an handle on the dart associated with \ccc{p},
% and belonging to the 2-cell having
% \ccc{p},\ccc{p}+(0,0,\ccc{l}), \ccc{p}+(\ccc{l},0,\ccc{l}), \ccc{a}+(\ccc{l},0,0).
% as coordinates.
% \ccPrecond{\ccc{LCC::dimension}$\geq 2$ and \ccc{LCC::ambient_dimension}$\geq 3$.}
% }
% %
% \def\LargFig{.3\textwidth}
% \begin{ccTexOnly}
% \begin{center}
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cube}
% \end{center}
% \end{ccTexOnly}
% \begin{ccHtmlOnly}
% <CENTER>
% <A HREF="fig/png/make_cube.png">
% <img src="../Linear_cell_complex_ref/fig/png/make_cube.png" alt=""></A>
% </CENTER>
% \end{ccHtmlOnly}
% \centerline{Example of \ccc{r=make_cube(lcc,p,l)}.}
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::make_segment}\\
% \ccRefIdfierPage{CGAL::make_triangle}\\
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
% \ccRefIdfierPage{CGAL::make_rectangle}\\
% %\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
% \end{ccRefFunction}
%----------------------------------------------------------------------------
\begin{ccRefFunction}{import_from_plane_graph<LCC>}
\ccInclude{Linear_cell_complex_constructors.h}\\
\ccFunction{template<class LCC>
typename LCC::Dart_handle import_from_plane_graph(LCC& lcc,
std::istream& ais);}
{Converts an embedded plane graph read from \ccc{ais} into \ccc{lcc}.
Objects are added in \ccc{lcc}, existing objects are not modified.
Returns a dart created during the import.
\ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}==2.}
}
\ccHeading{File format}
The file format must be the following:
\begin{itemize}
\item first line: \verb|nbvertices nbedges|;
\item \verb|nbvertices| lines: \verb|x y| the coordinates of the \myith{} vertex;
\item \verb|nbedges| lines: \verb|i j| the index of the two vertices of the edge (first vertex
being 0).
\end{itemize}
Here a small example:
\begin{verbatim}
5 6
1.0 3.0
0.0 2.0
2.0 2.0
0.0 0.0
2.0 0.0
0 1
0 2
1 2
1 3
2 4
3 4
\end{verbatim}
%
\def\LargFig{.6\textwidth}
\begin{ccTexOnly}
\begin{center}
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/import_graph}
\end{center}
\end{ccTexOnly}
\begin{ccHtmlOnly}
<CENTER>
<A HREF="fig/png/import_graph.png">
<img src="../Linear_cell_complex_ref/fig/png/import_graph.png" alt=""></A>
</CENTER>
\end{ccHtmlOnly}
\begin{center}
Example of \ccc{import_graph} reading the above file as istream. \\
\textbf{Left}: A planar graph embedded in the plane with
\emph{P0}=(1.0,3.0), \emph{P1}=(0.0,2.0), \emph{P2}=(2.0,2.0), \emph{P3}=(0.0,0.0), \emph{P4}=(2.0,0.0).
\textbf{Right}: the 2D linear cell complex reconstructed.
\end{center}
\ccSeeAlso
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}\\
\end{ccRefFunction}
%----------------------------------------------------------------------------
\begin{ccRefFunction}{import_from_triangulation_3<LCC,Triangulation>}
\ccInclude{Linear_cell_complex_constructors.h}\\
\ccFunction{template <class LCC,class Triangulation_>
typename LCC::Dart_handle import_from_triangulation_3(LCC& lcc,
const Triangulation_ &atr);}
{Converts \ccc{atr} (a \ccc{Triangulation_3}) into \ccc{lcc}.
Objects are added in \ccc{lcc}, existing objects are not modified.
Returns a dart created during the import.
\ccPrecond{\ccc{LCC::dimension}\mygeq{}3.}
}
\ccSeeAlso
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}\\
\end{ccRefFunction}
%----------------------------------------------------------------------------
\begin{ccRefFunction}{import_from_polyhedron<LCC,Polyhedron>}
\ccInclude{Linear_cell_complex_constructors.h}\\
\ccFunction{template<class LCC,class Polyhedron>
typename LCC::Dart_handle import_from_polyhedron(LCC& lcc,
Polyhedron &apoly);}
{Converts \ccc{apoly} (a \ccc{Polyhedron}) into \ccc{lcc}. Objects are added in \ccc{lcc},
existing objects are not modified.
Returns a dart created during the import.
\ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
}
\ccSeeAlso
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
\end{ccRefFunction}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,70 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Linear_cell_complex_min_items.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Linear_cell_complex_min_items<d>} % ,d2,Traits
% \ccRefLabel{CGAL::Linear_cell_complex_min_items}
\ccInclude{CGAL/Linear_cell_complex_min_items.h}
\ccDefinition
The class \ccRefName\ defines the type of darts which is a
\ccc{Dart_wrapper::Dart<d,LCC>}, and the traits class used. In
this class, 0-attributes are enabled and associated with
\ccc{Cell_attribute_with_point}.
\ccIsModel
\ccRefConceptPage{LinearCellComplexItems}
\ccParameters
\ccc{d} the dimension of the combinatorial map. % \\
% \ccc{d2} the dimension of the ambient space.\\
% \ccc{Traits} the traits class used.\\
% By default, \ccc{d2} is equal to \ccc{d}. There is a default
% template argument for Traits class which depends on \ccc{d2}. This is
% \ccc{CGAL::Exact_predicates_inexact_constructions_kernel type} if
% \ccc{d2} is 2 or 3, and this is \ccc{CGAL::Cartesian_d<double>}
% otherwise.
\ccExample
The following example shows one implementation of the
\ccRefName\ class.
%, unsigned int d2, class Traits_>
% typedef Traits_ Traits;
\begin{ccExampleCode}
template <unsigned int d>
struct Linear_cell_complex_min_items
{
template <class LCC>
struct Dart_wrapper
{
typedef CGAL::Dart<d, LCC> Dart;
typedef CGAL::Cell_attribute_with_point<LCC> Vertex_attrib;
typedef CGAL::cpp0x::tuple<Vertex_attrib> Attributes;
};
};
\end{ccExampleCode}
\end{ccRefClass}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
\ccRefIdfierPage{CGAL::Dart<d,CMap>}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,186 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Linear_cell_complex_operations.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
% \begin{ccRefFunction}{barycenter<LCC,i>}
% \ccInclude{Linear_cell_complex_operations.h}\\
% \ccFunction{template<class LCC, unsigned int i>
% typename LCC::Point barycenter(const LCC& lcc,
% typename LCC::Dart_const_handle dh);}
% {Returns the barycenter of the \emph{i}-cell containing \ccc{dh}.
% \ccPrecond{0\myleq{}\emph{i}\myleq{}\ccc{LCC::dimension} and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
% }
% for example $i=2$ for facet, or $i=3$ for volume).\\
% \ccCommentHeading{Template parameter}\\
% \ccc{LCC} must be a model of the \ccc{CombinatorialLCCWithPoints} concept.
% \ccCommentHeading{Parameters} \\
% \ccc{lcc}: the combinatorial map used;\\
% \ccc{adart}: a dart belonging to the cell;\\
% \ccCommentHeading{Returns} \\
% the barycenter of the cell.
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
\begin{ccRefFunction}{compute_normal_of_cell_0<LCC>}
\ccInclude{Linear_cell_complex_operations.h}\\
\ccFunction{template <class LCC>
typename LCC::Vector compute_normal_of_cell_0(const LCC& lcc,
typename LCC::Dart_const_handle dh);}
{Returns the normal vector of the 0-cell containing \ccc{dh}.
\ccPrecond{\ccc{LCC::ambient_dimension}==3 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccSeeAlso
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
\end{ccRefFunction}
%--------------------------------------------------------------------------------
\begin{ccRefFunction}{compute_normal_of_cell_2<LCC>}
\ccInclude{Linear_cell_complex_operations.h}\\
\ccFunction{template <class LCC>
typename LCC::Vector compute_normal_of_cell_2(const LCC& lcc,
typename LCC::Dart_const_handle dh);}
{Returns the normal vector of the 2-cell containing \ccc{dh}.
\ccPrecond{\ccc{LCC::ambient_dimension}==3 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
}
\ccSeeAlso
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
\end{ccRefFunction}
%--------------------------------------------------------------------------------
% \begin{ccRefFunction}{insert_barycenter_in_cell<LCC,i>}
% \ccInclude{Combinatorial_map_operations.h}\\
% \ccFunction{template <class LCC, unsigned int i>
% typename LCC::Dart_handle insert_barycenter_in_cell(LCC& lcc,
% typename LCC::Dart_handle dh);}
