Remove directory Linear_cell_complex/
|
|
@ -1931,134 +1931,6 @@ Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler-detail.png -text
|
||||||
Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler.png -text
|
Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler.png -text
|
||||||
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test eol=lf
|
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test eol=lf
|
||||||
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test_with_cmake eol=lf
|
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test_with_cmake eol=lf
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/CMakeLists.txt -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.cpp -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.qrc -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/CreateMesh.ui -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.cpp -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.h -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.ui -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/Viewer.cpp -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/Viewer.h -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/about_Combinatorial_map_3.html -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/map_3_subdivision.cpp -text
|
|
||||||
Linear_cell_complex/demo/Linear_cell_complex/typedefs.h -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/Linear_cell_complex.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/PkgDescription.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/4Dobject.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/Diagramme_class.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/basic-example3D.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/creations.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew2.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-edge.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-vertex.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-object.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom2.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/object2d.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/4Dobject.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/Diagramme_class.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/basic-example3D.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/creations.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-edge.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-vertex.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-object.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom2.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc.pdf -text svneol=unset#unset
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/object2d.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/plane-graph.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/triangulation.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/plane-graph.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/4Dobject.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/Diagramme_class.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/basic-example3D.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/creations.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew2.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-edge.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-vertex.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-object.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom2.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/object2d.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/plane-graph.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/triangulation.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/triangulation.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex/main.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/CellAttributeWithPoint.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Cell_attribute_with_point.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexItems.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexTraits.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_constructors.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_min_items.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_operations.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_traits.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/import_graph.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_cuboid.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_hexahedron.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_quadrilateral.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_rectangle.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_segment.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_tetrahedron.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_triangle.fig -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/import_graph.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_cuboid.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_hexahedron.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_quadrilateral.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_rectangle.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_segment.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_tetrahedron.pdf -text svneol=unset#unset
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_triangle.pdf -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/import_graph.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_cuboid.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_hexahedron.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_quadrilateral.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_rectangle.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_segment.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_tetrahedron.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_triangle.png -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/intro.tex -text
|
|
||||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/main.tex -text
|
|
||||||
Linear_cell_complex/dont_submit -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/CMakeLists.txt -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/aircraft.off -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/graph1.off -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/graph2.off -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/points -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/small_points -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/data/small_points2 -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/exemple_incremental_builder.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_with_colored_vertices.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_4.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/map_3_iterators.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/map_3_subdivision.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/plane_graph_to_map_2.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/polyhedron_clear.cpp -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/res-valid.txt -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/test-all -text
|
|
||||||
Linear_cell_complex/examples/Linear_cell_complex/voronoi_3.cpp -text
|
|
||||||
Linear_cell_complex/include/CGAL/Cell_attribute_with_point.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_constructors.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_incremental_builder.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_min_items.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_operations.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_traits.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/CMakeMapViewerQt.inc -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/CMakeMapViewerVtk.inc -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/linear_cell_complex_viewer_qt_3.h -text
|
|
||||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_viewers/linear_cell_complex_viewer_vtk_3.h -text
|
|
||||||
Linear_cell_complex/package_info/Linear_cell_complex/description.txt -text
|
|
||||||
Linear_cell_complex/package_info/Linear_cell_complex/long_description.txt -text
|
|
||||||
Linear_cell_complex/package_info/Linear_cell_complex/maintainer -text
|
|
||||||
MacOSX/auxiliary/cgal_app.icns -text
|
MacOSX/auxiliary/cgal_app.icns -text
|
||||||
Maintenance/MacOSX_Installer/CGAL-3.2-absolute.pmproj -text
|
Maintenance/MacOSX_Installer/CGAL-3.2-absolute.pmproj -text
|
||||||
Maintenance/MacOSX_Installer/CGAL-3.2.pmproj -text
|
Maintenance/MacOSX_Installer/CGAL-3.2.pmproj -text
|
||||||
|
|
|
||||||
|
|
@ -1,60 +0,0 @@
|
||||||
# Created by the script cgal_create_cmake_script
|
|
||||||
# This is the CMake script for compiling a CGAL application.
|
|
||||||
# cmake ../ -DCMAKE_BUILD_TYPE=Debug
|
|
||||||
|
|
||||||
project (Combinatorial_map_3_demo)
|
|
||||||
|
|
||||||
cmake_minimum_required(VERSION 2.4.5)
|
|
||||||
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -W")
|
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
|
|
||||||
|
|
||||||
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true)
|
|
||||||
|
|
||||||
if ( COMMAND cmake_policy )
|
|
||||||
cmake_policy( SET CMP0003 NEW )
|
|
||||||
endif()
|
|
||||||
|
|
||||||
find_package(CGAL COMPONENTS Qt4)
|
|
||||||
include(${CGAL_USE_FILE})
|
|
||||||
|
|
||||||
set( QT_USE_QTXML TRUE )
|
|
||||||
set( QT_USE_QTMAIN TRUE )
|
|
||||||
set( QT_USE_QTSCRIPT TRUE )
|
|
||||||
set( QT_USE_QTOPENGL TRUE )
|
|
||||||
find_package(Qt4)
|
|
||||||
|
|
||||||
find_package(OpenGL)
|
|
||||||
find_package(QGLViewer)
|
|
||||||
|
|
||||||
if ( NOT (CGAL_FOUND AND CGAL_Qt4_FOUND AND QT4_FOUND AND OPENGL_FOUND AND QGLVIEWER_FOUND) )
|
|
||||||
MESSAGE(FATAL_ERROR "NOTICE: This demo requires CGAL, QGLViewer, OpenGL and Qt4, and will not be compiled.")
|
|
||||||
endif ( NOT (CGAL_FOUND AND CGAL_Qt4_FOUND AND QT4_FOUND AND OPENGL_FOUND AND QGLVIEWER_FOUND) )
|
|
||||||
|
|
||||||
|
|
||||||
include(${QT_USE_FILE})
|
|
||||||
include_directories(${QGLVIEWER_INCLUDE_DIR})
|
|
||||||
include_directories(BEFORE . ../../include/)
|
|
||||||
include_directories(BEFORE . ../../../Combinatorial_map/include/)
|
|
||||||
|
|
||||||
|
|
||||||
# ui file, created wih Qt Designer
|
|
||||||
qt4_wrap_ui( uis MainWindow.ui CreateMesh.ui)
|
|
||||||
|
|
||||||
# qrc files (resources files, that contain icons, at least)
|
|
||||||
qt4_add_resources ( RESOURCE_FILES ./Combinatorial_map_3.qrc )
|
|
||||||
|
|
||||||
qt4_automoc( MainWindow.cpp Viewer.cpp)
|
|
||||||
|
|
||||||
add_executable(Combinatorial_map_3
|
|
||||||
Combinatorial_map_3.cpp MainWindow.cpp
|
|
||||||
Viewer.cpp map_3_subdivision.cpp
|
|
||||||
${uis} ${RESOURCE_FILES} )
|
|
||||||
|
|
||||||
add_to_cached_list(CGAL_EXECUTABLE_TARGETS Combinatorial_map_3)
|
|
||||||
|
|
||||||
target_link_libraries(Combinatorial_map_3 ${CGAL_LIBRARIES}
|
|
||||||
${CGAL_3RD_PARTY_LIBRARIES})
|
|
||||||
target_link_libraries(Combinatorial_map_3 ${QT_LIBRARIES}
|
|
||||||
${QGLVIEWER_LIBRARIES} )
|
|
||||||
target_link_libraries(Combinatorial_map_3 ${OPENGL_gl_LIBRARY}
|
|
||||||
${OPENGL_glu_LIBRARY} )
|
|
||||||
|
|
@ -1,42 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Combinatorial_map_3.cpp $
|
|
||||||
// $Id: Combinatorial_map_3.cpp 56872 2010-06-18 12:57:31Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#include "MainWindow.h"
|
|
||||||
#include "typedefs.h"
|
|
||||||
#include <QApplication>
|
|
||||||
|
|
||||||
int main(int argc, char** argv)
|
|
||||||
{
|
|
||||||
std::cout<<"Size of dart: "<<sizeof(Map::Dart)<<std::endl;
|
|
||||||
|
|
||||||
QApplication application(argc,argv);
|
|
||||||
|
|
||||||
application.setOrganizationDomain("geometryfactory.com");
|
|
||||||
application.setOrganizationName("GeometryFactory");
|
|
||||||
application.setApplicationName("3D Combinatorial Map");
|
|
||||||
|
|
||||||
// Import resources from libCGALQt4.
|
|
||||||
// See http://doc.trolltech.com/4.4/qdir.html#Q_INIT_RESOURCE
|
|
||||||
Q_INIT_RESOURCE(File);
|
|
||||||
Q_INIT_RESOURCE(Combinatorial_map_3);
|
|
||||||
Q_INIT_RESOURCE(CGAL);
|
|
||||||
MainWindow mw;
|
|
||||||
mw.show();
|
|
||||||
|
|
||||||
return application.exec();
|
|
||||||
}
|
|
||||||
|
|
@ -1,5 +0,0 @@
|
||||||
<RCC>
|
|
||||||
<qresource prefix="/cgal/help" >
|
|
||||||
<file>about_Combinatorial_map_3.html</file>
|
|
||||||
</qresource>
|
|
||||||
</RCC>
|
|
||||||
|
|
@ -1,149 +0,0 @@
|
||||||
<?xml version="1.0" encoding="UTF-8"?>
|
|
||||||
<ui version="4.0">
|
|
||||||
<class>createMesh</class>
|
|
||||||
<widget class="QDialog" name="createMesh">
|
|
||||||
<property name="geometry">
|
|
||||||
<rect>
|
|
||||||
<x>0</x>
|
|
||||||
<y>0</y>
|
|
||||||
<width>220</width>
|
|
||||||
<height>65</height>
|
|
||||||
</rect>
|
|
||||||
</property>
|
|
||||||
<property name="sizePolicy">
|
|
||||||
<sizepolicy hsizetype="Fixed" vsizetype="Fixed">
|
|
||||||
<horstretch>0</horstretch>
|
|
||||||
<verstretch>0</verstretch>
|
|
||||||
</sizepolicy>
|
|
||||||
</property>
|
|
||||||
<property name="minimumSize">
|
|
||||||
<size>
|
|
||||||
<width>220</width>
|
|
||||||
<height>65</height>
|
|
||||||
</size>
|
|
||||||
</property>
|
|
||||||
<property name="maximumSize">
|
|
||||||
<size>
|
|
||||||
<width>220</width>
|
|
||||||
<height>65</height>
|
|
||||||
</size>
|
|
||||||
</property>
|
|
||||||
<property name="windowTitle">
|
|
||||||
<string>Creare Mesh</string>
|
|
||||||
</property>
|
|
||||||
<property name="locale">
|
|
||||||
<locale language="English" country="UnitedStates"/>
|
|
||||||
</property>
|
|
||||||
<widget class="QDialogButtonBox" name="buttonBox">
|
|
||||||
<property name="geometry">
|
|
||||||
<rect>
|
|
||||||
<x>20</x>
|
|
||||||
<y>30</y>
|
|
||||||
<width>171</width>
|
|
||||||
<height>32</height>
|
|
||||||
</rect>
|
|
||||||
</property>
|
|
||||||
<property name="orientation">
|
|
||||||
<enum>Qt::Horizontal</enum>
|
|
||||||
</property>
|
|
||||||
<property name="standardButtons">
|
|
||||||
<set>QDialogButtonBox::Cancel|QDialogButtonBox::Ok</set>
|
|
||||||
</property>
|
|
||||||
<property name="centerButtons">
|
|
||||||
<bool>true</bool>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
<widget class="QWidget" name="horizontalLayoutWidget_2">
|
|
||||||
<property name="geometry">
|
|
||||||
<rect>
|
|
||||||
<x>0</x>
|
|
||||||
<y>0</y>
|
|
||||||
<width>221</width>
|
|
||||||
<height>31</height>
|
|
||||||
</rect>
|
|
||||||
</property>
|
|
||||||
<layout class="QHBoxLayout" name="horizontalLayout_2">
|
|
||||||
<item>
|
|
||||||
<widget class="QLabel" name="label_3">
|
|
||||||
<property name="text">
|
|
||||||
<string>X</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QSpinBox" name="xvalue">
|
|
||||||
<property name="minimum">
|
|
||||||
<number>1</number>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QLabel" name="label_4">
|
|
||||||
<property name="text">
|
|
||||||
<string>Y</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QSpinBox" name="yvalue">
|
|
||||||
<property name="minimum">
|
|
||||||
<number>1</number>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QLabel" name="label_2">
|
|
||||||
<property name="text">
|
|
||||||
<string>Z</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QSpinBox" name="zvalue">
|
|
||||||
<property name="minimum">
|
|
||||||
<number>1</number>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
</layout>
|
|
||||||
</widget>
|
|
||||||
</widget>
|
|
||||||
<tabstops>
|
|
||||||
<tabstop>buttonBox</tabstop>
|
|
||||||
</tabstops>
|
|
||||||
<resources/>
|
|
||||||
<connections>
|
|
||||||
<connection>
|
|
||||||
<sender>buttonBox</sender>
|
|
||||||
<signal>accepted()</signal>
|
|
||||||
<receiver>createMesh</receiver>
|
|
||||||
<slot>accept()</slot>
|
|
||||||
<hints>
|
|
||||||
<hint type="sourcelabel">
|
|
||||||
<x>248</x>
|
|
||||||
<y>254</y>
|
|
||||||
</hint>
|
|
||||||
<hint type="destinationlabel">
|
|
||||||
<x>157</x>
|
|
||||||
<y>274</y>
|
|
||||||
</hint>
|
|
||||||
</hints>
|
|
||||||
</connection>
|
|
||||||
<connection>
|
|
||||||
<sender>buttonBox</sender>
|
|
||||||
<signal>rejected()</signal>
|
|
||||||
<receiver>createMesh</receiver>
|
|
||||||
<slot>reject()</slot>
|
|
||||||
<hints>
|
|
||||||
<hint type="sourcelabel">
|
|
||||||
<x>316</x>
|
|
||||||
<y>260</y>
|
|
||||||
</hint>
|
|
||||||
<hint type="destinationlabel">
|
|
||||||
<x>286</x>
|
|
||||||
<y>274</y>
|
|
||||||
</hint>
|
|
||||||
</hints>
|
|
||||||
</connection>
|
|
||||||
</connections>
|
|
||||||
</ui>
|
|
||||||
|
|
@ -1,481 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/MainWindow.cpp $
|
|
||||||
// $Id: MainWindow.cpp 65446 2011-09-20 16:55:42Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#include "MainWindow.h"
|
|
||||||
#include <CGAL/Delaunay_triangulation_3.h>
|
|
||||||
|
|
||||||
// Function defined in map_3_subivision.cpp
|
|
||||||
void subdivide_map_3 (Map & m);
|
|
||||||
|
|
||||||
#define DELAY_STATUSMSG 1500
|
|
||||||
|
|
||||||
MainWindow::MainWindow (QWidget * parent):CGAL::Qt::DemosMainWindow (parent),
|
|
||||||
nbcube (0),
|
|
||||||
tdsdart(NULL),
|
|
||||||
dialogmesh(this)
|
|
||||||
{
|
|
||||||
setupUi (this);
|
|
||||||
scene.map = new Map;
|
|
||||||
|
|
||||||
this->viewer->setScene (&scene);
|
|
||||||
connectActions ();
|
|
||||||
this->addAboutDemo (":/cgal/help/about_Combinatorial_map_3.html");
|
|
||||||
this->addAboutCGAL ();
|
|
||||||
|
|
||||||
this->addRecentFiles (this->menuFile, this->actionQuit);
|
|
||||||
connect (this, SIGNAL (openRecentFile (QString)),
|
|
||||||
this, SLOT (load_off (QString)));
|
|
||||||
|
|
||||||
statusMessage = new QLabel ("Darts: 0, Vertices: 0 (Points: 0), Edges: 0, Facets: 0,"
|
|
||||||
" Volume: 0 (Vol color: 0), Connected components: 0");
|
|
||||||
statusBar ()->addWidget (statusMessage);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void MainWindow::connectActions ()