% {Inserts a point in the barycenter of the \emph{i}-cell containing \ccc{dh}.
% Returns an handle on one dart of this cell.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% % \begin{ccAdvanced}
% If \emph{i}-attributes are non void,
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
% with \emph{a} the original \emph{i}-attribute associated
% with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
% % \end{ccAdvanced}
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
% \begin{ccRefFunction}{insert_point_in_cell<LCC,i>}
% \ccInclude{Combinatorial_map_operations.h}\\
% \ccFunction{template <class LCC, unsigned int i>
% typename LCC::Dart_handle insert_point_in_cell(LCC& lcc,
% typename LCC::Dart_handle dh,
% typename LCC::Point p);}
% {Inserts a point, copy of \ccc{p}, in the \emph{i}-cell containing \ccc{dh}.
% Returns an handle on one dart of this cell.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% % \begin{ccAdvanced}
% If \emph{i}-attributes are non void,
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
% with $a$ the original \emph{i}-attribute associated
% with $dh$ and $a'$ each new \emph{i}-attribute created during the operation.
% % \end{ccAdvanced}
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
% \begin{ccRefFunction}{insert_cell_0_in_cell_2<LCC>}
% \ccInclude{Linear_cell_complex_operations.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle insert_cell_0_in_cell_2(LCC & lcc,
% typename LCC::Dart_handle dh,
% typename LCC::Point p);}
% {Inserts a 0-cell in the 2-cell containing \ccc{dh}, associated with
% a 0-attribute having \ccc{p} as point.
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
% Returns an handle on one dart belonging to the new 0-cell.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% % \begin{ccAdvanced}
% If 2-attributes are non void,
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
% with \emph{a} the original 2-attribute associated
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
% % \end{ccAdvanced}
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
% \begin{ccRefFunction}{insert_center_cell_0_in_cell_2<LCC>}
% \ccInclude{Linear_cell_complex_operations.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle insert_center_cell_0_in_cell_2(LCC & lcc,
% typename LCC::Dart_handle dh);}
% {Inserts a 0-cell in the barycenter of the 2-cell containing \ccc{dh}.
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
% Returns an handle on one dart belonging to the new 0-cell.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
% % \begin{ccAdvanced}
% If 2-attributes are non void,
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
% with \emph{a} the original 2-attribute associated
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
% % \end{ccAdvanced}
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
% \begin{ccRefFunction}{insert_dangling_cell_1_in_cell_2<LCC>}
% \ccInclude{Combinatorial_map_operations.h}\\
% \ccFunction{template <class LCC>
% typename LCC::Dart_handle insert_dangling_cell_1_in_cell_2(LCC& lcc,
% typename LCC::Dart_handle dh,
% typename LCC::Point p);}
% {Inserts a 1-cell in a the 2-cell containing \ccc{adart}, the 1-cell
% being attached only by one of its vertex to the 0-cell containing \ccc{dh}.
% The second vertex is associated with a new 0-attribute containing a copy of
% \ccc{p} as point. Returns an handle on one dart belonging to the new 0-cell.
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
% }
% \ccSeeAlso
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
% \end{ccRefFunction}
%--------------------------------------------------------------------------------
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,152 +0,0 @@
% +------------------------------------------------------------------------+
% | Reference manual page: LinearCellComplexTraits.tex
% +------------------------------------------------------------------------+
% | 04.02.2010 Guillaume Damiand
% | Package: Combinatorial_map
% +------------------------------------------------------------------------+
\ccRefPageBegin
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Linear_cell_complex_traits<d,K>}
\ccInclude{CGAL/Linear_cell_complex_traits.h}
\ccDefinition
This geometric traits concept is used in the
\ccc{Linear_cell_complex} class. It can take as parameter any model of the
concept \ccc{Kernel} (for example any \cgal\ kernel), and define inner
types and functors corresponding to the given dimension.
\ccIsModel
\ccRefConceptPage{LinearCellComplexTraits}
\ccInheritsFrom
\ccc{K}.
\ccParameters
\ccc{d} the dimension of the kernel\\
\ccc{K} a model of the concept \ccc{Kernel} if \ccc{d==2} or
\ccc{d==3}; a model of the concept \ccc{Kernel_d} otherwise.
\ccConstants
\ccVariable{static unsigned int ambient_dimension = d;}{}
% \ccTypes
% \ccTypedef{typedef K Kernel;}{}
\ccSeeAlso
%\ccRefConceptPage{LinearCellComplex}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
\ccRefConceptPage{LinearCellComplexItems}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
\ccRefPageEnd
% EOF
% +------------------------------------------------------------------------+
%for example \ccc{CGAL::Cartesian<double>} or \ccc{CGAL::Simple_cartesian<CGAL::Gmpq>}.
% \ccRefines
% \ccc{CopyConstructable}, \ccc{Assignable}.
% ... Question is all these typedef required ?
% \ccTypes
% % \ccNestedType{Kernel}{kernel type.}
% \ccTypedef{Kernel::FT FT;}{Number type.}
% \subsection{If \ccc{Dimension==2}}
% \ccTypes
% \ccTypedef{Kernel::Point_2 Point;}{point type.}
% \ccGlue
% \ccTypedef{Kernel::Vector_2 Vector;}{vector type.}
% % \ccGlue
% % \ccTypedef{Kernel::Iso_rectangle_2 Iso_rectangle}{iso rectangle type.}
% \ccHeading{Constructions}
% \ccTypedef{Kernel::Construct_translated_point_2 Construct_translated_point;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_vector_2 Construct_vector;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_sum_of_vectors_2 Construct_sum_of_vectors;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_scaled_vector_2 Construct_scaled_vector;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_midpoint_2 Construct_midpoint;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_direction_2 Construct_direction;}{}
% ...
% \subsection{If \ccc{Dimension==3}}
% \ccTypes
% \ccTypedef{Kernel::Point_3 Point;}{point type.}
% \ccGlue
% \ccTypedef{Kernel::Vector_3 Vector;}{vector type.}
% % \ccGlue
% % \ccTypedef{Kernel::Iso_cuboid_3 }{iso cuboid type.}
% \ccHeading{Constructions}
% \ccTypedef{Kernel::Construct_translated_point_3 Construct_translated_point;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_vector_3 Construct_vector;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_sum_of_vectors_3 Construct_sum_of_vectors;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_scaled_vector_3 Construct_scaled_vector;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_midpoint_3 Construct_midpoint;}{}
% \ccGlue
% \ccTypedef{Kernel::Construct_direction_3 Construct_direction;}{}
% ...
% \subsection{If \ccc{Dimension>3}}
% \ccTypes
% \ccTypedef{Kernel::Point_d;}{point type.}
% \ccGlue
% \ccTypedef{Kernel::Vector_d;}{vector type.}
% \ccHeading{Constructions}
% \ccTypedef{Kernel::Construct_vector_d;}{a model of \ccc{Kernel::ConstructVector_d}}
% \ccGlue
% \ccTypedef{Kernel::Construct_midpoint_d;}{a model of \ccc{Kernel::ConstructMidpoint_d}}
% \ccGlue
% \ccTypedef{Kernel::Point_to_vector_d;}{a model of \ccc{Kernel::Point_to_vector_d}}
% \ccHeading{Generalized Predicates}
% \ccTypedef{Kernel::Compare_lexicographically_d;}{a model of \ccc{Kernel::Compare_lexicographically_d}}
% \ccHeading{Operators}
% Because there is no construction for these operations.
% \ccTypedef{Vector_d(int,Base_vector,FT);}{}
% \ccGlue
% \ccTypedef{operator+(Point_d,Point_d);}{}
% \ccGlue
% \ccTypedef{operator+(Point_d,Vector_d);}{}
% \ccGlue
% \ccTypedef{operator+(Vector_d,Vector_d);}{}
% \ccGlue
% \ccTypedef{operator*(Vector_d,FT);}{}