|
|
||||||
{
|
|
||||||
QObject::connect (this->actionImportOFF, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (import_off ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionAddOFF, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (add_off ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionImport3DTDS, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (import_3DTDS ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionQuit, SIGNAL (triggered ()),
|
|
||||||
qApp, SLOT (quit ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionSubdivide, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (subdivide ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionCreate_cube, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (create_cube ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionCreate_mesh, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (create_mesh ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionCreate3Cubes, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (create_3cubes ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionCreate2Volumes, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (create_2volumes ()));
|
|
||||||
|
|
||||||
QObject::connect (this, SIGNAL (sceneChanged ()),
|
|
||||||
this, SLOT (onSceneChanged ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionClear, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (clear ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionDual_3, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (dual_3 ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionClose_volume, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (close_volume ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionRemove_current_volume, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (remove_current_volume ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionSew3_same_facets, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (sew3_same_facets ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionUnsew3_all, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (unsew3_all ()));
|
|
||||||
|
|
||||||
QObject::connect (this->actionTriangulate_all_facets, SIGNAL (triggered ()),
|
|
||||||
this, SLOT (triangulate_all_facets ()));
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::onSceneChanged ()
|
|
||||||
{
|
|
||||||
int mark = scene.map->get_new_mark ();
|
|
||||||
scene.map->negate_mark (mark);
|
|
||||||
|
|
||||||
std::vector<unsigned int> cells;
|
|
||||||
cells.push_back(0);
|
|
||||||
cells.push_back(1);
|
|
||||||
cells.push_back(2);
|
|
||||||
cells.push_back(3);
|
|
||||||
cells.push_back(4);
|
|
||||||
|
|
||||||
std::vector<unsigned int> res = scene.map->count_cells (cells);
|
|
||||||
|
|
||||||
std::ostringstream os;
|
|
||||||
os << "Darts: " << scene.map->number_of_darts ()
|
|
||||||
<< ", Vertices:" << res[0]
|
|
||||||
<<", (Points:"<<scene.map->number_of_attributes<0>()<<")"
|
|
||||||
<< ", Edges:" << res[1]
|
|
||||||
<< ", Facets:" << res[2]
|
|
||||||
<< ", Volumes:" << res[3]
|
|
||||||
#ifdef COLOR_VOLUME
|
|
||||||
<<", (Vol color:"<<scene.map->number_of_attributes<3>()<<")"
|
|
||||||
#endif
|
|
||||||
<< ", Connected components:" << res[4]
|
|
||||||
<<", Valid:"<<(scene.map->is_valid()?"true":"FALSE");
|
|
||||||
|
|
||||||
scene.map->negate_mark (mark);
|
|
||||||
scene.map->free_mark (mark);
|
|
||||||
|
|
||||||
viewer->sceneChanged ();
|
|
||||||
|
|
||||||
statusMessage->setText (os.str().c_str ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::import_off ()
|
|
||||||
{
|
|
||||||
QString fileName = QFileDialog::getOpenFileName (this,
|
|
||||||
tr ("Import OFF"),
|
|
||||||
"./off",
|
|
||||||
tr ("off files (*.off)"));
|
|
||||||
|
|
||||||
if (!fileName.isEmpty ())
|
|
||||||
{
|
|
||||||
load_off (fileName, true);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::import_3DTDS ()
|
|
||||||
{
|
|
||||||
QString fileName = QFileDialog::getOpenFileName (this,
|
|
||||||
tr ("Import 3DTDS"),
|
|
||||||
".",
|
|
||||||
tr ("Data file (*)"));
|
|
||||||
|
|
||||||
if (!fileName.isEmpty ())
|
|
||||||
{
|
|
||||||
load_3DTDS (fileName, true);
|
|
||||||
statusBar ()->showMessage (QString ("Import 3DTDS file") + fileName,
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::add_off ()
|
|
||||||
{
|
|
||||||
QString fileName = QFileDialog::getOpenFileName (this,
|
|
||||||
tr ("Add OFF"),
|
|
||||||
"./off",
|
|
||||||
tr ("off files (*.off)"));
|
|
||||||
|
|
||||||
if (!fileName.isEmpty ())
|
|
||||||
{
|
|
||||||
load_off (fileName, false);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::load_off (const QString & fileName, bool clear)
|
|
||||||
{
|
|
||||||
QApplication::setOverrideCursor (Qt::WaitCursor);
|
|
||||||
|
|
||||||
if (clear)
|
|
||||||
scene.map->clear ();
|
|
||||||
|
|
||||||
std::ifstream ifs (qPrintable (fileName));
|
|
||||||
|
|
||||||
CGAL::import_from_polyhedron_flux < Map > (*scene.map, ifs);
|
|
||||||
initAllVolumesRandomColor();
|
|
||||||
|
|
||||||
this->addToRecentFiles (fileName);
|
|
||||||
QApplication::restoreOverrideCursor ();
|
|
||||||
|
|
||||||
if (clear)
|
|
||||||
statusBar ()->showMessage (QString ("Load off file") + fileName,
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
else
|
|
||||||
statusBar ()->showMessage (QString ("Add off file") + fileName,
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
tdsdart = NULL;
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::initVolumeRandomColor(Dart_handle adart)
|
|
||||||
{
|
|
||||||
#ifdef COLOR_VOLUME
|
|
||||||
scene.map->set_attribute<3>(adart,scene.map->create_attribute<3>(CGAL::Color(random.get_int(0,256),
|
|
||||||
random.get_int(0,256),
|
|
||||||
random.get_int(0,256))));
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::initAllVolumesRandomColor()
|
|
||||||
{
|
|
||||||
#ifdef COLOR_VOLUME
|
|
||||||
for (Map::One_dart_per_cell_range<3>::iterator
|
|
||||||
it(scene.map->one_dart_per_cell<3>().begin());
|
|
||||||
it.cont(); ++it)
|
|
||||||
if ( it->attribute<3>()==NULL ) initVolumeRandomColor(it);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::load_3DTDS (const QString & fileName, bool clear)
|
|
||||||
{
|
|
||||||
QApplication::setOverrideCursor (Qt::WaitCursor);
|
|
||||||
|
|
||||||
if (clear)
|
|
||||||
scene.map->clear ();
|
|
||||||
|
|
||||||
typedef CGAL::Delaunay_triangulation_3 < Map::Traits > Triangulation;
|
|
||||||
Triangulation T;
|
|
||||||
|
|
||||||
std::ifstream ifs (qPrintable (fileName));
|
|
||||||
std::istream_iterator < Point_3 > begin (ifs), end;
|
|
||||||
T.insert (begin, end);
|
|
||||||
|
|
||||||
tdsdart = CGAL::import_from_triangulation_3 < Map, Triangulation > (*scene.map, T);
|
|
||||||
initAllVolumesRandomColor();
|
|
||||||
|
|
||||||
QApplication::restoreOverrideCursor ();
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
Dart_handle MainWindow::make_iso_cuboid(const Point_3 basepoint, Map::FT lg)
|
|
||||||
{
|
|
||||||
return make_hexahedron(*scene.map,
|
|
||||||
basepoint,
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(lg,0,0)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(lg,lg,0)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(0,lg,0)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(0,lg,lg)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(0,0,lg)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(lg,0,lg)),
|
|
||||||
Map::Construct_translated_point()(basepoint,Map::Vector(lg,lg,lg)));
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::create_cube ()
|
|
||||||
{
|
|
||||||
Point_3 basepoint(nbcube%5, (nbcube/5)%5, nbcube/25);
|
|
||||||
|
|
||||||
Dart_handle d = make_iso_cuboid(basepoint, 1);
|
|
||||||
|
|
||||||
// scene.map->display_characteristics(std::cout)<<std::endl;
|
|
||||||
|
|
||||||
initVolumeRandomColor(d);
|
|
||||||
|
|
||||||
++nbcube;
|
|
||||||
|
|
||||||
tdsdart = NULL;
|
|
||||||
statusBar ()->showMessage (QString ("Cube created"),DELAY_STATUSMSG);
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::create_3cubes ()
|
|
||||||
{
|
|
||||||
Dart_handle d1 = make_iso_cuboid (Point_3 (nbcube, nbcube, nbcube),1);
|
|
||||||
Dart_handle d2 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube, nbcube),1);
|
|
||||||
Dart_handle d3 = make_iso_cuboid (Point_3 (nbcube, nbcube + 1, nbcube), 1);
|
|
||||||
|
|
||||||
initVolumeRandomColor(d1);
|
|
||||||
initVolumeRandomColor(d2);
|
|
||||||
initVolumeRandomColor(d3);
|
|
||||||
|
|
||||||
scene.map->sew<3> (d1->beta(1)->beta(1)->beta(2), d2->beta(2));
|
|
||||||
scene.map->sew<3> (d1->beta(2)->beta(1)->beta(1)->beta(2), d3);
|
|
||||||
|
|
||||||
++nbcube;
|
|
||||||
|
|
||||||
tdsdart = NULL;
|
|
||||||
statusBar ()->showMessage (QString ("3 cubes were created"),
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::create_2volumes ()
|
|
||||||
{
|
|
||||||
Dart_handle d1 = make_iso_cuboid (Point_3 (nbcube, nbcube, nbcube),1);
|
|
||||||
Dart_handle d2 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube, nbcube), 1);
|
|
||||||
Dart_handle d3 = make_iso_cuboid (Point_3 (nbcube, nbcube + 1, nbcube), 1);
|
|
||||||
Dart_handle d4 = make_iso_cuboid (Point_3 (nbcube + 1, nbcube + 1, nbcube), 1);
|
|
||||||
|
|
||||||
initVolumeRandomColor(d1);
|
|
||||||
initVolumeRandomColor(d2);
|
|
||||||
initVolumeRandomColor(d3);
|
|
||||||
initVolumeRandomColor(d4);
|
|
||||||
|
|
||||||
scene.map->sew<3>(d1->beta(1)->beta(1)->beta(2), d2->beta (2));
|
|
||||||
scene.map->sew<3>(d1->beta(2)->beta(1)->beta(1)->beta (2), d3);
|
|
||||||
|
|
||||||
scene.map->sew<3>(d3->beta(1)->beta(1)->beta(2), d4->beta (2));
|
|
||||||
scene.map->sew<3>(d2->beta(2)->beta(1)->beta(1)->beta (2), d4);
|
|
||||||
|
|
||||||
/* scene.map->display_characteristics(std::cout)
|
|
||||||
<<" is_valid="<<scene.map->is_valid()<<std::endl;
|
|
||||||
|
|
||||||
std::cout<<"AVANT"<<std::endl;
|
|
||||||
scene.map->display_darts(std::cout)<<std::endl;
|
|
||||||
std::cout<<" is_valid="<<scene.map->is_valid()<<std::endl;*/
|
|
||||||
|
|
||||||
CGAL::remove_cell<Map,2>(*scene.map, d3);
|
|
||||||
CGAL::remove_cell<Map,2>(*scene.map, d2->beta (2));
|
|
||||||
|
|
||||||
/* std::cout<<"APRES"<<std::endl;
|
|
||||||
scene.map->display_darts(std::cout)<<std::endl;
|
|
||||||
std::cout<<" is_valid="<<scene.map->is_valid()<<std::endl;
|
|
||||||
scene.map->display_characteristics(std::cout);*/
|
|
||||||
|
|
||||||
tdsdart = NULL;
|
|
||||||
++nbcube;
|
|
||||||
statusBar ()->showMessage (QString ("2 volumes were created"),
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::create_mesh ()
|
|
||||||
{
|
|
||||||
if ( dialogmesh.exec()==QDialog::Accepted )
|
|
||||||
{
|
|
||||||
for (int x=0; x<dialogmesh.getX(); ++x)
|
|
||||||
for (int y=0; y<dialogmesh.getY(); ++y)
|
|
||||||
for (int z=0; z<dialogmesh.getZ(); ++z)
|
|
||||||
{
|
|
||||||
Dart_handle d = make_iso_cuboid (Point_3 (x+nbcube, y+nbcube, z+nbcube), 1);
|
|
||||||
initVolumeRandomColor(d);
|
|
||||||
}
|
|
||||||
++nbcube;
|
|
||||||
|
|
||||||
tdsdart = NULL;
|
|
||||||
statusBar ()->showMessage (QString ("mesh created"),DELAY_STATUSMSG);
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::subdivide ()
|
|
||||||
{
|
|
||||||
subdivide_map_3 (*(scene.map));
|
|
||||||
tdsdart = NULL;
|
|
||||||
emit (sceneChanged ());
|
|
||||||
statusBar ()->showMessage (QString ("Objects were subdivided"),
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::clear ()
|
|
||||||
{
|
|
||||||
scene.map->clear ();
|
|
||||||
tdsdart = NULL;
|
|
||||||
statusBar ()->showMessage (QString ("Scene was cleared"), DELAY_STATUSMSG);
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::dual_3 ()
|
|
||||||
{
|
|
||||||
if ( !scene.map->is_without_boundary(3) )
|
|
||||||
{
|
|
||||||
statusBar()->showMessage (QString ("Dual impossible: the map has some 3-boundary"),
|
|
||||||
DELAY_STATUSMSG);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
Map* dualmap = new Map;
|
|
||||||
Dart_handle infinitevolume = CGAL::dual<Map>(*scene.map,*dualmap,tdsdart);
|
|
||||||
|
|
||||||
if ( tdsdart!=NULL )
|
|
||||||
CGAL::remove_cell<Map,3>(*dualmap,infinitevolume);
|
|
||||||
|
|
||||||
delete scene.map;
|
|
||||||
scene.map = dualmap;
|
|
||||||
this->viewer->setScene (&scene);
|
|
||||||
initAllVolumesRandomColor();
|
|
||||||
|
|
||||||
statusBar ()->showMessage (QString ("Dual_3 computed"), DELAY_STATUSMSG);
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::close_volume()
|
|
||||||
{
|
|
||||||
tdsdart = NULL;
|
|
||||||
if ( scene.map->close(3) > 0 )
|
|
||||||
{
|
|
||||||
initAllVolumesRandomColor();
|
|
||||||
statusBar ()->showMessage (QString ("Volume are closed"), DELAY_STATUSMSG);
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
else
|
|
||||||
statusBar ()->showMessage (QString ("Map already 3-closed"), DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::sew3_same_facets()
|
|
||||||
{
|
|
||||||
tdsdart = NULL;
|
|
||||||
// timer.reset();
|
|
||||||
// timer.start();
|
|
||||||
if ( scene.map->sew3_same_facets() > 0 )
|
|
||||||
{
|
|
||||||
statusBar()->showMessage (QString ("Same facets are 3-sewn"), DELAY_STATUSMSG);
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
else
|
|
||||||
statusBar()->showMessage (QString ("No facets 3-sewn"), DELAY_STATUSMSG);
|
|
||||||
// timer.stop();
|
|
||||||
// std::cout<<"sew3_same_facets in "<<timer.time()<<" seconds."<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::unsew3_all()
|
|
||||||
{
|
|
||||||
tdsdart = NULL;
|
|
||||||
unsigned int nb=0;
|
|
||||||
|
|
||||||
for (Map::Dart_range::iterator it=scene.map->darts().begin();
|
|
||||||
it!=scene.map->darts().end(); ++it)
|
|
||||||
{
|
|
||||||
if ( !it->is_free(3) )
|
|
||||||
{ scene.map->unsew<3>(it); ++nb; }
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( nb > 0 )
|
|
||||||
{
|
|
||||||
statusBar()->showMessage (QString ("All darts are 3-unsewn"), DELAY_STATUSMSG);
|
|
||||||
emit (sceneChanged ());
|
|
||||||
}
|
|
||||||
else
|
|
||||||
statusBar()->showMessage (QString ("No dart 3-unsewn"), DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::remove_current_volume()
|
|
||||||
{
|
|
||||||
if ( this->viewer->getCurrentDart()!=scene.map->darts().end() )
|
|
||||||
{
|
|
||||||
CGAL::remove_cell<Map,3>(*scene.map,this->viewer->getCurrentDart());
|
|
||||||
emit (sceneChanged ());
|
|
||||||
statusBar()->showMessage (QString ("Current volume removed"), DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
statusBar()->showMessage (QString ("No volume removed"), DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
|
|
||||||
void MainWindow::triangulate_all_facets()
|
|
||||||
{
|
|
||||||
std::vector<Map::Dart_handle> v;
|
|
||||||
for (Map::One_dart_per_cell_range<2>::iterator
|
|
||||||
it(scene.map->one_dart_per_cell<2>().begin()); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
v.push_back(it);
|
|
||||||
}
|
|
||||||
for (std::vector<Map::Dart_handle>::iterator itv(v.begin());
|
|
||||||
itv!=v.end(); ++itv)
|
|
||||||
CGAL::insert_center_cell_0_in_cell_2(*scene.map,*itv);
|
|
||||||
|
|
||||||
emit (sceneChanged ());
|
|
||||||
statusBar()->showMessage (QString ("All facets were triangulated"), DELAY_STATUSMSG);
|
|
||||||
}
|
|
||||||
|
|
||||||
#undef DELAY_STATUSMSG
|
|
||||||
|
|
||||||
#include "MainWindow.moc"
|
|
||||||
|
|
@ -1,107 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/MainWindow.h $
|
|
||||||
// $Id: MainWindow.h 65446 2011-09-20 16:55:42Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#ifndef MAIN_WINDOW_H
|
|
||||||
#define MAIN_WINDOW_H
|
|
||||||
|
|
||||||
#include "typedefs.h"
|
|
||||||
#include "ui_MainWindow.h"
|
|
||||||
#include "ui_CreateMesh.h"
|
|
||||||
|
|
||||||
#include <CGAL/Qt/DemosMainWindow.h>
|
|
||||||
#include <CGAL/Random.h>
|
|
||||||
|
|
||||||
#include <QDialog>
|
|
||||||
#include <QSlider>
|
|
||||||
#include <QLabel>
|
|
||||||
#include <QFileDialog>
|
|
||||||
class QWidget;
|
|
||||||
|
|
||||||
class DialogMesh : public QDialog, private Ui::createMesh
|
|
||||||
{
|
|
||||||
Q_OBJECT
|
|
||||||
|
|
||||||
public:
|
|
||||||
DialogMesh(QWidget* parent)
|
|
||||||
{
|
|
||||||
setupUi (this);
|
|
||||||
}
|
|
||||||
|
|
||||||
int getX() { return xvalue->value(); }
|
|
||||||
int getY() { return yvalue->value(); }
|
|
||||||
int getZ() { return zvalue->value(); }
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class MainWindow : public CGAL::Qt::DemosMainWindow, private Ui::MainWindow
|
|
||||||
{
|
|
||||||
Q_OBJECT
|
|
||||||
|
|
||||||
public:
|
|
||||||
MainWindow(QWidget* parent = 0);
|
|
||||||
|
|
||||||
void connectActions();
|
|
||||||
|
|
||||||
Scene scene;
|
|
||||||
Timer timer;
|
|
||||||
|
|
||||||
public slots:
|
|
||||||
void import_off();
|
|
||||||
void add_off();
|
|
||||||
void load_off(const QString& fileName, bool clear=true);
|
|
||||||
|
|
||||||
void import_3DTDS();
|
|
||||||
void load_3DTDS(const QString& fileName, bool clear=true);
|
|
||||||
|
|
||||||
void clear();
|
|
||||||
|
|
||||||
void create_cube();
|
|
||||||
void create_3cubes();
|
|
||||||
void create_2volumes();
|
|
||||||
void create_mesh();
|
|
||||||
|
|
||||||
void subdivide();
|
|
||||||
void dual_3();
|
|
||||||
void close_volume();
|
|
||||||
void remove_current_volume();
|
|
||||||
void sew3_same_facets();
|
|
||||||
void unsew3_all();
|
|
||||||
void triangulate_all_facets();
|
|
||||||
|
|
||||||
void onSceneChanged();
|
|
||||||
|
|
||||||
signals:
|
|
||||||
void sceneChanged();
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void initVolumeRandomColor(Dart_handle adart);
|
|
||||||
void initAllVolumesRandomColor();
|
|
||||||
Dart_handle make_iso_cuboid(const Point_3 basepoint, Map::FT lg);
|
|
||||||
|
|
||||||
private:
|
|
||||||
unsigned int nbcube;
|
|
||||||
QLabel* statusMessage;
|
|
||||||
Dart_handle tdsdart;
|
|
||||||
DialogMesh dialogmesh;
|
|
||||||
CGAL::Random random;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
@ -1,175 +0,0 @@
|
||||||
<?xml version="1.0" encoding="UTF-8"?>
|
|
||||||
<ui version="4.0">
|