View File

@ -1,136 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #979797
0 33 #000000
0 34 #ff0000
6 5840 4297 6217 4674
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 6028 4485 173 173 6028 4485 6201 4485
4 0 33 55 -1 0 13 0.0000 4 192 224 5940 4525 p4\001
-6
6 3915 2379 4292 2756
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4104 2567 173 173 4104 2567 4276 2567
4 0 33 55 -1 0 13 0.0000 4 192 224 4012 2624 p1\001
-6
6 5881 2379 6258 2756
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 6070 2567 173 173 6070 2567 6242 2567
4 0 33 55 -1 0 13 0.0000 4 192 224 5978 2624 p2\001
-6
6 3915 4297 4292 4674
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4104 4485 173 173 4104 4485 4276 4485
4 0 33 55 -1 0 13 0.0000 4 192 224 4012 4542 p3\001
-6
6 4874 1420 5251 1797
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 5063 1608 173 173 5063 1608 5235 1608
4 0 33 55 -1 0 13 0.0000 4 192 224 4971 1665 p0\001
-6
6 8722 908 9100 1286
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 8911 1097 173 173 8911 1097 9084 1097
4 0 33 55 -1 0 13 0.0000 4 192 224 8819 1153 p0\001
-6
6 7396 2150 7773 2527
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7584 2338 173 173 7584 2338 7757 2338
4 0 33 55 -1 0 13 0.0000 4 192 224 7493 2395 p1\001
-6
6 9995 2153 10372 2530
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 10183 2342 173 173 10183 2342 10356 2342
4 0 33 55 -1 0 13 0.0000 4 192 224 10092 2398 p2\001
-6
6 10076 4313 10453 4690
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 10264 4501 173 173 10264 4501 10437 4501
4 0 33 55 -1 0 13 0.0000 4 192 224 10176 4541 p4\001
-6
6 7482 4381 7859 4758
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7671 4570 173 173 7671 4570 7843 4570
4 0 33 55 -1 0 13 0.0000 4 192 224 7579 4626 p3\001
-6
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4299 4482 5881 4482
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4299 2564 5881 2564
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4107 2756 4107 4338
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
6025 2708 6025 4290
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
5210 1653 5977 2420
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
4898 1629 4130 2396
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
8087 2660 8087 4386
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
8909 2353 8902 2756
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
8087 4386 9766 4386
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
9766 4386 9766 2660
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
8039 2468 9814 2468
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
9766 2660 8087 2660
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
9957 4578 7895 4578
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
7895 4578 7895 2325
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
9957 2372 9957 4578
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
8902 4290 8902 4674
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
8183 3523 7799 3523
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
10053 3523 9670 3523
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
7895 2325 8902 1318
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
8902 1605 8039 2468
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
9766 2468 8902 1605
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 191.81 191.81
8902 1318 9957 2372
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
8605 2020 8333 1748
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
9558 1803 9286 2075
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
9025 1419 9090 1306 9009 1225
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
8815 1710 8562 1397 8756 1193
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
9558 2248 9827 2038 10085 2167
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
9665 2657 9849 2528 10032 2431
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
9972 2673 10101 2479
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
8019 2193 7685 2200
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
8180 2474 8008 2641 7631 2506
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
8072 2899 7723 2823 7583 2506
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
7878 4261 7712 4401
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
8229 4374 8180 4449 7820 4497
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
9784 4223 10177 4255 10220 4331
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
9784 4584 9983 4675 10117 4622

View File

@ -1,183 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #ff0000
0 35 #008000
0 36 #0000ff
0 37 #000000
0 38 #000000
0 39 #000000
0 40 #000000
0 41 #000000
0 42 #000000
0 43 #000000
0 44 #000000
0 45 #000000
0 46 #000000
0 47 #000000
0 48 #000000
0 49 #dddddd
0 50 #000000
0 51 #000000
0 52 #a0a0a0
0 53 #009000
0 54 #979797
6 647 2587 1111 3051
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 879 2819 212 212 879 2819 1091 2819
4 0 32 55 -1 0 16 0.0000 4 236 275 769 2883 p0\001
-6
6 -40 24 4216 2709
6 362 24 3866 904
2 1 0 2 32 0 625 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2729 118 3846 523
2 1 0 2 32 0 232 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
3846 523 1049 818
2 1 0 2 32 0 353 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
1049 818 382 310
2 1 0 2 32 0 746 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
382 310 2729 118
-6
6 -40 483 807 2600
2 1 0 2 32 0 681 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
129 1752 62 502
2 1 0 2 32 0 334 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
62 502 652 1064
2 1 0 2 32 0 134 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
652 1064 698 2580
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
698 2580 129 1752
-6
6 2807 224 4216 2020
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
4131 669 2982 244
2 1 0 2 32 0 518 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
3979 2000 4131 669
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2908 1364 3979 2000
2 1 0 2 32 0 934 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2982 244 2908 1364
-6
6 1042 687 4023 2709
2 1 0 2 32 0 172 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
1159 1108 4004 772
2 1 0 2 32 0 92 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
1173 2643 1159 1108
2 1 0 2 32 0 337 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
3853 2152 1173 2643
2 1 0 2 32 0 417 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
4004 772 3853 2152
-6
6 245 203 2713 1649
2 1 0 2 32 0 809 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2611 223 324 420
2 1 0 2 32 0 954 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2554 1334 2611 223
2 1 0 2 32 0 907 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
376 1629 2554 1334
2 1 0 2 32 0 761 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
324 420 376 1629
-6
6 414 1425 3685 2618
2 1 0 2 32 0 769 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
3666 2120 2641 1444
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
1063 2599 3666 2120
2 1 0 2 32 0 532 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
433 1765 1063 2599
2 1 0 2 32 0 874 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 235.85 235.85
2641 1444 433 1765
-6
-6
6 2701 -334 3165 130
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2933 -102 212 212 2933 -102 3145 -102
4 0 32 55 -1 0 16 0.0000 4 236 275 2823 -38 p1\001
-6
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 2725 1292 118 118 2725 1292 2843 1292
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 155 306 118 118 155 306 273 306
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 918 1041 118 118 918 1041 1036 1041
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 -40 1684 118 118 -40 1684 78 1684
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 4044 2229 118 118 4044 2229 4162 2229
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 4163 488 118 118 4163 488 4281 488
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
1133 2591 1080 2728
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
1167 1987 1265 1911
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
1167 2376 1073 2459 987 2643
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
524 2345 541 2630 682 2726
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
182 604 184 382
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
664 279 531 182 235 231
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
324 530 192 354
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
0 1629 104 1522
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
483 1624 416 1723 23 1662
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
478 1837 7 1697
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
923 724 905 953
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
657 1190 862 1080
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
1260 1084 1158 1029 995 994
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
2564 1184 2682 1244
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
2556 1456 2647 1330
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
2979 1398 2879 1430 2760 1362
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
2975 206 2978 93
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
2385 241 2399 -64 2729 -154
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
2971 378 2849 295 2865 95
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
3769 2170 3946 2257
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
3588 2063 3713 2022 4051 2191
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
4006 1830 4082 1913 4063 2141
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
4017 631 4099 535
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
3988 1009 4251 802 4217 560
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
3506 568 3635 644 4087 530
4 0 0 60 -1 0 16 0.0000 4 118 79 1297 1953 r\001

View File

@ -1,200 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #ff0000
0 35 #008000
0 36 #0000ff
0 37 #000000
0 38 #000000
0 39 #000000
0 40 #000000
0 41 #000000
0 42 #000000
0 43 #000000
0 44 #000000
0 45 #000000
0 46 #000000
0 47 #000000
0 48 #000000
0 49 #dddddd
0 50 #000000
0 51 #000000
0 52 #a0a0a0
0 53 #979797
6 1907 2559 2394 3046
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2151 2803 223 223 2151 2803 2374 2803
4 0 32 55 -1 0 17 0.0000 4 248 289 2032 2876 p0\001
-6
6 1839 707 2327 1194
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2083 950 223 223 2083 950 2306 950
4 0 32 55 -1 0 17 0.0000 4 248 289 1969 1001 p5\001
-6
6 4884 240 5371 727
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 5127 484 223 223 5127 484 5350 484
4 0 32 55 -1 0 17 0.0000 4 248 289 5013 535 p6\001
-6
6 5271 2819 5758 3307
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 5514 3063 223 223 5514 3063 5737 3063
4 0 32 55 -1 0 17 0.0000 4 248 289 5400 3114 p1\001
-6
6 3772 -392 4260 95
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 4016 -148 223 223 4016 -148 4239 -148
4 0 32 55 -1 0 17 0.0000 4 248 289 3902 -97 p7\001
-6
6 628 240 1115 727
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 871 484 223 223 871 484 1094 484
4 0 32 55 -1 0 17 0.0000 4 248 289 757 535 p4\001
-6
6 88 94 5484 3254
6 1136 94 4746 736
2 1 0 2 32 0 764 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
3855 177 4725 551
2 1 0 2 32 0 402 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
4725 551 2273 621
2 1 0 2 32 0 429 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
2273 621 1156 540
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
1156 540 3855 177
-6
6 356 339 3677 2595
2 1 0 2 32 0 841 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
3655 360 1006 744
2 1 0 2 32 0 983 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
3157 1826 3655 360
2 1 0 2 32 0 926 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
377 2574 3157 1826
2 1 0 2 32 0 784 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
1006 744 377 2574
-6
6 88 780 1879 3030
2 1 0 2 32 0 700 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
109 2709 745 800
2 1 0 2 32 0 386 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
745 800 1786 945
2 1 0 2 32 0 87 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
1786 945 1750 3009
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
1750 3009 109 2709
-6
6 3573 329 5484 2613
2 1 0 2 32 0 803 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
5001 751 4103 350
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
5463 2592 5001 751
2 1 0 2 32 0 841 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
3593 1825 5463 2592
2 1 0 2 32 0 973 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
4103 350 3593 1825
-6
6 438 2037 5155 3254
2 1 0 2 32 0 813 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
5134 2882 3291 2058
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
2195 3192 5134 2882
2 1 0 2 32 0 458 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
458 2845 2195 3192
2 1 0 2 32 0 890 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
3291 2058 458 2845
-6
6 2323 700 5469 3117
2 1 0 2 32 0 338 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
2448 937 4936 809
2 1 0 2 32 0 63 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
2447 3022 2448 937
2 1 0 2 32 0 299 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
5422 2742 2447 3022
2 1 0 2 32 0 574 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 247.85 247.85
4936 809 5422 2742
-6
-6
6 -247 2812 241 3300
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 -3 3056 223 223 -3 3056 220 3056
4 0 32 55 -1 0 17 0.0000 4 248 289 -117 3107 p3\001
-6
6 3018 1505 3505 1993
1 3 0 2 32 7 54 -1 20 0.000 1 0.0000 3262 1749 223 223 3262 1749 3485 1749
4 0 32 53 -1 0 17 0.0000 4 248 289 3147 1800 p2\001
-6
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
2328 1658 2441 1580
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
212 2376 -62 2607 -47 2840
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 2
575 2541 212 2969
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
209 3063 509 3145 827 2925
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
1970 2771 1557 2829 1547 2986
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
2458 2534 2247 2597
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
2415 3183 2221 3024
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
2302 864 2551 810 2832 930
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
2167 749 2189 634
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 2
891 1091 760 687
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
4074 58 3958 221
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
4906 511 4745 631
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
3438 1603 3300 1372
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
3154 1924 3037 2107
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
4398 583 4548 733 5001 664
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
5393 2884 5222 2764
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
4645 2654 4948 2687 5332 2953
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
5414 2286 5615 2440 5666 2892
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
3453 1874 3661 2022 3873 1945
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
3793 -70 3465 -22 3449 369
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
4155 42 3958 340 4059 481
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
5231 690 5282 1048 4994 1087
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
1070 343 1410 259 1594 470
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
917 820 884 712
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
1965 1128 1754 1191
4 0 0 60 -1 0 21 0.0000 4 165 124 2193 1742 r\001