|
||||||
<class>MainWindow</class>
|
|
||||||
<widget class="QMainWindow" name="MainWindow">
|
|
||||||
<property name="geometry">
|
|
||||||
<rect>
|
|
||||||
<x>0</x>
|
|
||||||
<y>0</y>
|
|
||||||
<width>635</width>
|
|
||||||
<height>504</height>
|
|
||||||
</rect>
|
|
||||||
</property>
|
|
||||||
<property name="windowTitle">
|
|
||||||
<string>CGAL 3D Combinatorial Map</string>
|
|
||||||
</property>
|
|
||||||
<property name="windowIcon">
|
|
||||||
<iconset>
|
|
||||||
<normaloff>:/cgal/logos/cgal_icon</normaloff>:/cgal/logos/cgal_icon</iconset>
|
|
||||||
</property>
|
|
||||||
<widget class="QWidget" name="centralwidget">
|
|
||||||
<layout class="QVBoxLayout">
|
|
||||||
<item>
|
|
||||||
<layout class="QHBoxLayout"/>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="Viewer" name="viewer" native="true"/>
|
|
||||||
</item>
|
|
||||||
</layout>
|
|
||||||
</widget>
|
|
||||||
<widget class="QMenuBar" name="menubar">
|
|
||||||
<property name="geometry">
|
|
||||||
<rect>
|
|
||||||
<x>0</x>
|
|
||||||
<y>0</y>
|
|
||||||
<width>635</width>
|
|
||||||
<height>26</height>
|
|
||||||
</rect>
|
|
||||||
</property>
|
|
||||||
<widget class="QMenu" name="menuFile">
|
|
||||||
<property name="title">
|
|
||||||
<string>File</string>
|
|
||||||
</property>
|
|
||||||
<addaction name="actionImportOFF"/>
|
|
||||||
<addaction name="actionAddOFF"/>
|
|
||||||
<addaction name="separator"/>
|
|
||||||
<addaction name="actionImport3DTDS"/>
|
|
||||||
<addaction name="separator"/>
|
|
||||||
<addaction name="actionClear"/>
|
|
||||||
<addaction name="separator"/>
|
|
||||||
<addaction name="actionQuit"/>
|
|
||||||
</widget>
|
|
||||||
<widget class="QMenu" name="menuOperations">
|
|
||||||
<property name="title">
|
|
||||||
<string>Operations</string>
|
|
||||||
</property>
|
|
||||||
<addaction name="actionSubdivide"/>
|
|
||||||
<addaction name="actionDual_3"/>
|
|
||||||
<addaction name="actionClose_volume"/>
|
|
||||||
<addaction name="actionSew3_same_facets"/>
|
|
||||||
<addaction name="actionRemove_current_volume"/>
|
|
||||||
<addaction name="actionTriangulate_all_facets"/>
|
|
||||||
<addaction name="actionUnsew3_all"/>
|
|
||||||
</widget>
|
|
||||||
<widget class="QMenu" name="menuCreations">
|
|
||||||
<property name="title">
|
|
||||||
<string>Creations</string>
|
|
||||||
</property>
|
|
||||||
<addaction name="actionCreate_cube"/>
|
|
||||||
<addaction name="actionCreate3Cubes"/>
|
|
||||||
<addaction name="actionCreate2Volumes"/>
|
|
||||||
<addaction name="actionCreate_mesh"/>
|
|
||||||
</widget>
|
|
||||||
<addaction name="menuFile"/>
|
|
||||||
<addaction name="menuCreations"/>
|
|
||||||
<addaction name="menuOperations"/>
|
|
||||||
</widget>
|
|
||||||
<widget class="QStatusBar" name="statusbar"/>
|
|
||||||
<action name="actionImportOFF">
|
|
||||||
<property name="text">
|
|
||||||
<string>Import OFF</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionAddOFF">
|
|
||||||
<property name="text">
|
|
||||||
<string>Add OFF</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionQuit">
|
|
||||||
<property name="text">
|
|
||||||
<string>Quit</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionSubdivide">
|
|
||||||
<property name="text">
|
|
||||||
<string>Subdivide</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionCreate3Cubes">
|
|
||||||
<property name="text">
|
|
||||||
<string>Create 3 cubes</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionImport3DTDS">
|
|
||||||
<property name="text">
|
|
||||||
<string>Import 3DTS</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionDisplayInfo">
|
|
||||||
<property name="text">
|
|
||||||
<string>Display info</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionClear">
|
|
||||||
<property name="text">
|
|
||||||
<string>Clear</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionCreate2Volumes">
|
|
||||||
<property name="text">
|
|
||||||
<string>Create 2 volumes</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionDual_3">
|
|
||||||
<property name="text">
|
|
||||||
<string>Dual_3</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionClose_volume">
|
|
||||||
<property name="text">
|
|
||||||
<string>Close volume</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionCreate_cube">
|
|
||||||
<property name="text">
|
|
||||||
<string>Create cube</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionSew3_same_facets">
|
|
||||||
<property name="text">
|
|
||||||
<string>Sew3 same facets</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionCreate_mesh">
|
|
||||||
<property name="text">
|
|
||||||
<string>Create mesh</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionRemove_current_volume">
|
|
||||||
<property name="text">
|
|
||||||
<string>Remove current volume</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionTriangulate_all_facets">
|
|
||||||
<property name="text">
|
|
||||||
<string>Triangulate all facets</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
<action name="actionUnsew3_all">
|
|
||||||
<property name="text">
|
|
||||||
<string>Unsew3 all</string>
|
|
||||||
</property>
|
|
||||||
</action>
|
|
||||||
</widget>
|
|
||||||
<customwidgets>
|
|
||||||
<customwidget>
|
|
||||||
<class>Viewer</class>
|
|
||||||
<extends>QWidget</extends>
|
|
||||||
<header>Viewer.h</header>
|
|
||||||
</customwidget>
|
|
||||||
</customwidgets>
|
|
||||||
<resources>
|
|
||||||
<include location="Combinatorial_map_3.qrc"/>
|
|
||||||
</resources>
|
|
||||||
<connections/>
|
|
||||||
</ui>
|
|
||||||
|
|
@ -1,548 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Viewer.cpp $
|
|
||||||
// $Id: Viewer.cpp 62338 2011-04-08 20:17:16Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#include "Viewer.h"
|
|
||||||
#include <vector>
|
|
||||||
#include <CGAL/bounding_box.h>
|
|
||||||
#include <QGLViewer/vec.h>
|
|
||||||
#include <CGAL/Linear_cell_complex_operations.h>
|
|
||||||
|
|
||||||
#define NB_FILLED_MODE 4
|
|
||||||
#define FILLED_ALL 0
|
|
||||||
#define FILLED_NON_FREE3 1
|
|
||||||
#define FILLED_VOL 2
|
|
||||||
#define FILLED_VOL_AND_V 3
|
|
||||||
|
|
||||||
template<class Map>
|
|
||||||
CGAL::Bbox_3 bbox(Map& amap)
|
|
||||||
{
|
|
||||||
CGAL::Bbox_3 bb;
|
|
||||||
typename Map::Vertex_attribute_range::iterator it = amap.vertex_attributes().begin(),
|
|
||||||
itend=amap.vertex_attributes().end();
|
|
||||||
if ( it!=itend )
|
|
||||||
{
|
|
||||||
bb = it->bbox();
|
|
||||||
for( ++it; it != itend; ++it)
|
|
||||||
{
|
|
||||||
bb = bb + it->bbox();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return bb;
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
Viewer::sceneChanged()
|
|
||||||
{
|
|
||||||
iteratorAllDarts = scene->map->darts().begin();
|
|
||||||
scene->map->unmark_all(markVolume);
|
|
||||||
|
|
||||||
CGAL::Bbox_3 bb = bbox(*scene->map);
|
|
||||||
|
|
||||||
this->camera()->setSceneBoundingBox(qglviewer::Vec(bb.xmin(),
|
|
||||||
bb.ymin(),
|
|
||||||
bb.zmin()),
|
|
||||||
qglviewer::Vec(bb.xmax(),
|
|
||||||
bb.ymax(),
|
|
||||||
bb.zmax()));
|
|
||||||
|
|
||||||
this->showEntireScene();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Draw the facet given by ADart
|
|
||||||
void Viewer::drawFacet(Dart_handle ADart, int AMark)
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
::glBegin(GL_POLYGON);
|
|
||||||
#ifdef COLOR_VOLUME
|
|
||||||
assert( ADart->attribute<3>()!=NULL );
|
|
||||||
|
|
||||||
// double r = (double)ADart->attribute<3>()->info().r()/255.0;
|
|
||||||
double r = (double)ADart->attribute<3>()->info().r()/255.0;
|
|
||||||
double g = (double)ADart->attribute<3>()->info().g()/255.0;
|
|
||||||
double b = (double)ADart->attribute<3>()->info().b()/255.0;
|
|
||||||
if ( !ADart->is_free(3) )
|
|
||||||
{
|
|
||||||
r += (double)ADart->beta(3)->attribute<3>()->info().r()/255.0;
|
|
||||||
g += (double)ADart->beta(3)->attribute<3>()->info().g()/255.0;
|
|
||||||
b += (double)ADart->beta(3)->attribute<3>()->info().b()/255.0;
|
|
||||||
r /= 2; g /= 2; b /= 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
::glColor3f(r,g,b);
|
|
||||||
#else
|
|
||||||
::glColor3f(.7,.7,.7);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// If Flat shading: 1 normal per polygon
|
|
||||||
if (flatShading)
|
|
||||||
{
|
|
||||||
Map::Vector n = CGAL::compute_normal_of_cell_2(m,ADart);
|
|
||||||
n = n/(CGAL::sqrt(n*n));
|
|
||||||
::glNormal3d(n.x(),n.y(),n.z());
|
|
||||||
}
|
|
||||||
|
|
||||||
for ( Map::Dart_of_orbit_range<1>::iterator it(m,ADart); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
// If Gouraud shading: 1 normal per vertex
|
|
||||||
if (!flatShading)
|
|
||||||
{
|
|
||||||
Map::Vector n = CGAL::compute_normal_of_cell_0<Map>(m,it);
|
|
||||||
n = n/(CGAL::sqrt(n*n));
|
|
||||||
::glNormal3d(n.x(),n.y(),n.z());
|
|
||||||
}
|
|
||||||
|
|
||||||
Map::Point p = m.point(it);
|
|
||||||
::glVertex3d( p.x(),p.y(),p.z());
|
|
||||||
|
|
||||||
m.mark(it,AMark);
|
|
||||||
if ( !it->is_free(3) ) m.mark(it->beta(3),AMark);
|
|
||||||
}
|
|
||||||
::glEnd();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Draw all the edge of the facet given by ADart
|
|
||||||
void Viewer::drawEdges(Dart_handle ADart)
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
glBegin(GL_LINES);
|
|
||||||
glColor3f(.2,.2,.6);
|
|
||||||
for ( Map::Dart_of_orbit_range<1>::iterator it(m,ADart); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
Map::Point p = m.point(it);
|
|
||||||
Dart_handle d2 = it->other_extremity();
|
|
||||||
if ( d2!=NULL )
|
|
||||||
{
|
|
||||||
Map::Point p2 = m.point(d2);
|
|
||||||
glVertex3f( p.x(),p.y(),p.z());
|
|
||||||
glVertex3f( p2.x(),p2.y(),p2.z());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
glEnd();
|
|
||||||
}
|
|
||||||
|
|
||||||
void Viewer::draw_one_vol_filled_facets(Dart_handle adart,
|
|
||||||
int amarkvol, int amarkfacet)
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
|
|
||||||
for (CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it(m,adart,amarkvol); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
if ( !m.is_marked(it,amarkfacet) )
|
|
||||||
{
|
|
||||||
drawFacet(it,amarkfacet);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void Viewer::draw_current_vol_filled_facets(Dart_handle adart)
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
unsigned int facettreated = m.get_new_mark();
|
|
||||||
unsigned int volmark = m.get_new_mark();
|
|
||||||
|
|
||||||
draw_one_vol_filled_facets(adart,volmark,facettreated);
|
|
||||||
|
|
||||||
m.negate_mark(volmark);
|
|
||||||
|
|
||||||
for (CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it(m,adart,volmark); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
m.unmark(it,facettreated);
|
|
||||||
if ( !it->is_free(3) ) m.unmark(it->beta(3),facettreated);
|
|
||||||
}
|
|
||||||
|
|
||||||
m.negate_mark(volmark);
|
|
||||||
|
|
||||||
assert(m.is_whole_map_unmarked(volmark));
|
|
||||||
assert(m.is_whole_map_unmarked(facettreated));
|
|
||||||
|
|
||||||
m.free_mark(volmark);
|
|
||||||
m.free_mark(facettreated);
|
|
||||||
}
|
|
||||||
|
|
||||||
void Viewer::draw_current_vol_and_neighboors_filled_facets(Dart_handle adart)
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
unsigned int facettreated = m.get_new_mark();
|
|
||||||
unsigned int volmark = m.get_new_mark();
|
|
||||||
|
|
||||||
draw_one_vol_filled_facets(adart,volmark,facettreated);
|
|
||||||
|
|
||||||
CGAL::CMap_dart_iterator_of_cell<Map,3> it(m,adart);
|
|
||||||
for (; it.cont(); ++it)
|
|
||||||
{
|
|
||||||
if ( !it->is_free(3) && !m.is_marked(it->beta(3),volmark) )
|
|
||||||
{
|
|
||||||
draw_one_vol_filled_facets(it->beta(3),volmark,facettreated);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
m.negate_mark(volmark);
|
|
||||||
|
|
||||||
for (it.rewind(); it.cont(); ++it)
|
|
||||||
{
|
|
||||||
m.mark(it,volmark);
|
|
||||||
|
|
||||||
if ( m.is_marked(it,facettreated))
|
|
||||||
CGAL::unmark_cell<Map,2>(m,it,facettreated);
|
|
||||||
|
|
||||||
if ( !it->is_free(3) && !m.is_marked(it->beta(3),volmark) )
|
|
||||||
{
|
|
||||||
CGAL::CMap_dart_iterator_basic_of_cell<Map,3> it2(m,it->beta(3),volmark);
|
|
||||||
for (; it2.cont(); ++it2)
|
|
||||||
{
|
|
||||||
if ( m.is_marked(it2,facettreated))
|
|
||||||
CGAL::unmark_cell<Map,2>(m,it2,facettreated);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
m.negate_mark(volmark);
|
|
||||||
|
|
||||||
assert(m.is_whole_map_unmarked(volmark));
|
|
||||||
assert(m.is_whole_map_unmarked(facettreated));
|
|
||||||
|
|
||||||
m.free_mark(volmark);
|
|
||||||
m.free_mark(facettreated);
|
|
||||||
}
|
|
||||||
|
|
||||||
void Viewer::draw()
|
|
||||||
{
|
|
||||||
Map &m = *scene->map;
|
|
||||||
|
|
||||||
if ( m.is_empty() ) return;
|
|
||||||
|
|
||||||
unsigned int facettreated = m.get_new_mark();
|
|
||||||
unsigned int vertextreated = -1;
|
|
||||||
|
|
||||||
if ( vertices) vertextreated=m.get_new_mark();
|
|
||||||
|
|
||||||
for(Map::Dart_range::iterator it=m.darts().begin(); it!=m.darts().end(); ++it)
|
|
||||||
{
|
|
||||||
if ( !m.is_marked(it,facettreated) )
|
|
||||||
{
|
|
||||||
if ( modeFilledFacet==FILLED_ALL ||
|
|
||||||
modeFilledFacet==FILLED_NON_FREE3 && !it->is_free(3) )
|
|
||||||
drawFacet(it,facettreated);
|
|
||||||
else
|
|
||||||
CGAL::mark_cell<Map,2>(m,it,facettreated);
|
|
||||||
|
|
||||||
if ( edges) drawEdges(it);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (vertices)
|
|
||||||
{
|
|
||||||
if ( !m.is_marked(it, vertextreated) )
|
|
||||||
{
|
|
||||||
Map::Point p = m.point(it);
|
|
||||||
|
|
||||||
glBegin(GL_POINTS);
|
|
||||||
glColor3f(.6,.2,.8);
|
|
||||||
glVertex3f( p.x(),p.y(),p.z());
|
|
||||||
glEnd();
|
|
||||||
|
|
||||||
CGAL::mark_cell<Map,0>(m,it,vertextreated);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
assert(m.is_whole_map_marked(facettreated));
|
|
||||||
|
|
||||||
if ( vertices)
|
|
||||||
{
|
|
||||||
assert(m.is_whole_map_marked(vertextreated));
|
|
||||||
m.free_mark(vertextreated);
|
|
||||||
}
|
|
||||||
|
|
||||||
m.free_mark(facettreated);
|
|
||||||
|
|
||||||
if ( modeFilledFacet==FILLED_VOL)
|
|
||||||
draw_current_vol_filled_facets(iteratorAllDarts);
|
|
||||||
else if ( modeFilledFacet==FILLED_VOL_AND_V)
|
|
||||||
draw_current_vol_and_neighboors_filled_facets(iteratorAllDarts);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
void
|
|
||||||
Viewer::draw()
|
|
||||||
{
|
|
||||||
|
|
||||||
// define material
|
|
||||||
float ambient[] = { 0.25f,
|
|
||||||
0.20725f,
|
|
||||||
0.20725f,
|
|
||||||
0.922f };
|
|
||||||
float diffuse[] = { 1.0f,
|
|
||||||
0.829f,
|
|
||||||
0.829f,
|
|
||||||
0.922f };
|
|
||||||
|
|
||||||
float specular[] = { 0.296648f,
|
|
||||||
0.296648f,
|
|
||||||
0.296648f,
|
|
||||||
0.522f };
|
|
||||||
|
|
||||||
float emission[] = { 0.3f,
|
|
||||||
0.3f,
|
|
||||||
0.3f,
|
|
||||||
1.0f };
|
|
||||||
float shininess[] = { 11.264f };
|
|
||||||
|
|
||||||
// apply material
|
|
||||||
::glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
|
|
||||||
::glMaterialfv( GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse);
|
|
||||||
::glMaterialfv( GL_FRONT_AND_BACK, GL_SPECULAR, specular);
|
|
||||||
::glMaterialfv( GL_FRONT_AND_BACK, GL_SHININESS, shininess);
|
|
||||||
::glMaterialfv( GL_FRONT_AND_BACK, GL_EMISSION, emission);
|
|
||||||
|
|
||||||
// anti-aliasing (if the OpenGL driver permits that)
|
|
||||||
::glEnable(GL_LINE_SMOOTH);
|
|
||||||
|
|
||||||
::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
|
|
||||||
// draw surface mesh
|
|
||||||
bool m_view_surface = true;
|
|
||||||
bool draw_triangles_edges = true;
|
|
||||||
|
|
||||||
if(m_view_surface)
|
|
||||||
{
|
|
||||||
::glEnable(GL_LIGHTING);
|
|
||||||
::glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
|
|
||||||
::glColor3f(0.2f, 0.2f, 1.f);
|
|
||||||
::glEnable(GL_POLYGON_OFFSET_FILL);
|
|
||||||
::glPolygonOffset(3.0f,-3.0f);
|
|
||||||
gl_draw_surface();
|
|
||||||
|
|
||||||
if(draw_triangles_edges)
|
|
||||||
{
|
|
||||||
::glDisable(GL_LIGHTING);
|
|
||||||
::glLineWidth(1.);
|
|
||||||
::glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
|
|
||||||
::glColor3ub(0,0,0);
|
|
||||||
::glDisable(GL_POLYGON_OFFSET_FILL);
|
|
||||||
gl_draw_surface();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void
|
|
||||||
Viewer::gl_draw_surface()
|
|
||||||
{
|
|
||||||
::glColor3f(1.0f, 0.0f, 0.0f);
|
|
||||||
::glDisable(GL_LIGHTING);
|
|
||||||
::glEnable(GL_POINT_SMOOTH);
|
|
||||||
::glPointSize(5);
|
|
||||||
::glBegin(GL_POINTS);
|
|
||||||
|
|
||||||
for(std::list<Point_3>::iterator it = scene->points.begin();
|
|
||||||
it != scene->points.end();
|
|
||||||
++it){
|
|
||||||
::glVertex3d(it->x(), it->y(), it->z());
|
|
||||||
}
|
|
||||||
|
|
||||||
::glEnd();
|
|
||||||
::glDisable(GL_POINT_SMOOTH);
|
|
||||||
|
|
||||||
::glEnable(GL_LIGHTING);
|
|
||||||
::glBegin(GL_TRIANGLES);
|
|
||||||
|
|
||||||
::glColor3f(0.2f, 1.0f, 0.2f);
|
|
||||||
|
|
||||||
std::list<Facett> facetts;
|
|
||||||
scene->alpha_shape.get_alpha_shape_facetts(std::back_inserter(facetts), Alpha_shape_3::REGULAR);
|
|
||||||
|
|
||||||
for(std::list<Facett>::iterator fit = facetts.begin();
|
|
||||||
fit != facetts.end();
|
|
||||||
++fit) {
|
|
||||||
const Cell_handle& ch = fit->first;
|
|
||||||
const int index = fit->second;
|
|
||||||
|
|
||||||
//const Vector_3& n = ch->normal(index); // must be unit vector
|
|
||||||
|
|
||||||
const Point_3& a = ch->vertex((index+1)&3)->point();
|
|
||||||
const Point_3& b = ch->vertex((index+2)&3)->point();
|
|
||||||
const Point_3& c = ch->vertex((index+3)&3)->point();
|
|
||||||
|
|
||||||
Vector_3 v = CGAL::unit_normal(a,b,c);
|
|
||||||
|
|
||||||
|
|
||||||
::glNormal3d(v.x(),v.y(),v.z());
|
|
||||||
::glVertex3d(a.x(),a.y(),a.z());
|
|
||||||
::glVertex3d(b.x(),b.y(),b.z());
|
|
||||||
::glVertex3d(c.x(),c.y(),c.z());
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
::glEnd();
|
|
||||||
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
void Viewer::init()
|
|
||||||
{
|
|
||||||
// Restore previous viewer state.