View File

@ -1,51 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #979797
0 33 #000000
0 34 #ff0000
6 4628 4271 5145 4788
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4886 4530 237 237 4886 4530 5123 4530
4 0 33 55 -1 0 18 0.0000 4 263 307 4765 4584 p3\001
-6
6 4644 6324 5161 6841
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4902 6583 237 237 4902 6583 5139 6583
4 0 33 55 -1 0 18 0.0000 4 263 307 4777 6660 p0\001
-6
6 7106 5794 7622 6311
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7364 6053 237 237 7364 6053 7601 6053
4 0 33 55 -1 0 18 0.0000 4 263 307 7243 6107 p1\001
-6
6 7329 3931 7846 4448
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7587 4190 237 237 7587 4190 7824 4190
4 0 33 55 -1 0 18 0.0000 4 263 307 7466 4244 p2\001
-6
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
4954 4774 4946 4923 5104 4987
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
5313 6321 5231 6454 5119 6458
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
7358 4196 7266 4217 7202 4390
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
7219 5664 7332 5711 7365 5812
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
5688 6305 5720 6215
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 218.99 218.99
7219 5803 5117 6365
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 218.99 218.99
7364 4366 7209 5807
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 218.99 218.99
5116 4747 7364 4372
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 218.99 218.99
5116 6366 5114 4746
4 0 0 60 -1 0 18 0.0000 4 131 88 5573 6470 r\001

View File

@ -1,46 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #979797
0 33 #000000
0 34 #ff0000
0 35 #009000
6 4691 6126 5171 6607
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4931 6367 220 220 4931 6367 5151 6367
4 0 33 55 -1 0 16 0.0000 4 244 285 4813 6433 p0\001
-6
6 7483 4061 7963 4541
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7723 4301 220 220 7723 4301 7943 4301
4 0 33 55 -1 0 16 0.0000 4 244 285 7605 4368 p1\001
-6
1 3 0 2 33 33 55 -1 20 0.000 1 0.0000 4953 4278 122 122 4953 4278 5075 4278
1 3 0 2 33 33 55 -1 20 0.000 1 0.0000 7672 6154 122 122 7672 6154 7794 6154
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
5148 6303 5285 6272 5316 6120
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
5662 6190 5719 6126
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 203.54 203.54
7489 6126 5046 6126
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 203.54 203.54
5046 4416 7489 4416
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 203.54 203.54
5046 6126 5046 4416
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 2.00 203.54 203.54
7489 4416 7489 6126
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
7308 4393 7508 4282
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
5033 4566 4949 4502 4913 4350
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
7483 5981 7639 6065
4 0 0 60 -1 0 16 0.0000 4 122 81 5590 6341 r\001

View File

@ -1,35 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #979797
0 33 #000000
0 34 #ff0000
6 4630 5292 5142 5804
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4886 5548 234 234 4886 5548 5120 5548
4 0 33 55 -1 0 17 0.0000 4 260 303 4762 5625 p0\001
-6
6 7750 4135 8262 4647
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 8006 4391 234 234 8006 4391 8240 4391
4 0 33 55 -1 0 17 0.0000 4 260 303 7886 4445 p1\001
-6
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 260.00 260.00
7651 4637 5243 5563
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
6346 4726 6540 5200
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
5376 5230 4957 5175 4859 5318
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
7561 4673 7761 4758 7899 4609
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
5634 5040 5695 5108
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
0 0 2.00 260.00 260.00
5166 5308 7629 4387
4 0 0 60 -1 0 17 0.0000 4 130 87 5536 5057 r\001

View File

@ -1,114 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Portrait
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #000000
0 33 #808080
0 34 #ff0000
0 35 #008000
0 36 #0000ff
0 37 #000000
0 38 #000000
0 39 #000000
0 40 #000000
0 41 #000000
0 42 #000000
0 43 #000000
0 44 #000000
0 45 #000000
0 46 #000000
0 47 #000000
0 48 #000000
0 49 #dddddd
0 50 #000000
0 51 #000000
0 52 #a0a0a0
0 53 #979797
6 157 157 2779 3921
2 1 0 2 32 0 986 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
388 2696 2484 3107
2 1 0 2 32 0 811 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
1985 482 388 2701
2 1 0 2 32 0 824 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
2494 3116 1995 471
2 1 0 2 32 0 456 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
1380 3620 180 2701
2 1 0 2 32 0 288 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
1968 180 1380 3620
2 1 0 2 32 0 744 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
180 2701 1968 180
2 1 0 2 32 0 760 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
2185 223 2719 3196
2 1 0 2 32 0 472 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
2719 3196 1629 3669
2 1 0 2 32 0 291 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
1629 3669 2185 223
2 1 0 2 32 0 492 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
310 3007 1445 3900
2 1 0 2 32 0 505 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
1445 3900 2593 3439
2 1 0 2 32 0 953 0 -1 0.000 1 0 7 1 0 2
0 0 2.00 221.92 221.92
2576 3423 321 3013
-6
6 -343 -360 3206 4446
6 1214 3923 1738 4446
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 1475 4185 240 240 1475 4185 1715 4185
4 0 32 55 -1 0 18 0.0000 4 266 311 1353 4240 p1\001
-6
6 2682 3139 3206 3663
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2944 3401 240 240 2944 3401 3183 3401
4 0 32 55 -1 0 18 0.0000 4 266 311 2821 3456 p2\001
-6
6 -343 2627 180 3151
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 -82 2888 240 240 -82 2888 157 2888
4 0 32 55 -1 0 18 0.0000 4 266 311 -209 2967 p0\001
-6
6 1912 -360 2436 164
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2174 -98 240 240 2174 -98 2414 -98
4 0 32 55 -1 0 18 0.0000 4 266 311 2051 -43 p3\001
-6
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
2140 3344 2399 3195 2721 3307
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
2710 3389 2474 3302
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
106 3041 310 3282 606 3247
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
373 2437 20 2489 10 2659
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
544 2736 488 2856 179 2898
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
1247 3513 1140 3789 1298 4003
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
1712 3778 1635 4018
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
1649 3555 1549 3635 1544 3947
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
593 3389 684 3291
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
2291 109 2393 285 2265 563
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
1931 -30 1748 223 1812 682
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
2019 79 2045 256 1942 433
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
2441 2815 2815 2883 2904 3164
4 0 0 60 -1 0 18 0.0000 4 133 89 470 3553 r\001
-6

View File

@ -1,42 +0,0 @@
#FIG 3.2 Produced by xfig version 3.2.5b
Landscape
Center
Metric
A4
100.00
Single
-2
1200 2
0 32 #979797
0 33 #000000
0 34 #ff0000
6 4599 5014 5069 5483
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4834 5249 215 215 4834 5249 5049 5249
4 0 33 55 -1 0 16 0.0000 4 239 279 4720 5319 p0\001
-6
6 7391 4005 7860 4475
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7625 4240 215 215 7625 4240 7840 4240
4 0 33 55 -1 0 16 0.0000 4 239 279 7515 4289 p2\001
-6
6 6865 6463 7335 6933
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7100 6698 215 215 7100 6698 7315 6698
4 0 33 55 -1 0 16 0.0000 4 239 279 6990 6747 p1\001
-6
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
7234 4435 7246 4301 7416 4201
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
5328 5359 5129 5458 4986 5416
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
7092 6483 7124 6322 7000 6191
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 1.00 119.45 119.45
6967 6423 5124 5237
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 1.00 119.45 119.45
5120 5239 7383 4393
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
0 0 1.00 119.45 119.45
7360 4404 6963 6435
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
5352 5477 5408 5414
4 0 0 60 -1 0 16 0.0000 4 119 80 5251 5617 r\001

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

View File

@ -1,47 +0,0 @@
\ccRefChapter{Linear cell complex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Classified Reference Pages}
\subsection{Concepts}
%\ccRefConceptPage{LinearCellComplex}\\
\ccRefConceptPage{LinearCellComplexTraits}\\
\ccRefConceptPage{LinearCellComplexItems}\\
\ccRefConceptPage{CellAttributeWithPoint}
%\ccRefConceptPage{LinearCellComplexTraitsVector}
\subsection{Classes}
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}\\
%\ccRefIdfierPage{CGAL::Linear_cell_complex_cartesian_traits}\\
%\ccRefIdfierPage{CGAL::Linear_cell_complex_epik_traits}\\
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}
\subsection{Global Functions}
\subsubsection{Constructions for Linear cell complex}
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
%\ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
%\ccRefIdfierPage{CGAL::make_square}\\
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
%\ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
%\ccRefIdfierPage{CGAL::make_cube}\\
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}
\subsubsection{Operations for Linear cell complex}
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
% \ccRefIdfierPage{CGAL::insert_point_in_cell<LCC,i>}\\
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}

View File

@ -1,36 +0,0 @@
% +------------------------------------------------------------------------+
% | CBP Reference Manual: main.tex
% +------------------------------------------------------------------------+
% | Automatically generated driver file for the reference manual chapter
% | of this package. Do not edit manually, you may loose your changes.
% +------------------------------------------------------------------------+
\def\ccTagRmTrailingConst{\ccFalse}
\input{Linear_cell_complex_ref/intro.tex}
% First: concepts
% \input{Linear_cell_complex_ref/LinearCellComplex.tex}
\input{Linear_cell_complex_ref/LinearCellComplexTraits.tex}
\input{Linear_cell_complex_ref/LinearCellComplexItems.tex}
\input{Linear_cell_complex_ref/CellAttributeWithPoint.tex}
%\input{Linear_cell_complex_ref/LinearCellComplexTraitsVector.tex}
% Second: classes
\input{Linear_cell_complex_ref/Linear_cell_complex.tex}
\input{Linear_cell_complex_ref/Linear_cell_complex_min_items.tex}
\input{Linear_cell_complex_ref/Linear_cell_complex_traits.tex}
%\input{Linear_cell_complex_ref/Linear_cell_complex_cartesian_traits.tex}
%\input{Linear_cell_complex_ref/Linear_cell_complex_epik_traits.tex}
\input{Linear_cell_complex_ref/Cell_attribute_with_point.tex}
%\input{Linear_cell_complex_ref/Cell_attribute_with_point_and_info.tex}
% Third: global functions.
\input{Linear_cell_complex_ref/Linear_cell_complex_constructors.tex}
\input{Linear_cell_complex_ref/Linear_cell_complex_operations.tex}
%% EOF

View File

@ -1,62 +0,0 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
# cmake ../ -DCMAKE_BUILD_TYPE=Debug
# ou
# cmake ../ -DCMAKE_BUILD_TYPE=Release
project( Map_3_examples )
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.5)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x -Wall")
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true)
if ( COMMAND cmake_policy )
cmake_policy( SET CMP0003 NEW )
endif()
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0")
endif()
# ADD_DEFINITIONS("-pg")
# set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pg")
# Pour le problème de valgrind avec CGAL
# add_definition(-DCGAL_DISABLE_ROUNDING_MATH_CHECK)
find_package(CGAL QUIET COMPONENTS Core )
if ( CGAL_FOUND )
include( ${CGAL_USE_FILE} )
include( CGAL_CreateSingleSourceCGALProgram )
include_directories(BEFORE ../../include)
include_directories(BEFORE ../../../Combinatorial_map/include)
create_single_source_cgal_program( "linear_cell_complex_3.cpp" )
create_single_source_cgal_program( "linear_cell_complex_4.cpp" )
create_single_source_cgal_program( "linear_cell_complex_3_with_colored_vertices.cpp" )
create_single_source_cgal_program( "map_3_subdivision.cpp" )
create_single_source_cgal_program( "plane_graph_to_map_2.cpp" )
create_single_source_cgal_program( "map_3_iterators.cpp" )
create_single_source_cgal_program( "exemple_incremental_builder.cpp" )
create_single_source_cgal_program( "polyhedron_clear.cpp" )
# If you want to visualize a map, there are 2 viewers based on qt and vtk
#include_directories("../../include/CGAL/Combinatorial_map_viewers/" )
#include("../../include/CGAL/Combinatorial_map_viewers/CMakeMapViewerQt.inc")
#include("../../include/CGAL/Combinatorial_map_viewers/CMakeMapViewerVtk.inc")
add_executable(voronoi_3 voronoi_3.cpp)
target_link_libraries(voronoi_3 ${CGAL_LIBRARIES} ${CGAL_3RD_PARTY_LIBRARIES})
# target_link_libraries(voronoi_3 ${MAP_VIEWER_LIBRARIES_QT})
# target_link_libraries(voronoi_3 ${MAP_VIEWER_LIBRARIES_VTK})
else()
message(STATUS "This program requires the CGAL library, and will not be compiled.")
endif()