|
|
||||||
restoreStateFromFile();
|
|
||||||
|
|
||||||
// Define 'Control+Q' as the new exit shortcut (default was 'Escape')
|
|
||||||
setShortcut(EXIT_VIEWER, Qt::CTRL+Qt::Key_Q);
|
|
||||||
|
|
||||||
// Add custom key description (see keyPressEvent).
|
|
||||||
setKeyDescription(Qt::Key_W, "Toggles wire frame display");
|
|
||||||
setKeyDescription(Qt::Key_F, "Toggles flat shading display");
|
|
||||||
setKeyDescription(Qt::Key_E, "Toggles edges display");
|
|
||||||
setKeyDescription(Qt::Key_V, "Toggles vertices display");
|
|
||||||
setKeyDescription(Qt::Key_Z, "Next mode filled facet");
|
|
||||||
setKeyDescription(Qt::Key_R, "Select next volume, used for filled facet");
|
|
||||||
|
|
||||||
// Light default parameters
|
|
||||||
::glLineWidth(1.4f);
|
|
||||||
::glPointSize(4.f);
|
|
||||||
::glEnable(GL_POLYGON_OFFSET_FILL);
|
|
||||||
::glPolygonOffset(1.0f,1.0f);
|
|
||||||
::glClearColor(1.0f,1.0f,1.0f,0.0f);
|
|
||||||
::glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
|
|
||||||
|
|
||||||
::glEnable(GL_LIGHTING);
|
|
||||||
|
|
||||||
::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
|
|
||||||
// ::glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);
|
|
||||||
|
|
||||||
if (flatShading)
|
|
||||||
{
|
|
||||||
::glShadeModel(GL_FLAT);
|
|
||||||
::glDisable(GL_BLEND);
|
|
||||||
::glDisable(GL_LINE_SMOOTH);
|
|
||||||
::glDisable(GL_POLYGON_SMOOTH_HINT);
|
|
||||||
::glBlendFunc(GL_ONE, GL_ZERO);
|
|
||||||
::glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
::glShadeModel(GL_SMOOTH);
|
|
||||||
::glEnable(GL_BLEND);
|
|
||||||
::glEnable(GL_LINE_SMOOTH);
|
|
||||||
::glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
|
|
||||||
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void Viewer::keyPressEvent(QKeyEvent *e)
|
|
||||||
{
|
|
||||||
const Qt::KeyboardModifiers modifiers = e->modifiers();
|
|
||||||
|
|
||||||
bool handled = false;
|
|
||||||
if ((e->key()==Qt::Key_W) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
wireframe = !wireframe;
|
|
||||||
if (wireframe)
|
|
||||||
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
|
|
||||||
else
|
|
||||||
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
else if ((e->key()==Qt::Key_F) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
flatShading = !flatShading;
|
|
||||||
if (flatShading)
|
|
||||||
{
|
|
||||||
::glShadeModel(GL_FLAT);
|
|
||||||
::glDisable(GL_BLEND);
|
|
||||||
::glDisable(GL_LINE_SMOOTH);
|
|
||||||
::glDisable(GL_POLYGON_SMOOTH_HINT);
|
|
||||||
::glBlendFunc(GL_ONE, GL_ZERO);
|
|
||||||
::glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
::glShadeModel(GL_SMOOTH);
|
|
||||||
::glEnable(GL_BLEND);
|
|
||||||
::glEnable(GL_LINE_SMOOTH);
|
|
||||||
::glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
|
|
||||||
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
||||||
}
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
else if ((e->key()==Qt::Key_E) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
edges = !edges;
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
else if ((e->key()==Qt::Key_V) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
vertices = !vertices;
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
else if ((e->key()==Qt::Key_Z) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
modeFilledFacet = (modeFilledFacet+1)%NB_FILLED_MODE;
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
else if ((e->key()==Qt::Key_R) && (modifiers==Qt::NoButton))
|
|
||||||
{
|
|
||||||
CGAL::mark_cell<Map,3>(*scene->map, iteratorAllDarts, markVolume);
|
|
||||||
|
|
||||||
while ( iteratorAllDarts!=scene->map->darts().end() &&
|
|
||||||
scene->map->is_marked(iteratorAllDarts,markVolume) )
|
|
||||||
{
|
|
||||||
++iteratorAllDarts;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( iteratorAllDarts==scene->map->darts().end() )
|
|
||||||
{
|
|
||||||
scene->map->negate_mark(markVolume);
|
|
||||||
assert( scene->map->is_whole_map_unmarked(markVolume) );
|
|
||||||
iteratorAllDarts=scene->map->darts().begin();
|
|
||||||
}
|
|
||||||
|
|
||||||
handled = true;
|
|
||||||
updateGL();
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!handled)
|
|
||||||
QGLViewer::keyPressEvent(e);
|
|
||||||
}
|
|
||||||
|
|
||||||
QString Viewer::helpString() const
|
|
||||||
{
|
|
||||||
QString text("<h2>M a p V i e w e r</h2>");
|
|
||||||
text += "Use the mouse to move the camera around the object. ";
|
|
||||||
text += "You can respectively revolve around, zoom and translate with the three mouse buttons. ";
|
|
||||||
text += "Left and middle buttons pressed together rotate around the camera view direction axis<br><br>";
|
|
||||||
text += "Pressing <b>Alt</b> and one of the function keys (<b>F1</b>..<b>F12</b>) defines a camera keyFrame. ";
|
|
||||||
text += "Simply press the function key again to restore it. Several keyFrames define a ";
|
|
||||||
text += "camera path. Paths are saved when you quit the application and restored at next start.<br><br>";
|
|
||||||
text += "Press <b>F</b> to display the frame rate, <b>A</b> for the world axis, ";
|
|
||||||
text += "<b>Alt+Return</b> for full screen mode and <b>Control+S</b> to save a snapshot. ";
|
|
||||||
text += "See the <b>Keyboard</b> tab in this window for a complete shortcut list.<br><br>";
|
|
||||||
text += "Double clicks automates single click actions: A left button double click aligns the closer axis with the camera (if close enough). ";
|
|
||||||
text += "A middle button double click fits the zoom of the camera and the right button re-centers the scene.<br><br>";
|
|
||||||
text += "A left button double click while holding right button pressed defines the camera <i>Revolve Around Point</i>. ";
|
|
||||||
text += "In filled facet, there are four modes: all facets are filled; only facets between two volumes are filles; only the facets of current volume are filled; only the facets of current volume and all its adjacent volumes are filled.";
|
|
||||||
text += "See the <b>Mouse</b> tab and the documentation web pages for details.<br><br>";
|
|
||||||
text += "Press <b>Escape</b> to exit the viewer.";
|
|
||||||
return text;
|
|
||||||
}
|
|
||||||
|
|
||||||
#include "Viewer.moc"
|
|
||||||
|
|
@ -1,85 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/Viewer.h $
|
|
||||||
// $Id: Viewer.h 58880 2010-09-24 19:41:06Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#ifndef VIEWER_H
|
|
||||||
#define VIEWER_H
|
|
||||||
|
|
||||||
#include "typedefs.h"
|
|
||||||
#include <QGLViewer/qglviewer.h>
|
|
||||||
#include <QKeyEvent>
|
|
||||||
|
|
||||||
class Viewer : public QGLViewer
|
|
||||||
{
|
|
||||||
Q_OBJECT
|
|
||||||
|
|
||||||
CGAL::Timer timer;
|
|
||||||
Scene* scene;
|
|
||||||
bool wireframe;
|
|
||||||
bool flatShading;
|
|
||||||
bool edges;
|
|
||||||
bool vertices;
|
|
||||||
unsigned int modeFilledFacet;
|
|
||||||
int markVolume;
|
|
||||||
Map::Dart_range::iterator iteratorAllDarts;
|
|
||||||
|
|
||||||
typedef Map::Dart_handle Dart_handle;
|
|
||||||
|
|
||||||
public:
|
|
||||||
Viewer(QWidget* parent)
|
|
||||||
: QGLViewer(parent), wireframe(false), flatShading(true),
|
|
||||||
edges(true), vertices(true), modeFilledFacet(0)
|
|
||||||
{}
|
|
||||||
|
|
||||||
void setScene(Scene* scene_)
|
|
||||||
{
|
|
||||||
scene = scene_;
|
|
||||||
markVolume=scene->map->get_new_mark();
|
|
||||||
iteratorAllDarts=scene->map->darts().begin();
|
|
||||||
}
|
|
||||||
|
|
||||||
Map::Dart_range::iterator getCurrentDart() const
|
|
||||||
{ return iteratorAllDarts; }
|
|
||||||
|
|
||||||
// void clear();
|
|
||||||
|
|
||||||
public:
|
|
||||||
void draw();
|
|
||||||
|
|
||||||
virtual void init();
|
|
||||||
// void gl_draw_surface();
|
|
||||||
|
|
||||||
void keyPressEvent(QKeyEvent *e);
|
|
||||||
|
|
||||||
virtual QString helpString() const;
|
|
||||||
|
|
||||||
public slots :
|
|
||||||
|
|
||||||
void sceneChanged();
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void drawFacet(Dart_handle ADart, int AMark);
|
|
||||||
void drawEdges(Dart_handle ADart);
|
|
||||||
|
|
||||||
void draw_one_vol_filled_facets(Dart_handle ADart,
|
|
||||||
int amarkvol, int amarkfacet);
|
|
||||||
|
|
||||||
void draw_current_vol_filled_facets(Dart_handle ADart);
|
|
||||||
void draw_current_vol_and_neighboors_filled_facets(Dart_handle ADart);
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
@ -1,10 +0,0 @@
|
||||||
<html>
|
|
||||||
<body>
|
|
||||||
<h2>3D Combinatorial Map</h2>
|
|
||||||
<p>Copyright © 2009 CNRS</p>
|
|
||||||
<p>This application illustrates the 3D Combinatorial Map
|
|
||||||
of <a href="http://www.cgal.org/">CGAL</a>.</p>
|
|
||||||
<p>See also <a href="http://www.cgal.org/Pkg/CombinatorialMap">the online
|
|
||||||
manual</a>.</p>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
||||||
|
|
@ -1,181 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL$
|
|
||||||
// $Id$
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#include "typedefs.h"
|
|
||||||
|
|
||||||
#define PI 3.1415926535897932
|
|
||||||
|
|
||||||
// Smoth a vertex depending on the vertices of its incident facet.
|
|
||||||
class Smooth_old_vertex
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
/** Constructor.
|
|
||||||
* @param amap is the map to smooth
|
|
||||||
* @param amark is a mark designing old darts (i.e. darts not created during
|
|
||||||
* the triangulation step)
|
|
||||||
*/
|
|
||||||
Smooth_old_vertex (Map & amap, unsigned int amark):mmap (amap)
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
Vertex operator () (Vertex & v) const
|
|
||||||
{
|
|
||||||
Dart_handle d = v.dart ();
|
|
||||||
CGAL_assertion (d != NULL);
|
|
||||||
|
|
||||||
int degree = 0;
|
|
||||||
bool open = false;
|
|
||||||
|
|
||||||
Map::One_dart_per_incident_cell_range<1,0>::iterator it (mmap, d),
|
|
||||||
itend(mmap.one_dart_per_incident_cell<1,0>(d).end());
|
|
||||||
for (; it != itend; ++it)
|
|
||||||
{
|
|
||||||
++degree;
|
|
||||||
if (it->is_free (2)) open = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (open)
|
|
||||||
return v;
|
|
||||||
|
|
||||||
Map::FT alpha = (4.0f - 2.0f *
|
|
||||||
(Map::FT) cos (2.0f * PI / (Map::FT) degree)) / 9.0f;
|
|
||||||
Map::Vector vec = (v - CGAL::ORIGIN) * (1.0f - alpha);
|
|
||||||
|
|
||||||
for (it.rewind (); it != itend; ++it)
|
|
||||||
{
|
|
||||||
CGAL_assertion (!it->is_free (2));
|
|
||||||
vec = vec + (mmap.point(it->beta(2)) - CGAL::ORIGIN)
|
|
||||||
* alpha / degree;
|
|
||||||
}
|
|
||||||
|
|
||||||
Vertex res (CGAL::ORIGIN + vec);
|
|
||||||
res.set_dart (d);
|
|
||||||
|
|
||||||
// std::cout<<"operator() "<<v.point()<<" -> "<<res.point()<<std::endl;
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
Map & mmap;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Flip an edge, work in 2D and in 3D.
|
|
||||||
Dart_handle
|
|
||||||
flip_edge (Map & m, Dart_handle d)
|
|
||||||
{
|
|
||||||
CGAL_assertion (d != NULL && !d->is_free (2));
|
|
||||||
|
|
||||||
if (!CGAL::is_removable<Map,1>(m,d))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
Dart_handle d2 = d->beta(1)->beta(1);
|
|
||||||
CGAL::remove_cell<Map,1>(m, d);
|
|
||||||
|
|
||||||
insert_cell_1_in_cell_2(m, d2, d2->beta(1)->beta(1));
|
|
||||||
|
|
||||||
return d2->beta (0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Subdivide each facet of the map by using sqrt(3)-subdivision.
|
|
||||||
void
|
|
||||||
subdivide_map_3 (Map & m)
|
|
||||||
{
|
|
||||||
if (m.number_of_darts () == 0)
|
|
||||||
return;
|
|
||||||
|
|
||||||
unsigned int mark = m.get_new_mark ();
|
|
||||||
unsigned int treated = m.get_new_mark ();
|
|
||||||
m.negate_mark (mark); // All the old darts are marked in O(1).
|
|
||||||
|
|
||||||
// 1) We smoth the old vertices.
|
|
||||||
std::vector < Vertex > vertices; // smooth the old vertices
|
|
||||||
vertices.reserve (m.number_of_attributes<0> ()); // get intermediate space
|
|
||||||
std::transform (m.vertex_attributes().begin (),
|
|
||||||
m.vertex_attributes().end (),
|
|
||||||
std::back_inserter (vertices),
|
|
||||||
Smooth_old_vertex (m, mark));
|
|
||||||
|
|
||||||
// 2) We subdivide each facet.
|
|
||||||
m.negate_mark (treated); // All the darts are marked in O(1).
|
|
||||||
unsigned int nb = 0;
|
|
||||||
for (Map::Dart_range::iterator it (m.darts().begin ());
|
|
||||||
m.number_of_marked_darts (treated) > 0; ++it)
|
|
||||||
{
|
|
||||||
++nb;
|
|
||||||
if (m.is_marked (it, treated))
|
|
||||||
{
|
|
||||||
// We unmark the darts of the facet to process only once dart/facet.
|
|
||||||
CGAL::unmark_cell < Map, 2 > (m, it, treated);
|
|
||||||
// We triangulate the facet.
|
|
||||||
CGAL::insert_center_cell_0_in_cell_2(m, it);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
CGAL_assertion (m.is_whole_map_unmarked (treated));
|
|
||||||
CGAL_assertion (m.is_valid ());
|
|
||||||
m.free_mark (treated);
|
|
||||||
|
|
||||||
// 3) We update the coordinates of old vertices.
|
|
||||||
for (std::vector < Vertex >::iterator vit = vertices.begin ();
|
|
||||||
vit != vertices.end (); ++vit)
|
|
||||||
{
|
|
||||||
m.point(vit->dart())=*vit;
|
|
||||||
}
|
|
||||||
|
|
||||||
// 4) We flip all the old edges.
|
|
||||||
m.negate_mark (mark); // Now only new darts are marked.
|
|
||||||
Dart_handle d2 = NULL;
|
|
||||||
for (Map::Dart_range::iterator it (m.darts().begin ()); it != m.darts().end ();)
|
|
||||||
{
|
|
||||||
d2 = it++;
|
|
||||||
CGAL_assertion (d2 != NULL);
|
|
||||||
if (!m.is_marked (d2, mark)) // This is an old dart.
|
|
||||||
{
|
|
||||||
// We process only the last dart of a same edge.
|
|
||||||
if (!d2->is_free(2) && (d2->beta(2)->beta(3)==d2->beta(3)->beta(2)))
|
|
||||||
{
|
|
||||||
if (m.is_marked(d2->beta(2), mark) &&
|
|
||||||
(d2->is_free(3) ||
|
|
||||||
(m.is_marked(d2->beta(3), mark) &&
|
|
||||||
m.is_marked(d2->beta(2)->beta(3), mark))))
|
|
||||||
{
|
|
||||||
m.negate_mark (mark); // thus new darts will be marked
|
|
||||||
flip_edge (m, d2);
|
|
||||||
m.negate_mark (mark);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
m.mark (d2, mark);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
m.mark (d2, mark);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* CGAL::display_darts(m,std::cout)<<std::endl;
|
|
||||||
for (Map::Vertex_attribute_iterator it = m.vertex_attributes_begin();
|
|
||||||
it!=m.vertex_attributes_end(); ++it)
|
|
||||||
{
|
|
||||||
std::cout<<it->point()<<", ";
|
|
||||||
}
|
|
||||||
std::cout<<std::endl;*/
|
|
||||||
|
|
||||||
CGAL_assertion (m.is_whole_map_marked (mark));
|
|
||||||
m.free_mark (mark);
|
|
||||||
|
|
||||||
CGAL_postcondition ( m.is_valid ());
|
|
||||||
}
|
|
||||||
|
|
@ -1,92 +0,0 @@
|
||||||
// Copyright (c) 2010 CNRS, LIRIS, http://liris.cnrs.fr/, All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
||||||
// modify it under the terms of the GNU Lesser General Public License as
|
|
||||||
// published by the Free Software Foundation; version 2.1 of the License.
|
|
||||||
// See the file LICENSE.LGPL distributed with CGAL.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// $URL: svn+ssh://gdamiand@scm.gforge.inria.fr/svn/cgal/branches/features/Linear_cell_complex-gdamiand/Linear_cell_complex/demo/Linear_cell_complex/typedefs.h $
|
|
||||||
// $Id: typedefs.h 65446 2011-09-20 16:55:42Z gdamiand $
|
|
||||||
//
|
|
||||||
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
|
|
||||||
//
|
|
||||||
#ifndef TYPEDEFS_H
|
|
||||||
#define TYPEDEFS_H
|
|
||||||
|
|
||||||
#include <CGAL/Linear_cell_complex.h>
|
|
||||||
#include <CGAL/Linear_cell_complex_constructors.h>
|
|
||||||
#include <CGAL/Linear_cell_complex_operations.h>
|
|
||||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
|
||||||
|
|
||||||
#include <CGAL/IO/Color.h>
|
|
||||||
#include <CGAL/Timer.h>
|
|
||||||
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstring>
|
|
||||||
#include <iostream>
|
|
||||||
#include <fstream>
|
|
||||||
#include <vector>
|
|
||||||
#include <list>
|
|
||||||
|
|
||||||
#define COLOR_VOLUME 1 // Pour activer la couleur des volumes
|
|
||||||
|
|
||||||
#ifdef COLOR_VOLUME
|
|
||||||
template<class Cell>
|
|
||||||
struct Average_functor : public std::binary_function<Cell,Cell,void>
|
|
||||||
{
|
|
||||||
void operator()(Cell& acell1,Cell& acell2)
|
|
||||||
{
|
|
||||||
acell1.attribute()=
|
|
||||||
CGAL::Color((acell1.attribute().r()+acell2.attribute().r())/2,
|
|
||||||
(acell1.attribute().g()+acell2.attribute().g())/2,
|
|
||||||
(acell1.attribute().b()+acell2.attribute().b())/2);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
class Myitems
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
// typedef CGAL::Exact_predicates_inexact_constructions_kernel Traits;
|
|
||||||
|
|
||||||
template < class Refs >
|
|
||||||
struct Dart_wrapper
|
|
||||||
{
|
|
||||||
typedef CGAL::Dart<3, Refs > Dart;
|
|
||||||
|
|
||||||
typedef CGAL::Cell_attribute_with_point< Refs > Vertex_attrib;
|
|
||||||
typedef CGAL::Cell_attribute< Refs, CGAL::Color > Volume_attrib;
|
|
||||||
|
|
||||||
typedef CGAL::cpp0x::tuple<Vertex_attrib,CGAL::Disabled,CGAL::Disabled,Volume_attrib>
|
|
||||||
Attributes;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
#else // COLOR_VOLUME
|
|
||||||
typedef CGAL::Combinatorial_map_with_points_min_items<3,3> Myitems;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
typedef CGAL::Linear_cell_complex_traits<3,CGAL::Exact_predicates_inexact_constructions_kernel> Mytraits;
|
|
||||||
|
|
||||||
typedef CGAL::Combinatorial_map_with_points<3,3,Mytraits,Myitems> Map;
|
|
||||||
typedef Map::Dart_handle Dart_handle;
|
|
||||||
typedef Map::Vertex_attribute Vertex;
|
|
||||||
|
|
||||||
typedef Map::Point Point_3;
|
|
||||||
typedef Map::Vector Vector_3;
|
|
||||||
typedef Map::Traits::Iso_cuboid_3 Iso_cuboid_3;
|
|
||||||
|
|
||||||
typedef CGAL::Timer Timer;
|
|
||||||
|
|
||||||
struct Scene {
|
|
||||||
Map* map;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
@ -1,979 +0,0 @@
|
||||||
\def\betats{\ccTexHtml{$\beta$}{β}}
|
|
||||||
\def\betazero{\ccTexHtml{$\beta_0$}{β<SUB>0</SUB>}}
|
|
||||||
\def\betaun{\ccTexHtml{$\beta_1$}{β<SUB>1</SUB>}}
|
|
||||||
\def\betadeux{\ccTexHtml{$\beta_2$}{β<SUB>2</SUB>}}
|
|
||||||
\def\betatrois{\ccTexHtml{$\beta_3$}{β<SUB>3</SUB>}}
|
|
||||||
\def\betaquatre{\ccTexHtml{$\beta_4$}{β<SUB>4</SUB>}}
|
|
||||||
\def\betai{\ccTexHtml{$\beta_i$}{β<SUB>i</SUB>}}
|
|
||||||
\def\betad{\ccTexHtml{$\beta_d$}{β<SUB>d</SUB>}}
|
|
||||||
\def\betadprim{\ccTexHtml{$\beta_{d'}$}{β<SUB>d'</SUB>}}
|
|
||||||
\def\betaimun{\ccTexHtml{$\beta_{i-1}$}{β<SUB>i-1</SUB>}}
|
|
||||||
\def\betaipun{\ccTexHtml{$\beta_{i+1}$}{β<SUB>i+1</SUB>}}
|
|
||||||
\def\betaimdeux{\ccTexHtml{$\beta_{i-2}$}{β<SUB>i-2</SUB>}}
|
|
||||||
\def\betaipdeux{\ccTexHtml{$\beta_{i+2}$}{β<SUB>i+2</SUB>}}
|
|
||||||
\def\betaj{\ccTexHtml{$\beta_j$}{β<SUB>j</SUB>}}
|
|
||||||
\def\betajmun{\ccTexHtml{$\beta_{j-1}$}{β<SUB>j-1</SUB>}}
|
|
||||||
\def\betaiinv{\ccTexHtml{$\beta_i^{-1}$}{β<sub>i</sub><sup>-1</sup>}}
|
|
||||||
\def\betajinv{\ccTexHtml{$\beta_j^{-1}$}{β<sub>j</sub><sup>-1</sup>}}
|
|
||||||
|
|
||||||
\def\comp{\ccTexHtml{$\circ$}{°}}
|
|
||||||
\def\pinv{\ccTexHtml{$p^{-1}$}{p<SUP>-1</SUP>}}
|
|
||||||
\def\myith{\ccTexHtml{$i^{\mbox{th}}$}{i<SUP>th</SUP>}}
|
|
||||||
|
|
||||||
\def\myneq{\ccTexHtml{$\neq$}{≠}}
|
|
||||||
\def\myleq{\ccTexHtml{$\leq$}{≤}}
|
|
||||||
\def\mylt{\ccTexHtml{$<$}{<}}
|
|
||||||
\def\mygt{\ccTexHtml{$>$}{>}}
|
|
||||||
\def\mygeq{\ccTexHtml{$\geq$}{≥}}
|
|
||||||
\def\mysubseteq{\ccTexHtml{$\subseteq$}{⊆}}
|
|
||||||
\def\myforall{\ccTexHtml{$\forall$}{∀}}
|
|
||||||
\def\myemptyset{\ccTexHtml{$\emptyset$}{∅}}
|
|
||||||
\def\myRightarrow{\ccTexHtml{$\Rightarrow$}{⇒}}
|
|
||||||
\def\myrightarrow{\ccTexHtml{$\rightarrow$}{→}}
|
|
||||||
\def\myin{\ccTexHtml{$\in$}{∈}}
|
|
||||||
\def\mynotin{\ccTexHtml{$\notin$}{∉}}
|
|
||||||
\def\mycup{\ccTexHtml{$\cup$}{∪}}
|
|
||||||
\def\myphi{\ccTexHtml{$\phi$}{φ}}
|
|
||||||
\def\mysetminus{\ccTexHtml{$\setminus$}{\ }}
|
|
||||||
\def\myldots{\ccTexHtml{$\ldots$}{…}}
|
|
||||||
\def\mytimes{\ccTexHtml{$\times$}{×}}
|
|
||||||
|
|
||||||
%\def\myvarnothing{\ccTexHtml{$\varnothing$}{\varnothing}}
|
|
||||||
%\ccTexHtml{$\varnothing$}{\lcRawHtml{∅}}}
|
|
||||||
|
|
||||||
\newcommand{\cell}[1]{\emph{#1}-cell}
|
|
||||||
\newcommand{\cells}[1]{\emph{#1}-cells}
|
|
||||||
\newcommand{\orbit}[1]{\ccTexHtml{$\langle{}$}{⟨}#1\ccTexHtml{$\rangle{}$}{⟩}}
|
|
||||||
|
|
||||||
\newcommand{\mb}[1]{\beta_{#1}}
|
|
||||||
\newcommand{\orb}[1]{\langle{}#1\rangle{}}
|
|
||||||
|
|
||||||
\section{Introduction}
|
|
||||||
|
|
||||||
A \emph{d}D linear cell complex allows to represent an orientable
|
|
||||||
subdivided \emph{d}D object having linear geometry: each vertex of the
|
|
||||||
subdivision is associated with a point. The geometry of each edge is a
|
|
||||||
segment whose end points are associated with the two vertices of the
|
|
||||||
edge, the geometry of each 2-cell is obtained from all the segments
|
|
||||||
associated to the edges describing the boundary of the 2-cell and so
|
|
||||||
on.
|
|
||||||
|
|
||||||
The combinatorial part of a linear cell complex is described by using
|
|
||||||
a \emph{d}D combinatorial map (see Chapter~\ref{ChapterCombinatorialMap}).
|
|
||||||
To add the linear geometrical embedding, a point (a model of
|
|
||||||
\ccc{CGAL::Point_2} or \ccc{CGAL::Point_3} or \ccc{CGAL::Point_d}) is
|
|
||||||
associated to each vertex of the combinatorial map.
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\begin{figure}[ht]
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=.3\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/object2d}
|
|
||||||
\qquad
|
|
||||||
\includegraphics[width=.53\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/intuitif-example-lcc-object}
|
|
||||||
% \includegraphics[width=.3\textwidth]
|
|
||||||
% {Linear_cell_complex/fig/pdf/4Dobject}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/object2d.png"><img src="fig/png/object2d.png" alt=""></A>
|
|
||||||
<A HREF="fig/png/intuitif-example-lcc-object.png"><img src="fig/png/intuitif-example-lcc-object.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of objects with linear geometry. \textbf{Left}:~A
|
|
||||||
2D object composed of three 2-cells, nine
|
|
||||||
1-cells and seven points associated to the seven 0-cells .
|
|
||||||
\textbf{Right}:~A
|
|
||||||
3D object composed of three 3-cells, twelve 2-cells, sixteen
|
|
||||||
1-cells and eight points associated to the eight 0-cells.
|
|
||||||
% \textbf{Right}: A 4D object (called
|
|
||||||
% Tesseract) composed of one 4-cell, eight 3-cells, twenty-four 2-cells,
|
|
||||||
% thirty-two 1-cells and sixteen 0-cells.
|
|
||||||
\label{fig-exemple-introductif}}
|
|
||||||
\end{figure}
|
|
||||||
%
|
|
||||||
If we reconsider the example introduced in the combinatorial map
|
|
||||||
package, recalled in Figure~\ref{fig-exemple-introductif} (Left), the
|
|
||||||
combinatorial part of the 3D object is described by a 3D combinatorial
|
|
||||||
map. As illustrated in Figure~\ref{fig-exemple-introductif-lcc}, the
|
|
||||||
geometrical part of the object is described by associating a point to
|
|
||||||
each vertex of the map.
|
|
||||||
%
|
|
||||||
\def\LargFig{.3\textwidth}
|
|
||||||
\begin{figure}[h]
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc}\qquad
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom2}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/intuitif-example-lcc.png">
|
|
||||||
<img src="fig/png/intuitif-example-lcc.png" alt=""></A>
|
|
||||||
<A HREF="fig/png/intuitif-example-lcc-zoom.png">
|
|
||||||
<img src="fig/png/intuitif-example-lcc-zoom.png" alt=""></A>
|
|
||||||
<A HREF="fig/png/intuitif-example-lcc-zoom2.png">
|
|
||||||
<img src="fig/png/intuitif-example-lcc-zoom2.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of 3D linear cell complex describing the object
|
|
||||||
given in Figure~\ref{fig-exemple-introductif} (Left).
|
|
||||||
\textbf{Left}:~The 3D linear cell complex which contains 54 darts
|
|
||||||
(18 for each 3-cell) where each vertex is associated with a
|
|
||||||
point, here a \ccc{CGAL::Point_3}. Blue segments represent \betatrois{} relations.
|
|
||||||
\textbf{Middle}:~Zoom around
|
|
||||||
the central edge which details the six darts belonging to the
|
|
||||||
edge and the associations between darts and points.
|
|
||||||
\textbf{Right}:~Zoom around the facet between light gray and
|
|
||||||
white 3-cells, which details the eight darts belonging to the
|
|
||||||
facet and the associations between darts and
|
|
||||||
points (given by red segments).\label{fig-exemple-introductif-lcc}}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
Note that the dimension of the combinatorial map \emph{d} is not
|
|
||||||
necessarily equal to the dimension of the ambient space
|
|
||||||
\emph{d2}. Indeed, we can use for example a 2D combinatorial map in a
|
|
||||||
2D ambient space to describe a planar graph
|
|
||||||
(\emph{d}=\emph{d2}=\emph{2}), or a 2D combinatorial map in a 3D
|
|
||||||
ambient space to describe a surface in 3D space (\emph{d}=2,
|
|
||||||
\emph{d2}=3) (case of the \ccc{Polyhedron_3} package), or a 3D
|
|
||||||
combinatorial map in a 3D ambient space (\emph{d}=\emph{d2}=3) and so
|
|
||||||
on.
|
|
||||||
|
|
||||||
\section{Software Design}
|
|
||||||
|
|
||||||
The diagram in Figure~\ref{fig-diagram_class_lcc} shows the main
|
|
||||||
classes of the package. \ccc{CGAL::Linear_cell_complex} is the main
|
|
||||||
class (see Section~\ref{ssec-linear-cell-complex}) which inherits from
|
|
||||||
the \ccc{CGAL::Combinatorial_map} class. Attributes can be associated
|
|
||||||
to some cells of the linear cell complex thanks to an items class (see
|
|
||||||
Section~\ref{ssec-lcc-item}), which defines the dart type and the
|
|
||||||
attribute types. These types may be different for different
|
|
||||||
dimensions, and they may also be void. In class
|
|
||||||
\ccc{CGAL::Linear_cell_complex}, it is required that
|
|
||||||
specific attributes are associated to all vertices of the
|
|
||||||
combinatorial map. These attributes must contain a point (a model of
|
|
||||||
\ccc{CGAL::Point_2} or \ccc{CGAL::Point_3} or \ccc{CGAL::Point_d}),
|
|
||||||
and can be represented by instances of class
|
|
||||||
\ccc{CGAL::Cell_attribute_with_point} (see
|
|
||||||
Section~\ref{ssec-attribute-wp}).
|
|
||||||
%
|
|
||||||
\begin{figure}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=.95\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/Diagramme_class}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/Diagramme_class.png">
|
|
||||||
<img src="fig/png/Diagramme_class.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{UML diagram of the main classes of the package. Gray
|
|
||||||
elements come from the \ccc{Combinatorial_map} package
|
|
||||||
(cf. Chapter~\ref{ChapterCombinatorialMap}).}
|
|
||||||
\label{fig-diagram_class_lcc}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\subsection{Linear Cell Complex}\label{ssec-linear-cell-complex}
|
|
||||||
|
|
||||||
The \ccc{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>} class
|
|
||||||
is a model of the \ccc{CombinatorialMap} concept. It guarantees that
|
|
||||||
each vertex of the combinatorial map is associated with an attribute
|
|
||||||
containing a point. This class can be used in geometric algorithms (it
|
|
||||||
plays the same role as \ccc{Polyhedron_3} for \ccc{HalfedgeDS}).
|
|
||||||
|
|
||||||
This class has five template parameters standing for the dimension of
|
|
||||||
the combinatorial map, the dimension of the ambient space, a traits
|
|
||||||
class (a model of the \ccc{LinearCellComplexTraits} concept, see
|
|
||||||
Section~\ref{ssec-lcc-traits}), an items class (a model of the
|
|
||||||
\ccc{LinearCellComplexItems} concept, see
|
|
||||||
Section~\ref{ssec-lcc-item}), and an allocator which must be a model
|
|
||||||
of the allocator concept of {\stl}. Default classes are provided for
|
|
||||||
the traits, items and for the allocator classes, and by default
|
|
||||||
\ccc{d2=d}.
|
|
||||||
|
|
||||||
A linear cell complex is valid, if it is a valid combinatorial map
|
|
||||||
where each dart is associated with an attribute containing a point
|
|
||||||
(i.e. an instance of a model of the \ccc{CellAttributeWithPoint}
|
|
||||||
concept). Note that there are no validity constraint on the geometry
|
|
||||||
(test on self intersection, planarity of 2-cells...) because these
|
|
||||||
tests are complex, too slow (for example to detect a self
|
|
||||||
intersection, we have to simulate a Boolean operation), and often
|
|
||||||
false for inexact kernels. We can see two examples of
|
|
||||||
\ccc{CGAL::Linear_cell_complex} in
|
|
||||||
Figure~\ref{fig-combi_map_with_point}.
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\begin{figure}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\centerline{\includegraphics[width=.25\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/plane-graph}
|
|
||||||
\qquad
|
|
||||||
\includegraphics[width=.45\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/basic-example3D}}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/plane-graph.png">
|
|
||||||
<img src="fig/png/plane-graph.png" alt=""></A>
|
|
||||||
<A HREF="fig/png/basic-example3D.png">
|
|
||||||
<img src="fig/png/basic-example3D.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Examples of \ccc{CGAL::Linear_cell_complex}. Gray disks show the
|
|
||||||
attributes associated to vertices. Associations between darts and
|
|
||||||
attributes are drawn by small lines between darts and disks.
|
|
||||||
\textbf{Left:}~Example of \ccc{CGAL::Linear_cell_complex<2,2>}.
|
|
||||||
\textbf{Right:}~Example of \ccc{CGAL::Linear_cell_complex<3,3>}.}
|
|
||||||
\label{fig-combi_map_with_point}
|
|
||||||
\end{figure}
|
|
||||||
%
|
|
||||||
% \begin{figure}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \centerline{\includegraphics[width=.45\textwidth]
|
|
||||||
% {Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2}}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/exemple-carte-with_point_3d-sew2.png">
|
|
||||||
% <img src="fig/png/exemple-carte-with_point_3d-sew2.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \caption{Example of \ccc{Linear_cell_complex<3,3>}. Circles show the
|
|
||||||
% attributes associated to vertices, containing 3D
|
|
||||||
% points. Associations between darts and attributes are drawn by small
|
|
||||||
% lines between darts and disks.}
|
|
||||||
% \label{fig-combi_map_with_point}
|
|
||||||
% \end{figure}
|
|
||||||
|
|
||||||
\subsection{Cell Attributes}\label{ssec-attribute-wp}
|
|
||||||
|
|
||||||
The
|
|
||||||
\ccc{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
|
||||||
class is a model of the \ccc{CellAttributeWithPoint} concept which is
|
|
||||||
a refinement of the \ccc{CellAttribute} concept. It represents an
|
|
||||||
attribute associated with a cell which can contain an information
|
|
||||||
(depending if \ccc{Info_==void} or not), but which always contain a
|
|
||||||
point, an instance of \ccc{LCC::Point}.
|
|
||||||
% . This
|
|
||||||
% class inherits from the type of point defined in \ccc{LCC}. Thus we
|
|
||||||
% can use an instance of \ccc{CGAL::Cell_attribute_with_point} everywhere an
|
|
||||||
% instance of \ccc{LCC::Point} is required.
|
|
||||||
|
|
||||||
% combinatorial map, see example in
|
|
||||||
% Section~\ref{ssec-exemple-color-vertices}).
|
|
||||||
% \end{enumerate}
|
|
||||||
|
|
||||||
\subsection{Linear Cell Complex Traits}\label{ssec-lcc-traits}
|
|
||||||
|
|
||||||
The \ccc{LinearCellComplexTraits} geometric traits concept defines the
|
|
||||||
required types and functors used in the \ccc{Linear_cell_complex}
|
|
||||||
class. For example it defines \ccc{Point}, the type of points used,
|
|
||||||
and \ccc{Vector}, the corresponding vector type. It also defines all
|
|
||||||
the required functors used for contructions and operations, as for
|
|
||||||
example \ccc{Construct_translated_point} or
|
|
||||||
\ccc{Construct_sum_of_vectors}.
|
|
||||||
|
|
||||||
The class \ccc{CGAL::Linear_cell_complex_traits<d,K>} is a model of
|
|
||||||
\ccc{LinearCellComplexTraits}. It defines the different types which
|
|
||||||
are obtained from \ccc{K} which, depending on \ccc{d}, is either a model of
|
|
||||||
the concept \ccc{Kernel} if \ccc{d==2} or \ccc{d==3}; a model of the
|
|
||||||
concept \ccc{Kernel_d} otherwise.