View File

@ -1,317 +0,0 @@
OFF
154 161 313
-0.000357203 -0.235365 -0.160125
-0.000357203 -0.201317 -0.488359
-0.000357203 -0.292821 0.0217439
0.190729 -0.13758 0.378379
0.13019 -0.267236 0.298845
0.190729 0.0100846 0.378379
0.0215368 0.217461 -0.51172
0.0299628 0.207248 -0.0999594
0.0292682 0.222545 -0.275104
0.0768803 0.121009 -0.13791
0.0359848 0.17055 -0.040928
0.0299468 -0.152925 -0.34216
0.025316 0.0079986 -0.671613
0.112137 0.0486489 -0.334468
0.17708 0.0141305 -0.001149
0.11094 0.149864 0.298845
0.0221919 -0.110187 -0.590456
0.0936803 -0.22453 0.026899
0.113404 -0.0498528 -0.316654
0.0652844 0.112329 -0.345801
0.17708 -0.120885 0.017739
0.0936803 0.144433 -0.0331753
-0.000357203 -0.335018 0.298845
-0.000357203 0.158995 -0.742002
-0.000357203 0.00799863 -0.742002
-0.000357203 0.231668 -0.508839
-0.000357203 -0.150077 -0.732558
-0.000357203 0.183546 0.298845
-0.000357203 0.232012 -0.275104
0.190729 0.0489168 0.495135
0.11094 0.149864 0.495135
0.13019 -0.267236 0.495135
0.190729 -0.0987481 0.495135
0.165251 0.0336246 0.567519
0.0961008 0.121112 0.567519
-0.000357203 0.150303 0.567519
-0.000357203 -0.299119 0.567519
0.112784 -0.240374 0.567519
0.165251 -0.0943517 0.567519
0.158169 0.0203713 0.567519
0.0832397 0.0961934 0.567519
-0.000357203 0.121493 0.567519
-0.000357203 -0.268007 0.567519
0.0976983 -0.217095 0.567519
0.158169 -0.0905415 0.567519
0.158169 0.0203713 0.484629
0.0832397 0.0961934 0.484629
-0.000357203 0.121493 0.484629
0.0976983 -0.217095 0.484629
0.158169 -0.0905415 0.484629
0.232021 -0.0969884 0.147736
0.222564 -0.0120031 0.135774
0.241484 -0.0124758 0.32577
0.251828 -0.105423 0.32577
0.221675 -0.0537317 -0.14475
0.547234 0.011391 0.135774
0.566079 0.0115894 0.32577
0.573698 -0.0568671 0.32577
0.545139 -0.0195028 -0.0723815
0.5542 -0.0512014 0.147736
0.873235 0.0322361 0.18891
0.883911 0.0323485 0.29654
0.888226 -0.00643099 0.29654
0.872049 0.0147353 0.0957062
0.877181 -0.00322145 0.195687
0.956323 0.0235341 0.192298
0.963222 0.0286616 0.264585
0.143323 0.0162689 -0.433251
0.0684487 0.00718598 -0.642478
0.142247 0.0417387 -0.448393
0.379652 0.0694599 -0.566806
0.37455 0.0944136 -0.566806
0.405166 0.0746761 -0.587722
0.343995 0.0918102 -0.908647
0.400064 0.0996298 -0.587722
0.420699 -0.131311 -0.566806
0.39516 -0.100331 -0.908647
0.446883 -0.129375 -0.587722
0.3308 0.214471 -0.908647
0.344344 0.242162 -0.566806
0.369364 0.249793 -0.587722
0.349639 0.09078 -0.834104
-0.0943947 0.144433 -0.0331752
-0.177794 0.0141305 -0.001149
-0.112851 0.0486489 -0.334468
-0.0659988 0.112329 -0.345801
-0.0775947 0.121009 -0.13791
-0.0260305 0.0079986 -0.671613
-0.0222512 0.217461 -0.51172
-0.0943947 -0.22453 0.026899
-0.130905 -0.267236 0.298845
-0.000357203 0.173965 -0.0160962
-0.111655 0.149864 0.298845
-0.0366992 0.17055 -0.040928
-0.0306611 -0.152925 -0.34216
-0.114118 -0.0498528 -0.316654
-0.177794 -0.120885 0.0177391
-0.0299827 0.222544 -0.275104
-0.0229063 -0.110187 -0.590456
-0.0306772 0.207248 -0.0999594
-0.000357203 0.216146 -0.0919062
-0.191443 0.0100846 0.378379
-0.191443 -0.13758 0.378379
-0.87395 0.0322361 0.18891
-0.957037 0.0235341 0.192298
-0.884625 0.0323485 0.29654
-0.963936 0.0286615 0.264585
-0.346372 0.0918103 -0.905359
-0.40588 0.0746761 -0.587722
-0.400779 0.0996299 -0.602235
-0.222389 -0.0537316 -0.14475
-0.111655 0.149864 0.495135
-0.191443 0.0489168 0.495135
-0.000357203 0.183546 0.495135
-0.130905 -0.267236 0.495135
-0.000357203 -0.335018 0.495135
-0.191443 -0.0987481 0.495135
-0.0968152 0.121112 0.567519
-0.165965 0.0336246 0.567519
-0.113498 -0.240374 0.567519
-0.165965 -0.0943517 0.567519
-0.0839541 0.0961934 0.567519
-0.143884 0.0203713 0.567519
-0.0984127 -0.217095 0.567519
-0.143884 -0.0905415 0.567519
-0.0839541 0.0961934 0.484629
-0.143884 0.0203713 0.484629
-0.0984127 -0.217095 0.484629
-0.000357203 -0.268007 0.484629
-0.143884 -0.0905415 0.484629
-0.223278 -0.0120031 0.135774
-0.242198 -0.0124758 0.32577
-0.252542 -0.105423 0.32577
-0.232736 -0.0969883 0.147736
-0.872763 0.0147353 0.0957062
-0.566794 0.0115894 0.32577
-0.547948 0.011391 0.135774
-0.574412 -0.0568671 0.32577
-0.554914 -0.0512014 0.147736
-0.545854 -0.0195028 -0.0723815
-0.888941 -0.00643099 0.29654
-0.877895 -0.00322148 0.195687
-0.069163 0.00718598 -0.642478
-0.144038 0.0162689 -0.433251
-0.142961 0.0417387 -0.448393
-0.375265 0.0944137 -0.58132
-0.350353 0.0907801 -0.834105
-0.380366 0.0694599 -0.566806
-0.421413 -0.131311 -0.658428
-0.397537 -0.100331 -0.882239
-0.447598 -0.129375 -0.691307
-0.333177 0.214471 -0.877766
-0.345058 0.242162 -0.663246
-0.370078 0.249793 -0.695961
5 14 13 19 9 21
3 24 6 19
4 2 17 4 22
5 27 15 21 10 91
4 18 20 17 11
4 18 11 24 12
3 6 24 23
4 28 8 6 25
3 25 6 23
3 16 1 26
4 17 2 0 11
4 11 0 1 16
3 10 21 9
3 8 19 6
4 7 100 91 10
3 7 10 9
4 21 15 5 14
4 20 3 4 17
4 60 61 66 65
3 73 74 72
5 14 54 20 18 13
4 15 30 29 5
4 27 113 30 15
4 4 31 115 22
4 3 32 31 4
4 5 29 32 3
4 30 34 33 29
4 113 35 34 30
4 31 37 36 115
4 32 38 37 31
4 29 33 38 32
4 34 40 39 33
4 35 41 40 34
4 37 43 42 36
4 38 44 43 37
4 33 39 44 38
4 40 46 45 39
4 41 47 46 40
4 43 48 128 42
4 44 49 48 43
4 39 45 49 44
4 7 8 28 100
4 7 9 19 8
3 14 51 54
4 5 52 51 14
4 3 53 52 5
4 20 50 53 3
3 50 20 54
3 60 65 63
4 52 56 55 51
4 53 57 56 52
4 50 59 57 53
4 51 55 58 54
4 54 58 59 50
4 56 61 60 55
4 57 62 61 56
4 59 64 62 57
4 55 60 63 58
4 58 63 64 59
4 66 62 64 65
3 65 64 63
3 66 61 62
4 12 68 67 18
4 13 69 68 12
4 18 67 69 13
4 69 71 81 68
4 67 70 71 69
3 76 77 75
3 79 80 78
4 70 72 74 71
5 73 76 75 70 81
4 72 77 76 73
4 70 75 77 72
5 71 79 78 73 81
4 74 80 79 71
4 73 78 80 74
4 81 70 67 68
5 86 85 84 83 82
4 24 87 84 85
4 90 89 2 22
5 93 82 92 27 91
4 89 96 95 94
3 94 95 87
4 88 97 28 25
3 88 25 23
3 1 98 26
4 0 2 89 94
4 1 0 94 98
4 24 98 94 87
3 82 93 86
3 85 97 88
4 91 100 99 93
3 93 99 86
4 101 92 82 83
4 90 102 96 89
4 106 105 103 104
3 26 98 24
3 109 107 108
5 95 96 110 83 84
4 112 111 92 101
4 111 113 27 92
4 115 114 90 22
4 114 116 102 90
4 116 112 101 102
4 118 117 111 112
4 117 35 113 111
4 36 119 114 115
4 119 120 116 114
4 120 118 112 116
4 122 121 117 118
4 121 41 35 117
4 42 123 119 36
4 123 124 120 119
4 124 122 118 120
4 126 125 121 122
4 125 47 41 121
4 128 127 123 42
4 127 129 124 123
4 129 126 122 124
4 28 97 99 100
4 85 86 99 97
3 130 83 110
4 130 131 101 83
4 131 132 102 101
4 132 133 96 102
3 96 133 110
3 104 103 134
4 136 135 131 130
4 135 137 132 131
4 137 138 133 132
4 139 136 130 110
4 138 139 110 133
4 103 105 135 136
4 105 140 137 135
4 140 141 138 137
4 134 103 136 139
4 141 134 139 138
4 141 140 106 104
3 141 104 134
3 105 106 140
4 143 142 87 95
4 142 144 84 87
4 144 143 95 84
4 146 145 144 142
4 145 147 143 144
3 150 149 148
3 153 152 151
4 109 108 147 145
5 147 148 149 107 146
4 149 150 108 107
4 150 148 147 108
5 107 151 152 145 146
4 152 153 109 145
4 153 151 107 109
4 143 147 146 142
10 128 48 49 45 46 47 125 126 129 127
3 88 23 24
4 19 13 12 24
3 16 26 24
3 11 16 24
3 85 88 24