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{Linear Cell Complex Items}\label{ssec-lcc-item}
|
|
||||||
|
|
||||||
The \ccc{LinearCellComplexItems} concept refines the
|
|
||||||
\ccc{CombinatorialMapItems} concept by adding the requirement that
|
|
||||||
0-attributes are enabled, and associated with a type of attribute
|
|
||||||
being a model of the \ccc{CellAttributeWithPoint} concept.
|
|
||||||
% In
|
|
||||||
% addition to the requirements of \ccc{CombinatorialMapItems}, the
|
|
||||||
% item class must also define the \ccc{Traits} type for the geometrical
|
|
||||||
% traits used, a model of the \ccc{Kernel} or the
|
|
||||||
% \ccc{Kernel_d} concept.
|
|
||||||
|
|
||||||
The class \ccc{CGAL::Linear_cell_complex_min_items<d>} is a
|
|
||||||
model of \ccc{LinearCellComplexItems}. It uses \ccc{CGAL::Dart<d>},
|
|
||||||
and it has instances of \ccc{CGAL::Cell_attribute_with_point}
|
|
||||||
which contain no information associated to each vertex. All other
|
|
||||||
attributes are void.
|
|
||||||
% By default, \ccc{d2} is equal to \ccc{d}. There
|
|
||||||
% is a default template argument for Traits class which depends on
|
|
||||||
% \ccc{d2}. This is
|
|
||||||
% \ccc{CGAL::Exact_predicates_inexact_constructions_kernel type} if
|
|
||||||
% \ccc{d2} is 2 or 3, and this is \ccc{CGAL::Cartesian_d<double>}
|
|
||||||
% otherwise.
|
|
||||||
|
|
||||||
\section{Operations}
|
|
||||||
|
|
||||||
Several operations defined in the combinatorial maps package can be
|
|
||||||
used on a linear cell complex. This is the case for all the iteration
|
|
||||||
operations that do not modify the model (see example in
|
|
||||||
Section~\ref{ssec-3D-lcc}). This is also the case for
|
|
||||||
all the operations that do not create new 0-cells: \ccc{sew},
|
|
||||||
\ccc{unsew}, \ccc{remove_cell}, \ccc{insert_cell_1_in_cell_2},
|
|
||||||
\ccc{insert_cell_2_in_cell_3}. Indeed, all these operations update
|
|
||||||
non void attributes, and thus update vertex attributes of a linear
|
|
||||||
cell complex. Note that some existing 0-attributes can be duplicated
|
|
||||||
by the \ccc{unsew} method, but these 0-attributes are not ``new'' but
|
|
||||||
copies of existing old 0-attributes.
|
|
||||||
|
|
||||||
However operations that create a new 0-cell can not be directly used
|
|
||||||
since the new 0-cell would not be associated with a vertex
|
|
||||||
attribute. Indeed, it is not possible for these operations to
|
|
||||||
automatically decide which point to create. These operations are:
|
|
||||||
\ccc{insert_cell_0_in_cell_1}, \ccc{insert_cell_0_in_cell_2}
|
|
||||||
\ccc{insert_dangling_cell_1_in_cell_2}, plus all the creation
|
|
||||||
operations. For these operations, refined versions are proposed taking
|
|
||||||
a point as additional parameter. Lastly, some new operations are
|
|
||||||
defined which use the geometry (see Sections~\ref{ssec-modif-op} and
|
|
||||||
\ref{ssec-constructions-op}).
|
|
||||||
|
|
||||||
% having
|
|
||||||
% an additional information allowing to create the new vertex attribute.
|
|
||||||
% This information can either be additional parameters, or a
|
|
||||||
% specialization to be able to compute the geometry of the new points.
|
|
||||||
|
|
||||||
% These
|
|
||||||
% operations are \ccc{barycenter}, \ccc{compute_normal_of_cell_2} and
|
|
||||||
% \ccc{compute_normal_of_cell_0} (these two last functions are defined
|
|
||||||
% only when \ccc{ambient_dimension==3}).
|
|
||||||
|
|
||||||
% Since these operations use some
|
|
||||||
% geometrical constructions, they have some specific requirements on the
|
|
||||||
% traits class used.
|
|
||||||
|
|
||||||
All the operations given in this section guarantee that given a valid
|
|
||||||
linear cell complex and a possible operation, the result is a valid
|
|
||||||
linear cell complex. As for a combinatorial map, it is also possible
|
|
||||||
to use low level operations but additional operations may be needed to
|
|
||||||
restore the validity conditions.
|
|
||||||
|
|
||||||
%\subsection{Iterating Over Orbits, Cells, and Attributes}\label{ssec-lcc-range}
|
|
||||||
|
|
||||||
\subsection{Sewing and Unsewing \label{ssec-lcc-link-darts}}
|
|
||||||
|
|
||||||
As explained in \ccc{Combinatorial_map} user manual (see
|
|
||||||
Chapter~\ref{ChapterCombinatorialMap}), it is possible to glue two
|
|
||||||
\emph{i}-cells along an (\emph{i}-1)-cell by using the \ccc{sew<i>}
|
|
||||||
method. Since this method updates non void attributes, and since
|
|
||||||
points are specific attributes, they are automatically updated during
|
|
||||||
the \ccc{sew<i>} method. Thus the sewing of two \emph{i}-cells could
|
|
||||||
deform the geometry of the concerned objects.
|
|
||||||
|
|
||||||
For example, in Figure~\ref{fig-lcc-exemple-sew}, we want to 3-sew the
|
|
||||||
two initial 3-cells. \ccc{sew<3>(1,5)} links by \betatrois{} the pairs
|
|
||||||
of darts (1,5), (2,8), (3,7) and (4,6). The eight vertex attributes
|
|
||||||
around the facet between the two 3-cells before the sew are merged by
|
|
||||||
pair during the sew operation (and the \ccc{On_merge} functor is
|
|
||||||
called four times). Thus, after the sew, there are only four
|
|
||||||
attributes around the facet. By default, the attributes associated
|
|
||||||
with the first dart of the sew operation are kept (but this can be
|
|
||||||
modified by defining your own functor in the attribute class as
|
|
||||||
explained in package \ccc{Combinatorial_map}). Intuitively, the
|
|
||||||
geometry of the second 2-cell is deformed to fit to the first 2-cell.
|
|
||||||
%
|
|
||||||
\def\LargFig{.45\textwidth}
|
|
||||||
\begin{figure}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew}\qquad
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/exemple-carte-with_point_3d-sew.png">
|
|
||||||
<img src="fig/png/exemple-carte-with_point_3d-sew.png" alt=""></A>
|
|
||||||
<A HREF="fig/png/exemple-carte-with_point_3d-sew2.png">
|
|
||||||
<img src="fig/png/exemple-carte-with_point_3d-sew2.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of 3-sew operation for linear cell complex.
|
|
||||||
\textbf{Left}: A 3D linear cell complex containing two 3-cells
|
|
||||||
that are not connected. Vertex attributes are drawn with circles
|
|
||||||
containing point coordinates. Associations between darts and
|
|
||||||
attributes are drawn with small lines between darts and
|
|
||||||
disks. \textbf{Right}: The 3D linear cell complex obtained as
|
|
||||||
result of \ccc{sew<3>(1,5)} (or \ccc{sew<3>(2,8)}, or
|
|
||||||
\ccc{sew<3>(3,7)}, or \ccc{sew<3>(4,6)}). The eight
|
|
||||||
0-attributes around the facet between the two 3-cells before the
|
|
||||||
sew operation, are merged into four 0-attributes after. The
|
|
||||||
geometry of the pyramid is deformed since its base is fitted on
|
|
||||||
the 2-cell of the cube.}
|
|
||||||
\label{fig-lcc-exemple-sew}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
This is similar for the unsew operation, which removes \betai{} links
|
|
||||||
of all the darts in
|
|
||||||
\orbit{\betaun{},\myldots{},\betaimdeux{},\betaipdeux{},\myldots{},\betad{}}(\emph{d0}),
|
|
||||||
and updates
|
|
||||||
non void attributes which are no more associated to a same cell due to
|
|
||||||
the unlinks. If we take the linear cell complex given in
|
|
||||||
Figure~\ref{fig-lcc-exemple-sew} (Right), and we call
|
|
||||||
\ccc{unsew<3>(2)}, we obtain the linear cell complex in
|
|
||||||
Figure~\ref{fig-lcc-exemple-sew} (Left) (except for the coordinates of
|
|
||||||
the new four vertices, which by default are copies of original
|
|
||||||
vertices. This behavior can be modified thanks to the functor
|
|
||||||
\ccc{On_split} in the attribute class). The \ccc{unsew<3>} operation
|
|
||||||
has removed the four \betatrois{} links, and has duplicated the attributes
|
|
||||||
since vertices are cut in two after the unsew operation.
|
|
||||||
|
|
||||||
\subsection{Construction Operations}\label{ssec-constructions-op}
|
|
||||||
|
|
||||||
There are several member functions allowing to create specific
|
|
||||||
configurations of darts into a linear cell complex. These functions
|
|
||||||
% take an instance of a model of \ccc{LinearCellComplex} as first parameter, and
|
|
||||||
return a \ccc{Dart_handle} to the new object. Note
|
|
||||||
that the dimension of the linear cell complex must be large enough:
|
|
||||||
darts must contain all the \betats{} used by the operation. All these
|
|
||||||
method add new darts in the current linear cell complex, existing
|
|
||||||
darts are not modified. The existing functions
|
|
||||||
are \ccc{make_segment}, \ccc{make_triangle}, % \ccc{make_rectangle},
|
|
||||||
\ccc{make_tetrahedron}, and \ccc{make_hexahedron}. % and \ccc{make_isocuboid}.
|
|
||||||
% \begin{figure}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \centerline{\includegraphics[width=.75\textwidth]
|
|
||||||
% {Linear_cell_complex/fig/pdf/creations}}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/creations.png">
|
|
||||||
% <img src="fig/png/creations.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \caption{Example of basic objets creation: \ccc{make_segment},
|
|
||||||
% \ccc{make_triangle}, \ccc{make_rectangle},
|
|
||||||
% \ccc{make_tetrahedron} and \ccc{make_iso_cuboid}.}
|
|
||||||
% \label{fig-basic-creation}
|
|
||||||
% \end{figure}
|
|
||||||
|
|
||||||
% \begin{itemize}
|
|
||||||
% \item \ccc{make_segment(lcc,p1,p2)}: creates an isolated segment in
|
|
||||||
% \ccc{lcc} between points \ccc{p1} and \ccc{p2};
|
|
||||||
% \item \ccc{make_triangle(lcc,p1,p2,p3)}: creates an isolated
|
|
||||||
% triangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2}, \ccc{p3} as geometry;
|
|
||||||
% \item \ccc{make_quadrangle(lcc,p1,p2,p3,p4)}: creates an isolated
|
|
||||||
% quadrangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2}, \ccc{p3},
|
|
||||||
% \ccc{p4} as geometry;
|
|
||||||
% \item \ccc{make_rectangle(lcc,p1,p2)}: creates an isolated
|
|
||||||
% rectangle in \ccc{lcc} having points \ccc{p1}, \ccc{p2} as extreme points;
|
|
||||||
% \item \ccc{make_rectangle(lcc,r)}: creates an isolated
|
|
||||||
% rectangle in \ccc{lcc} having rectangle \ccc{r} as geometry;
|
|
||||||
% \item \ccc{make_rectangle(lcc,p,l1,l2)}: creates an isolated
|
|
||||||
% rectangle in \ccc{lcc} having points \ccc{p} as based point and
|
|
||||||
% \ccc{l1} and \ccc{l2} as width and height;
|
|
||||||
% \item \ccc{make_square(lcc,p,l)}: creates an isolated
|
|
||||||
% square in \ccc{lcc} having points \ccc{p} as based point
|
|
||||||
% and \ccc{l} as size,
|
|
||||||
% \item \ccc{make_tetrahedron(lcc,p1,p2,p3,p4)}: creates a tetrahedron
|
|
||||||
% having points \ccc{p1}, \ccc{p2}, \ccc{p3}, \ccc{p4} as geometry;
|
|
||||||
% \item \ccc{make_hexahedron(lcc,p1,p2,p3,p4,p5,p6,p7,p8)}: creates an
|
|
||||||
% hexahedron having points \ccc{p1}, \ccc{p2}, \ccc{p3}, \ccc{p4},
|
|
||||||
% \ccc{p5}, \ccc{p6}, \ccc{p7}, \ccc{p8} as geometry;
|
|
||||||
% \item \ccc{make_iso_cuboid(lcc,p1,p2)}: creates an isolated isocuboid
|
|
||||||
% having points \ccc{p1} and \ccc{p2} as extreme points;
|
|
||||||
% \item \ccc{make_iso_cuboid(lcc,ic)}: creates an isolated isocuboid
|
|
||||||
% having \ccc{ic} as geometry.
|
|
||||||
% \item \ccc{make_cube(lcc,p,l)}: creates an isolated cube
|
|
||||||
% having point \ccc{p} as based point and \ccc{l} as size.
|
|
||||||
%\end{itemize}
|
|
||||||
|
|
||||||
There are two functions allowing to build a linear cell complex
|
|
||||||
from two other \cgal\ data types:
|
|
||||||
\begin{itemize}
|
|
||||||
\item \ccc{import_from_triangulation_3(lcc,atr)}: adds in \ccc{lcc} all
|
|
||||||
the tetrahedra present in \ccc{atr}, a \ccc{CGAL::Triangulation_3};
|
|
||||||
\item \ccc{import_from_polyhedron(lcc,ap)}: adds in \ccc{lcc} all
|
|
||||||
the cells present in \ccc{ap}, a \ccc{CGAL::Polyhedron_3}.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
Lastly, the function \ccc{import_from_plane_graph(lcc,ais)} adds in
|
|
||||||
\ccc{lcc} all the cells reconstructed from the planar graph read in
|
|
||||||
\ccc{ais}, a \ccc{std::istream}.
|
|
||||||
|
|
||||||
\subsection{Modification Operations}\label{ssec-modif-op}
|
|
||||||
|
|
||||||
Some methods are defined in \ccc{Linear_cell_complex} class and allow
|
|
||||||
to modify a linear cell complex and updating the vertex attributes. The
|
|
||||||
following versions exist.
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=.75\textwidth]{Linear_cell_complex/fig/pdf/insert-vertex}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER> <A HREF="fig/png/insert-vertex.png"><img
|
|
||||||
src="fig/png/insert-vertex.png" alt=""></A> </CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of \ccc{insert_barycenter_in_cell<1>} and
|
|
||||||
\ccc{remove_cell<0>} operations. \textbf{Left}: Initial linear
|
|
||||||
cell complex. \textbf{Right}: After the insertion of a 0-cell in
|
|
||||||
the barycenter of the 1-cell containing dart \emph{d1}. Now if we
|
|
||||||
remove the 0-cell containing dart \emph{d2}, we obtain a linear
|
|
||||||
cell complex isomorphic to the initial one.}
|
|
||||||
\label{fig-lcc-insert-vertex}
|
|
||||||
\end{figure}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
\ccc{lcc.insert_barycenter_in_cell<unsigned int i>(dh0)} adds a point
|
|
||||||
in the middle of the \emph{i}-cell containing dart \ccc{d0}. This
|
|
||||||
operation is possible if \ccc{d0}\myin{}\ccc{lcc.darts()} (see example
|
|
||||||
on Figure~\ref{fig-lcc-insert-vertex} and
|
|
||||||
Figure~\ref{fig-lcc-triangulate}).
|
|
||||||
\ccc{lcc.insert_point_in_cell<unsigned int i>(dh0,p)} is an
|
|
||||||
operation similar to the previous operation, the only difference being
|
|
||||||
that the coordinates of the new point is here given by \ccc{p} instead
|
|
||||||
of being computed as the barycenter of the \emph{i}-cell. Currently,
|
|
||||||
these two operations are only defined for \ccc{i=1} to insert a point
|
|
||||||
in an edge, or \ccc{i=2} to insert a point in a facet.
|
|
||||||
%
|
|
||||||
% \ccc{insert_center_cell_0_in_cell_2(lcc,dh0)} adds a 0-cell in the
|
|
||||||
% barycenter of the 2-cell containing dart \ccc{d0}. The 2-cell is
|
|
||||||
% split in triangles, one for each initial edge of the 2-cell. This
|
|
||||||
% operation is possible if \ccc{d0}\myin{}\ccc{lcc.darts()} (see example
|
|
||||||
% on Figure~\ref{fig-lcc-triangulate}).
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\centerline{\includegraphics[width=.85\textwidth]
|
|
||||||
{Linear_cell_complex/fig/pdf/triangulation}}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER> <A HREF="fig/png/triangulation.png"> <img
|
|
||||||
src="fig/png/triangulation.png" alt=""></A> </CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of \ccc{insert_barycenter_in_cell<2>} operation.}
|
|
||||||
\label{fig-lcc-triangulate}
|
|
||||||
\end{figure}
|
|
||||||
%
|
|
||||||
|
|
||||||
\ccc{lcc.insert_dangling_cell_1_in_cell_2(dh0,p)} adds a 1-cell in
|
|
||||||
the 2-cell containing dart \ccc{d0}, the 1-cell being attached by only
|
|
||||||
one of its vertex to the 0-cell containing dart \ccc{d0}. The second
|
|
||||||
vertex of the new edge is associated with a new 0-attribute containing
|
|
||||||
a copy of \ccc{p} as point. This operation is possible if
|
|
||||||
\ccc{d0}\myin{}\ccc{lcc.darts()} (see example on
|
|
||||||
Figure~\ref{fig-lcc-insert-dangling-edge}).
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=.72\textwidth]{Linear_cell_complex/fig/pdf/insert-edge}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER> <A HREF="fig/png/insert-edge.png"><img
|
|
||||||
src="fig/png/insert-edge.png" alt=""></A> </CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\caption{Example of \ccc{insert_dangling_cell_1_in_cell_2} and
|
|
||||||
\ccc{remove_cell<1>} operations. \textbf{Left}: Initial linear
|
|
||||||
cell complex. \textbf{Right}: After the insertion of a dangling
|
|
||||||
1-cell in the 2-cell containing dart \emph{d1}. Now if we remove
|
|
||||||
the 1-cell containing dart \emph{d2}, we obtain a linear cell
|
|
||||||
complex isomorphic to the initial one.}
|
|
||||||
\label{fig-lcc-insert-dangling-edge}
|
|
||||||
\end{figure}
|
|
||||||
% \end{itemize}
|
|
||||||
% \end{itemize}
|
|
||||||
|
|
||||||
Some examples of use of these operations are given in
|
|
||||||
Section~\ref{ssec-5dexample}.
|
|
||||||
|
|
||||||
% The operations defined on combinatorial maps can be used on linear
|
|
||||||
% cell complexes. However, only operations which does not create a new
|
|
||||||
% vertex ensure the validity of enabled cells: \ccc{remove_cell<i>},
|
|
||||||
% \ccc{insert_cell_1_in_cell_2}, \ccc{insert_cell_2_in_cell_3}.
|
|
||||||
|
|
||||||
% For other operations, you need to create 0-attributes and associate
|
|
||||||
% them to new vertices.
|
|
||||||
|
|
||||||
\section{Examples}
|
|
||||||
|
|
||||||
\subsection{A 3D Linear Cell Complex}\label{ssec-3D-lcc}
|
|
||||||
|
|
||||||
This example uses a 3-dimensional linear cell complex. It creates two
|
|
||||||
tetrahedra and displays all the points of the linear cell complex
|
|
||||||
thanks to a \ccc{Vertex_attribute_const_range}. Then, the two
|
|
||||||
tetrahedra are 3-sewn and we translate all the points of the second
|
|
||||||
tetrahedron along vector \ccc{v(3,1,1)}. Since the two tetrahedron
|
|
||||||
are 3-sewn, this translation moves also the 2-cell of the first
|
|
||||||
tetrahedron shared with the second one. This is illustrated by
|
|
||||||
displaying all the points of each 3-cell. For that we use a
|
|
||||||
\ccc{std::for_each} and the \ccc{Display_vol_vertices} functor.
|
|
||||||
|
|
||||||
%\ccIncludeExampleCode{Linear_cell_complex/map_3_with_points.cpp}
|
|
||||||
% TODO update the code to reflect the last modifs of the doc.
|
|
||||||
\begin{ccExampleCode}
|
|
||||||
typedef CGAL::Linear_cell_complex<3> LCC_3;
|
|
||||||
typedef LCC_3::Dart_handle Dart_handle;
|
|
||||||
typedef LCC_3::Point Point;
|
|
||||||
typedef LCC_3::FT FT;
|
|
||||||
|
|
||||||
// Functor used to display all the vertices of a given volume
|
|
||||||
template<class LCC>
|
|
||||||
struct Display_vol_vertices : public std::unary_function<LCC, void>
|
|
||||||
{
|
|
||||||
Display_vol_vertices(const LCC& alcc) :
|
|
||||||
lcc(alcc),
|
|
||||||
nb_volume(0)
|
|
||||||
{}
|
|
||||||
|
|
||||||
void operator() (typename LCC::Dart& d)
|
|
||||||
{
|
|
||||||
std::cout<<"Volume "<<++nb_volume<<" : ";
|
|
||||||
for (typename LCC::template One_dart_per_incident_cell_range<0,3>::
|
|
||||||
const_iterator it=lcc.template
|
|
||||||
one_dart_per_incident_cell<0,3>(lcc.dart_handle(d)).begin(),
|
|
||||||
itend=lcc.template one_dart_per_incident_cell<0,3>
|
|
||||||
(lcc.dart_handle(d)).end(); it!=itend; ++it)
|
|
||||||
{
|
|
||||||
std::cout << LCC_3::point(it) << "; ";
|
|
||||||
}
|
|
||||||
std::cout<<std::endl;
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
const LCC& lcc;
|
|
||||||
unsigned int nb_volume;
|
|
||||||
};
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
LCC_3 lcc;
|
|
||||||
|
|
||||||
// Create two tetrahedra.
|
|
||||||
Dart_handle d1 = lcc.make_tetrahedron(Point(-1, 0, 0),
|
|
||||||
Point(0, 2, 0),
|
|
||||||
Point(1, 0, 0),
|
|
||||||
Point(1, 1, 2));
|
|
||||||
Dart_handle d2 = lcc.make_tetrahedron(Point(0, 2, -1),
|
|
||||||
Point(-1, 0, -1),
|
|
||||||
Point(1, 0, -1),
|
|
||||||
Point(1, 1, -3));
|
|
||||||
|
|
||||||
// Display all the vertices of the lcc by iterating on the
|
|
||||||
// vertex_attribute container.
|
|
||||||
CGAL::set_ascii_mode(std::cout);
|
|
||||||
std::cout<<"Vertices: ";
|
|
||||||
for (LCC_3::Vertex_attribute_const_range::iterator
|
|
||||||
v=lcc.vertex_attributes().begin(),
|
|
||||||
vend=lcc.vertex_attributes().end(); v!=vend; ++v)
|
|
||||||
std::cout << *v << "; ";
|
|
||||||
std::cout<<std::endl;
|
|
||||||
|
|
||||||
// Display the vertices of each volume by iterating on darts.
|
|
||||||
std::for_each(lcc.one_dart_per_cell<3>().begin(),
|
|
||||||
lcc.one_dart_per_cell<3>().end(),
|
|
||||||
Display_vol_vertices<LCC_3>(lcc));
|
|
||||||
|
|
||||||
// 3-Sew the 2 tetrahedra along one facet
|
|
||||||
lcc.sew<3>(d1, d2);
|
|
||||||
|
|
||||||
// Display the vertices of each volume by iterating on darts.
|
|
||||||
std::for_each(lcc.one_dart_per_cell<3>().begin(),
|
|
||||||
lcc.one_dart_per_cell<3>().end(),
|
|
||||||
Display_vol_vertices<LCC_3>(lcc));
|
|
||||||
|
|
||||||
// Translate the second tetrahedra by a given vector
|
|
||||||
LCC_3::Vector v(3,1,1);
|
|
||||||
for (LCC_3::One_dart_per_incident_cell_range<0,3>::iterator
|
|
||||||
it=lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
|
|
||||||
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end();
|
|
||||||
it!=itend; ++it)
|
|
||||||
{
|
|
||||||
LCC_3::point(it)=LCC_3::Traits::Construct_translated_point_3()
|
|
||||||
(LCC_3::point(it),v);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Display the vertices of each volume by iterating on darts.
|
|
||||||
std::for_each(lcc.one_dart_per_cell<3>().begin(),
|
|
||||||
lcc.one_dart_per_cell<3>().end(),
|
|
||||||
Display_vol_vertices<LCC_3>(lcc));
|
|
||||||
|
|
||||||
// We display the lcc characteristics.
|
|
||||||
std::cout<<"LCC characteristics: ";
|
|
||||||
lcc.display_characteristics(std::cout) << ", valid="
|
|
||||||
<< lcc.is_valid() << std::endl;
|
|
||||||
|
|
||||||
return EXIT_SUCCESS;
|
|
||||||
}
|
|
||||||
\end{ccExampleCode}
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
\begin{verbatim}
|
|
||||||
Vertices: 1 1 2; 1 0 0; 0 2 0; -1 0 0; 1 1 -3; 1 0 -1; -1 0 -1; 0 2 -1;
|
|
||||||
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
|
|
||||||
Volume 2 : 0 2 -1; -1 0 -1; 1 0 -1; 1 1 -3;
|
|
||||||
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
|
|
||||||
Volume 2 : 0 2 0; -1 0 0; 1 0 0; 1 1 -3;
|
|
||||||
Volume 1 : 2 1 1; 3 3 1; 4 1 1; 1 1 2;
|
|
||||||
Volume 2 : 3 3 1; 2 1 1; 4 1 1; 4 2 -2;
|
|
||||||
LCC characteristics: #Darts=24, #0-cells=5, #1-cells=9, #2-cells=7, #3-cells=2, #ccs=1, valid=1
|
|
||||||
\end{verbatim}
|
|
||||||
|
|
||||||
The first line gives the points of the linear cell complex before the
|
|
||||||
\ccc{sew<3>}. There are eight points, four for each tetrahedron.
|
|
||||||
After the sew, six vertices are merged two by two, thus there are five
|
|
||||||
vertices. We can see the points of each 3-cell (lines Volume 1 and
|
|
||||||
Volume 2) before the sew, after the sew and after the translation of
|
|
||||||
the second volume. We can see that this translation has also modified
|
|
||||||
the three common points between the two 3-cells. The last line shows
|
|
||||||
the number of cells of the linear cell complex, the number of
|
|
||||||
connected components, and finally a Boolean to show the validity of
|
|
||||||
the linear cell complex.
|
|
||||||
|
|
||||||
\subsection{A 4D Linear Cell Complex}\label{ssec-5dexample}
|
|
||||||
|
|
||||||
This example uses a 4-dimensional linear cell complex embedded in a
|
|
||||||
5-dimensional ambient space. It creates two tetrahedra having 5D
|
|
||||||
points, sew the two tetrahedra by \betaquatre{}. Then we use some high
|
|
||||||
level operations, displays the number of cells of the linear cell
|
|
||||||
complex, and checks its validity. Last we use the reverse operations
|
|
||||||
to get back to the initial configuration.
|
|
||||||
|
|
||||||
\begin{ccExampleCode}
|
|
||||||
typedef CGAL::Linear_cell_complex<4,5> LCC_4;
|
|
||||||
typedef LCC_4::Dart_handle Dart_handle;
|
|
||||||
typedef LCC_4::Point Point;
|
|
||||||
typedef LCC_4::Vector Vector;
|
|
||||||
typedef LCC_4::FT FT;
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
LCC_4 lcc;
|
|
||||||
|
|
||||||
// Create two tetrahedra.
|
|
||||||
FT p1[5]={ 0, 0, 0, 0, 0}; std::vector<FT> v1(p1,p1+5);
|
|
||||||
FT p2[5]={ 0, 2, 0, 0, 0}; std::vector<FT> v2(p2,p2+5);
|
|
||||||
FT p3[5]={ 0, 1, 2, 0, 0}; std::vector<FT> v3(p3,p3+5);
|
|
||||||
FT p4[5]={ 2, 1, 0, 0, 0}; std::vector<FT> v4(p4,p4+5);
|
|
||||||
FT p5[5]={-1, 0, 0, 0, 0}; std::vector<FT> v5(p5,p5+5);
|
|
||||||
FT p6[5]={-1, 2, 0, 0, 0}; std::vector<FT> v6(p6,p6+5);
|
|
||||||
FT p7[5]={-1, 1, 2, 0, 0}; std::vector<FT> v7(p7,p7+5);
|
|
||||||
FT p8[5]={-3, 1, 2, 0, 0}; std::vector<FT> v8(p8,p8+5);
|
|
||||||
|
|
||||||
Dart_handle d1 = lcc.make_tetrahedron(
|
|
||||||
Point(5, v1.begin(), v1.end()),
|
|
||||||
Point(5, v2.begin(), v2.end()),
|
|
||||||
Point(5, v3.begin(), v3.end()),
|
|
||||||
Point(5, v4.begin(), v4.end()));
|
|
||||||
|
|
||||||
Dart_handle d2 = lcc.make_tetrahedron(
|
|
||||||
Point(5, v5.begin(), v5.end()),
|
|
||||||
Point(5, v6.begin(), v6.end()),
|
|
||||||
Point(5, v7.begin(), v7.end()),
|
|
||||||
Point(5, v8.begin(), v8.end()));
|
|
||||||
|
|
||||||
lcc.display_characteristics(std::cout);
|
|
||||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
|
||||||
|
|
||||||
lcc.sew<4>(d1,d2);
|
|
||||||
|
|
||||||
lcc.display_characteristics(std::cout);
|
|
||||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
|
||||||
|
|
||||||
// Add one vertex on the middle of an edge.
|
|
||||||
Dart_handle d3 = lcc.insert_barycenter_in_cell<1>(lcc,d1);
|
|
||||||
CGAL_assertion( lcc.is_valid() );
|
|
||||||
|
|
||||||
lcc.display_characteristics(std::cout);
|
|
||||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
|
||||||
|
|
||||||
// Add one edge to cut the face in two.
|
|
||||||
Dart_handle d4 = CGAL::insert_cell_1_in_cell_2(lcc,d3,d1->beta(0));
|
|
||||||
CGAL_assertion( lcc.is_valid() );
|
|
||||||
|
|
||||||
lcc.display_characteristics(std::cout);
|
|
||||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
|
||||||
|
|
||||||
// We use the removal operations to get back to the initial cube.
|
|
||||||
CGAL::remove_cell<LCC_5,1>(lcc,d4);
|
|
||||||
CGAL_assertion( lcc.is_valid() );
|
|
||||||
|
|
||||||
CGAL::remove_cell<LCC_5,0>(lcc,d3);
|
|
||||||
CGAL_assertion( lcc.is_valid() );
|
|
||||||
|
|
||||||
lcc.unsew<4>(d1);
|
|
||||||
|
|
||||||
lcc.display_characteristics(std::cout);
|
|
||||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
|
||||||
|
|
||||||
return EXIT_SUCCESS;
|
|
||||||
}
|
|
||||||
\end{ccExampleCode}
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
\begin{verbatim}
|
|
||||||
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1
|
|
||||||
#Darts=24, #0-cells=4, #1-cells=6, #2-cells=4, #3-cells=1, #4-cells=2, #ccs=1, valid=1
|
|
||||||
#Darts=32, #0-cells=5, #1-cells=8, #2-cells=5, #3-cells=1, #4-cells=2, #ccs=1, valid=1
|
|
||||||
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1
|
|
||||||
\end{verbatim}
|
|
||||||
|
|
||||||
\subsection{A 3D Linear Cell Complex with Colored Vertices}
|
|
||||||
\label{ssec-exemple-color-vertices}
|
|
||||||
|
|
||||||
This example illustrates the way to use a 3D linear cell complex by
|
|
||||||
adding another information to vertices. For that, we need to define
|
|
||||||
our own items class. The difference with the
|
|
||||||
\ccc{CGAL::Linear_cell_complex_min_items} class is about the definition of
|
|
||||||
the vertex attribute where we use a \ccc{CGAL::Cell_attribute_with_point}
|
|
||||||
with a non void info. In this example, the ``vextex color'' is just
|
|
||||||
given by an \ccc{int} (the second template parameter of the
|
|
||||||
\ccc{CGAL::Cell_attribute_with_point}). Lastly, we define the
|
|
||||||
\ccc{Average_functor} class in order to set the color of a vertex
|
|
||||||
resulting of the merging of two vertices to the average of the two
|
|
||||||
initial values. This functor is associated with the vertex attribute
|
|
||||||
by passing it as template parameter. Using this items class instead of
|
|
||||||
the default one is chosen during the instantiation of template
|
|
||||||
parameters of the \ccc{CGAL::Linear_cell_complex} class.
|
|
||||||
|
|
||||||
Now we can use \ccc{LCC_3} in which each vertex is associated with an
|
|
||||||
attribute containing both a point and an information. In the following
|
|
||||||
example, we create two cubes, and set the color of the vertices of the
|
|
||||||
first cube to 1 and of the second cube to 19 (by iterating through two
|
|
||||||
\ccc{Cell_of_cell_range<0, 3>} ranges). Then we \emph{3-sew} the two
|
|
||||||
cubes along one facet. This operation merges some vertices (as in the
|
|
||||||
example of Figure~\ref{fig-lcc-exemple-sew}). We insert a vertex in
|
|
||||||
the common 2-cell between the two cubes, and set the information of
|
|
||||||
the new 0-attribute to 5. In the last loop, we display the point and
|
|
||||||
the information of each vertex of the linear cell complex.
|
|
||||||
|
|
||||||
\begin{ccExampleCode}
|
|
||||||
struct Average_functor
|
|
||||||
{
|
|
||||||
template<class CellAttribute>
|
|
||||||
void operator()(CellAttribute& ca1,CellAttribute& ca2)
|
|
||||||
{ ca1.info()=(ca1.info()+ ca2.info())/2; }
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Myitem
|
|
||||||
{
|
|
||||||
template<class Refs>
|
|
||||||
struct Dart_wrapper
|
|
||||||
{
|
|
||||||
typedef CGAL::Dart<3, Refs > Dart;
|
|
||||||
|
|
||||||
typedef CGAL::Cell_attribute_with_point< Refs, int, CGAL::Tag_true,
|
|
||||||
Average_functor > Vertex_attribute;
|
|
||||||
|
|
||||||
typedef CGAL::cpp0x::tuple<Vertex_attribute> Attributes;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
typedef CGAL::Linear_cell_complex_traits<3,
|
|
||||||
CGAL::Exact_predicates_inexact_constructions_kernel> Traits;
|
|
||||||
typedef CGAL::Linear_cell_complex<3,3,Traits,Myitem> LCC_3;
|
|
||||||
typedef LCC_3::Dart_handle Dart_handle;
|
|
||||||
typedef LCC_3::Point Point;
|
|
||||||
typedef LCC_3::FT FT;
|
|
||||||
|
|
||||||
Dart_handle make_iso_cuboid(LCC_3& lcc, const Point& basepoint, FT lg)
|
|
||||||
{
|
|
||||||
return lcc.make_hexahedron(basepoint,
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(lg,0,0)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(lg,lg,0)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(0,lg,0)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(0,lg,lg)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(0,0,lg)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(lg,0,lg)),
|
|
||||||
LCC_3::Construct_translated_point()
|
|
||||||
(basepoint,LCC_3::Vector(lg,lg,lg)));
|
|
||||||
}
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
LCC_3 lcc;
|
|
||||||
|
|
||||||
// Create 2 cubes.
|
|
||||||
Dart_handle d1 = make_iso_cuboid(lcc, Point(-2, 0, 0), 1);
|
|
||||||
Dart_handle d2 = make_iso_cuboid(lcc, Point(0, 0, 0), 1);
|
|
||||||
|
|
||||||
// Set the color of all vertices of the first cube to 1
|
|
||||||
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator
|
|
||||||
it=lcc.one_dart_per_incident_cell<0,3>(d1).begin(),
|
|
||||||
itend=lcc.one_dart_per_incident_cell<0,3>(d1).end();
|
|
||||||
it!=itend; ++it)
|
|
||||||
{ LCC_3::vertex_attribute(it)->info()=1; }
|
|
||||||
|
|
||||||
// Set the color of all vertices of the second cube to 19
|
|
||||||
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator it=
|
|
||||||
lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
|
|
||||||
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end();
|
|
||||||
it!=itend; ++it)
|
|
||||||
{ LCC_3::vertex_attribute(it)->info()=19; }
|
|
||||||
|
|
||||||
// 3-Sew the two cubes along one facet
|
|
||||||
lcc.sew<3>(d1->beta(1)->beta(1)->beta(2), d2->beta(2));
|
|
||||||
|
|
||||||
// Barycentric triangulation of the facet between the two cubes.
|
|
||||||
Dart_handle d3=lcc.insert_barycenter_in_cell<2>(d2->beta(2));
|
|
||||||
|
|
||||||
// Set the color of the new vertex to 5.
|
|
||||||
LCC_3::vertex_attribute(d3)->info()=5;
|
|
||||||
|
|
||||||
// Display all the vertices of the map.