View File

@ -1,225 +0,0 @@
OFF2D
61 160
-5 -5
-3 -5
-3 -3
-5 -3
-3 -1
-5 -1
-3 1
-5 1
-3 3
-5 3
-3 5
-5 5
-1 -5
-1 -3
-1 -1
-1 1
-1 3
-1 5
1 -5
1 -3
1 -1
1 1
1 3
1 5
3 -5
3 -3
3 -1
3 1
3 3
3 5
5 -5
5 -3
5 -1
5 1
5 3
5 5
4 4
4 2
4 0
4 -2
4 -4
2 4
2 2
2 0
2 -2
2 -4
0 4
0 2
0 0
0 -2
0 -4
-2 4
-2 2
-2 0
-2 -2
-2 -4
-4 4
-4 2
-4 0
-4 -2
-4 -4
0 1
1 2
2 3
3 0
2 4
4 5
5 3
4 6
6 7
7 5
6 8
8 9
9 7
8 10
10 11
11 9
1 12
12 13
13 2
13 14
14 4
14 15
15 6
15 16
16 8
16 17
17 10
12 18
18 19
19 13
19 20
20 14
20 21
21 15
21 22
22 16
22 23
23 17
18 24
24 25
25 19
25 26
26 20
26 27
27 21
27 28
28 22
28 29
29 23
24 30
30 31
31 25
31 32
32 26
32 33
33 27
33 34
34 28
34 35
35 29
28 36
29 36
35 36
34 36
27 37
28 37
34 37
33 37
26 38
27 38
33 38
32 38
25 39
26 39
32 39
31 39
24 40
25 40
31 40
30 40
22 41
23 41
29 41
28 41
21 42
22 42
28 42
27 42
20 43
21 43
27 43
26 43
19 44
20 44
26 44
25 44
18 45
19 45
25 45
24 45
16 46
17 46
23 46
22 46
15 47
16 47
22 47
21 47
14 48
15 48
21 48
20 48
13 49
14 49
20 49
19 49
12 50
13 50
19 50
18 50
8 51
10 51
17 51
16 51
6 52
8 52
16 52
15 52
4 53
6 53
15 53
14 53
2 54
4 54
14 54
13 54
1 55
2 55
13 55
12 55
9 56
11 56
10 56
8 56
7 57
9 57
8 57
6 57
5 58
7 58
6 58
4 58
3 59
5 59
4 59
2 59
0 60
3 60
2 60
1 60

Some files were not shown because too many files have changed in this diff Show More