|
|
||||||
for (LCC_3::One_dart_per_cell_range<0>::iterator
|
|
||||||
it=lcc.one_dart_per_cell<0>().begin(),
|
|
||||||
itend=lcc.one_dart_per_cell<0>().end();
|
|
||||||
it!=itend; ++it)
|
|
||||||
{
|
|
||||||
std::cout<<"point: "<<LCC_3::point(it)<<", "
|
|
||||||
<<"color: "<<LCC_3::vertex_attribute(it)->info()
|
|
||||||
<<std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
return EXIT_SUCCESS;
|
|
||||||
}
|
|
||||||
\end{ccExampleCode}
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
\begin{verbatim}
|
|
||||||
point: -2 0 0, color: 1
|
|
||||||
point: -2 0 1, color: 1
|
|
||||||
point: -1 0 1, color: 10
|
|
||||||
point: -1 0 0, color: 10
|
|
||||||
point: -1 1 1, color: 10
|
|
||||||
point: -1 1 0, color: 10
|
|
||||||
point: -2 1 1, color: 1
|
|
||||||
point: -2 1 0, color: 1
|
|
||||||
point: 1 0 1, color: 19
|
|
||||||
point: 1 0 0, color: 19
|
|
||||||
point: 1 1 1, color: 19
|
|
||||||
point: 1 1 0, color: 19
|
|
||||||
point: -1 0.5 0.5, color: 5
|
|
||||||
\end{verbatim}
|
|
||||||
|
|
||||||
Before applying the sew operation, the eight vertices of the first
|
|
||||||
cube are colored by 1, and the eight vertices of the second cube by
|
|
||||||
19. After the sew operation, there are eight vertices which are merged
|
|
||||||
two by two, and due to the average functor, the color of the four
|
|
||||||
resulting vertices are now 10. Then we insert a vertex in the center
|
|
||||||
of the common 2-cell between the two cubes. The coordinates of this
|
|
||||||
vertex are initialized with the barycenter of the 2-cell
|
|
||||||
(-1,0.5,0.5), and its color is not initialize by the method, thus we
|
|
||||||
set its color manually by using the result of
|
|
||||||
\ccc{insert_barycenter_in_cell<2>} which is a dart incident to the
|
|
||||||
new vertex.
|
|
||||||
|
|
||||||
\section{Design and Implementation History}
|
|
||||||
%
|
|
||||||
This package was develloped by Guillaume Damiand, with the help of
|
|
||||||
Andreas Fabri, S\'ebastien Loriot and Laurent Rineau. Monique
|
|
||||||
Teillaud and Bernd Gaertner contributed to the manual.
|
|
||||||
|
|
@ -1,16 +0,0 @@
|
||||||
|
|
||||||
\begin{ccPkgDescription}{Linear cell complex\label{Pkg:LinearCellComplex}}
|
|
||||||
\ccPkgHowToCiteCgal{cgal:d-lcc-10} \ccPkgSummary{This package
|
|
||||||
implements linear cell complexes, objects in \emph{d}-dimension with
|
|
||||||
linear geometry. The combinatorial part of object is described by
|
|
||||||
combinatorial maps, representing all the cells of the object plus
|
|
||||||
the incidence and adjacency relations between cells. Geometry is
|
|
||||||
added on combinatorial map simply by associating a \ccc{Point_p} to each
|
|
||||||
vertex of the map.
|
|
||||||
|
|
||||||
Taking a 2D combinatorial map, and using 3D points, gives a
|
|
||||||
\ccc{Linear_cell_complex} equivalent to a \ccc{Polyhedron_3}.}
|
|
||||||
|
|
||||||
\ccPkgIntroducedInCGAL{3.8}
|
|
||||||
\ccPkgLicense{\ccLicenseLGPL}
|
|
||||||
\end{ccPkgDescription}
|
|
||||||
|
|
@ -1,431 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
6 15 15 3984 4278
|
|
||||||
6 1215 905 3112 3037
|
|
||||||
6 1215 905 1847 2762
|
|
||||||
2 1 0 2 32 0 686 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1592 2380
|
|
||||||
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1592 2380
|
|
||||||
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1812 1518
|
|
||||||
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1812 1518
|
|
||||||
2 1 0 2 32 0 664 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1536 1181
|
|
||||||
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1536 1181
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1281 2140
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1281 2140
|
|
||||||
-6
|
|
||||||
6 1215 1461 2745 3037
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1281 2140
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1281 2140
|
|
||||||
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1981 2876
|
|
||||||
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 1981 2876
|
|
||||||
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2699 2396
|
|
||||||
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2699 2396
|
|
||||||
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 1959 1592
|
|
||||||
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1959 1592
|
|
||||||
-6
|
|
||||||
6 1215 905 3112 1730
|
|
||||||
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 1959 1592
|
|
||||||
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1959 1592
|
|
||||||
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1536 1181
|
|
||||||
2 1 0 2 32 0 664 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1536 1181
|
|
||||||
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 2428 1007
|
|
||||||
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2428 1007
|
|
||||||
2 1 0 2 32 0 582 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2924 1377
|
|
||||||
2 1 0 2 32 0 444 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2924 1377
|
|
||||||
-6
|
|
||||||
6 1302 2045 3041 3037
|
|
||||||
2 1 0 2 32 0 686 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1592 2380
|
|
||||||
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1592 2380
|
|
||||||
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 2411 2166
|
|
||||||
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2411 2166
|
|
||||||
2 1 0 2 32 0 721 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2862 2618
|
|
||||||
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2862 2618
|
|
||||||
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 1981 2876
|
|
||||||
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1981 2876
|
|
||||||
-6
|
|
||||||
6 2657 1073 3112 3037
|
|
||||||
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2862 2618
|
|
||||||
2 1 0 2 32 0 721 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2862 2618
|
|
||||||
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3055 1708
|
|
||||||
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3055 1708
|
|
||||||
2 1 0 2 32 0 582 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2924 1377
|
|
||||||
2 1 0 2 32 0 444 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2924 1377
|
|
||||||
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2699 2396
|
|
||||||
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2699 2396
|
|
||||||
-6
|
|
||||||
6 1775 905 3112 2292
|
|
||||||
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1812 1518
|
|
||||||
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1812 1518
|
|
||||||
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 2428 1007
|
|
||||||
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2428 1007
|
|
||||||
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3055 1708
|
|
||||||
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3055 1708
|
|
||||||
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2411 2166
|
|
||||||
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 2411 2166
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 1400 15 3984 2595
|
|
||||||
6 1775 905 3112 2292
|
|
||||||
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1812 1518
|
|
||||||
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1812 1518
|
|
||||||
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 2428 1007
|
|
||||||
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2428 1007
|
|
||||||
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3055 1708
|
|
||||||
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3055 1708
|
|
||||||
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2411 2166
|
|
||||||
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 2411 2166
|
|
||||||
-6
|
|
||||||
6 1509 2045 3723 2595
|
|
||||||
2 1 0 2 32 0 795 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 2411 2166
|
|
||||||
2 1 0 2 32 0 827 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 2411 2166
|
|
||||||
2 1 0 2 32 0 882 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1670 2128
|
|
||||||
2 1 0 2 32 0 960 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1670 2128
|
|
||||||
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 2571 2371
|
|
||||||
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 2571 2371
|
|
||||||
2 1 0 2 32 0 865 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3376 2430
|
|
||||||
2 1 0 2 32 0 808 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3376 2430
|
|
||||||
-6
|
|
||||||
6 3001 262 3984 2595
|
|
||||||
2 1 0 2 32 0 865 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3376 2430
|
|
||||||
2 1 0 2 32 0 808 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3376 2430
|
|
||||||
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3021 2273 3055 1708
|
|
||||||
2 1 0 2 32 0 683 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3055 1708
|
|
||||||
2 1 0 2 32 0 652 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3530 687
|
|
||||||
2 1 0 2 32 0 657 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3530 687
|
|
||||||
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3823 1521
|
|
||||||
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3823 1521
|
|
||||||
-6
|
|
||||||
6 1400 15 1847 2204
|
|
||||||
2 1 0 2 32 0 814 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1812 1518
|
|
||||||
2 1 0 2 32 0 755 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1812 1518
|
|
||||||
2 1 0 2 32 0 745 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1603 468
|
|
||||||
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1603 468
|
|
||||||
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1478 1189
|
|
||||||
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1478 1189
|
|
||||||
2 1 0 2 32 0 960 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1670 2128
|
|
||||||
2 1 0 2 32 0 882 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1828 2065 1670 2128
|
|
||||||
-6
|
|
||||||
6 1400 15 3984 2595
|
|
||||||
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1478 1189
|
|
||||||
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1478 1189
|
|
||||||
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 2632 152
|
|
||||||
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 2632 152
|
|
||||||
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3823 1521
|
|
||||||
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3823 1521
|
|
||||||
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 2571 2371
|
|
||||||
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 2571 2371
|
|
||||||
-6
|
|
||||||
6 1400 15 3984 1112
|
|
||||||
2 1 0 2 32 0 707 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 2428 1007
|
|
||||||
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 2428 1007
|
|
||||||
2 1 0 2 32 0 652 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3092 1093 3530 687
|
|
||||||
2 1 0 2 32 0 657 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3530 687
|
|
||||||
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 2632 152
|
|
||||||
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 2632 152
|
|
||||||
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1603 468
|
|
||||||
2 1 0 2 32 0 745 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1795 924 1603 468
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 15 15 3984 4278
|
|
||||||
6 1215 1461 2745 3037
|
|
||||||
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1959 1592
|
|
||||||
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 1959 1592
|
|
||||||
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2699 2396
|
|
||||||
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2699 2396
|
|
||||||
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 1981 2876
|
|
||||||
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1981 2876
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1281 2140
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1281 2140
|
|
||||||
-6
|
|
||||||
6 15 927 1341 3599
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1281 2140
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1281 2140
|
|
||||||
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 667 1228
|
|
||||||
2 1 0 2 32 0 326 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 667 1228
|
|
||||||
2 1 0 2 32 0 363 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 248 2392
|
|
||||||
2 1 0 2 32 0 538 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 248 2392
|
|
||||||
2 1 0 2 32 0 628 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 873 3160
|
|
||||||
2 1 0 2 32 0 632 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 873 3160
|
|
||||||
-6
|
|
||||||
6 403 2722 3219 4278
|
|
||||||
2 1 0 2 32 0 628 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 873 3160
|
|
||||||
2 1 0 2 32 0 632 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 873 3160
|
|
||||||
2 1 0 2 32 0 613 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1322 2742 1981 2876
|
|
||||||
2 1 0 2 32 0 570 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 1981 2876
|
|
||||||
2 1 0 2 32 0 523 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2930 3620
|
|
||||||
2 1 0 2 32 0 471 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 2930 3620
|
|
||||||
2 1 0 2 32 0 490 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 1737 3901
|
|
||||||
2 1 0 2 32 0 580 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 1737 3901
|
|
||||||
-6
|
|
||||||
6 15 927 3464 1730
|
|
||||||
2 1 0 2 32 0 452 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 1959 1592
|
|
||||||
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 1959 1592
|
|
||||||
2 1 0 2 32 0 281 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 3051 1580
|
|
||||||
2 1 0 2 32 0 93 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3051 1580
|
|
||||||
2 1 0 2 32 0 68 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 1628 1170
|
|
||||||
2 1 0 2 32 0 206 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 1628 1170
|
|
||||||
2 1 0 2 32 0 326 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 667 1228
|
|
||||||
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1235 1480 667 1228
|
|
||||||
-6
|
|
||||||
6 15 15 3984 1445
|
|
||||||
2 1 0 2 32 0 206 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 1628 1170
|
|
||||||
2 1 0 2 32 0 68 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 1628 1170
|
|
||||||
2 1 0 2 32 0 164 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3749 755
|
|
||||||
2 1 0 2 32 0 494 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3749 755
|
|
||||||
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 2632 152
|
|
||||||
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 2632 152
|
|
||||||
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 834 420
|
|
||||||
2 1 0 2 32 0 407 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 834 420
|
|
||||||
-6
|
|
||||||
6 3180 262 3984 4278
|
|
||||||
2 1 0 2 32 0 164 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3749 755
|
|
||||||
2 1 0 2 32 0 494 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3749 755
|
|
||||||
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3823 1521
|
|
||||||
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3823 1521
|
|
||||||
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3487 3296
|
|
||||||
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 3487 3296
|
|
||||||
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 3309 2998
|
|
||||||
2 1 0 2 32 0 111 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3309 2998
|
|
||||||
-6
|
|
||||||
6 1400 15 3984 2595
|
|
||||||
2 1 0 2 32 0 717 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 3823 1521
|
|
||||||
2 1 0 2 32 0 835 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3823 1521
|
|
||||||
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 2571 2371
|
|
||||||
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 2571 2371
|
|
||||||
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1478 1189
|
|
||||||
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1478 1189
|
|
||||||
2 1 0 2 32 0 765 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 2632 152
|
|
||||||
2 1 0 2 32 0 694 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3965 282 2632 152
|
|
||||||
-6
|
|
||||||
6 2657 1405 3464 4278
|
|
||||||
2 1 0 2 32 0 418 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 2699 2396
|
|
||||||
2 1 0 2 32 0 506 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2699 2396
|
|
||||||
2 1 0 2 32 0 523 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2677 3018 2930 3620
|
|
||||||
2 1 0 2 32 0 471 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 2930 3620
|
|
||||||
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 3309 2998
|
|
||||||
2 1 0 2 32 0 111 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3309 2998
|
|
||||||
2 1 0 2 32 0 93 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3444 1425 3051 1580
|
|
||||||
2 1 0 2 32 0 281 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2725 1710 3051 1580
|
|
||||||
-6
|
|
||||||
6 403 2165 3723 4278
|
|
||||||
2 1 0 2 32 0 490 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 1737 3901
|
|
||||||
2 1 0 2 32 0 580 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 1737 3901
|
|
||||||
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 1048 2790
|
|
||||||
2 1 0 2 32 0 905 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1048 2790
|
|
||||||
2 1 0 2 32 0 972 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 2571 2371
|
|
||||||
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 2571 2371
|
|
||||||
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3703 2575 3487 3296
|
|
||||||
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3200 4258 3487 3296
|
|
||||||
-6
|
|
||||||
6 15 15 1549 3599
|
|
||||||
2 1 0 2 32 0 363 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 248 2392
|
|
||||||
2 1 0 2 32 0 538 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 248 2392
|
|
||||||
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
423 3579 1048 2790
|
|
||||||
2 1 0 2 32 0 905 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1048 2790
|
|
||||||
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1529 2185 1478 1189
|
|
||||||
2 1 0 2 32 0 850 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 1478 1189
|
|
||||||
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1420 35 834 420
|
|
||||||
2 1 0 2 32 0 407 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
35 947 834 420
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1420 43 91 91 1420 43 1487 103
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 49 943 91 91 49 943 116 1003
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 417 3557 91 91 417 3557 484 3617
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3184 4229 91 91 3184 4229 3251 4290
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3699 2576 91 91 3699 2576 3766 2637
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3955 287 91 91 3955 287 4022 348
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3080 1095 91 91 3080 1095 3147 1156
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1795 924 91 91 1795 924 1862 985
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1244 1480 91 91 1244 1480 1311 1541
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1323 2735 91 91 1323 2735 1390 2796
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 2663 3018 91 91 2663 3018 2730 3078
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3013 2270 91 91 3013 2270 3080 2331
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1831 2062 91 91 1831 2062 1899 2123
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 1527 2170 91 91 1527 2170 1594 2231
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 3440 1430 91 91 3440 1430 3507 1491
|
|
||||||
1 3 0 1 33 33 50 -1 20 0.000 1 0.0000 2720 1725 91 91 2720 1725 2787 1785
|
|
||||||
|
|
@ -1,104 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #707070
|
|
||||||
0 33 #8c8c8c
|
|
||||||
0 34 #8c8c8c
|
|
||||||
0 35 #424242
|
|
||||||
0 36 #8c8c8c
|
|
||||||
0 37 #424242
|
|
||||||
0 38 #8c8c8c
|
|
||||||
0 39 #424242
|
|
||||||
0 40 #8c8c8c
|
|
||||||
0 41 #424242
|
|
||||||
0 42 #8c8c8c
|
|
||||||
0 43 #424242
|
|
||||||
0 44 #8e8e8e
|
|
||||||
6 4050 4815 7785 6030
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4050 5850 7785 5850
|
|
||||||
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
|
|
||||||
4050 4815 7785 4815 7785 6030 4050 6030 4050 4815
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4050 5130 7785 5130
|
|
||||||
4 0 0 50 -1 3 16 0.0000 4 255 2925 4545 5040 LinearCellComplexItems\001
|
|
||||||
4 0 0 50 -1 2 12 0.0000 4 180 1155 4140 5310 + Type Traits\001
|
|
||||||
4 0 0 50 -1 2 12 0.0000 4 180 2970 4140 5535 + Type Dart_wrapper<LCC>::Dart\001
|
|
||||||
4 0 0 50 -1 2 12 0.0000 4 180 3495 4140 5760 + Types Dart_wrapper<LCC>::Attributes\001
|
|
||||||
-6
|
|
||||||
6 -180 4950 3510 6300
|
|
||||||
6 2475 4950 3510 5220
|
|
||||||
2 2 1 1 32 7 45 -1 20 4.000 0 0 -1 0 0 5
|
|
||||||
2475 4950 3510 4950 3510 5220 2475 5220 2475 4950
|
|
||||||
4 0 32 40 -1 1 10 0.0000 4 135 900 2520 5130 d, Items, Alloc\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
-180 5490 3285 5490
|
|
||||||
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
-180 6075 3285 6075
|
|
||||||
2 2 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 5
|
|
||||||
-180 5130 3285 5130 3285 6300 -180 6300 -180 5130
|
|
||||||
4 0 32 50 -1 2 16 0.0000 4 255 2400 90 5400 Combinatorial_map\001
|
|
||||||
4 0 32 50 -1 2 12 0.0000 4 180 2220 -90 5715 + typedef Items::Dart Dart\001
|
|
||||||
4 0 32 50 -1 2 12 0.0000 4 180 3120 -90 5940 + typedef Items::Attributes Attributes\001
|
|
||||||
-6
|
|
||||||
6 3285 6750 7920 8100
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3285 7290 6750 7290
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3285 7875 6750 7875
|
|
||||||
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
|
|
||||||
3285 6930 6750 6930 6750 8100 3285 8100 3285 6930
|
|
||||||
2 2 1 1 0 7 45 -1 20 4.000 0 0 -1 0 0 5
|
|
||||||
5940 6750 7920 6750 7920 7020 5940 7020 5940 6750
|
|
||||||
4 0 0 50 -1 2 16 0.0000 4 255 2475 3555 7200 Linear_cell_complex\001
|
|
||||||
4 0 0 40 -1 1 10 0.0000 4 150 1800 5985 6930 d, d2, Traits_, Items_, Alloc_\001
|
|
||||||
-6
|
|
||||||
6 9000 6705 12210 7650
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9000 7245 11970 7245
|
|
||||||
2 2 1 1 0 7 45 -1 20 4.000 0 0 -1 0 0 5
|
|
||||||
9945 6705 12150 6705 12150 6975 9945 6975 9945 6705
|
|
||||||
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
|
|
||||||
9000 6885 11970 6885 11970 7650 9000 7650 9000 6885
|
|
||||||
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9000 7515 11970 7515
|
|
||||||
4 0 0 40 -1 1 10 0.0000 4 150 2085 9990 6885 LCC,Info_,Tag,OnMerge,OnSplit\001
|
|
||||||
4 0 0 50 -1 2 16 0.0000 4 255 3120 9090 7200 Cell_attribute_with_point\001
|
|
||||||
4 0 0 50 -1 2 12 0.0000 4 180 1725 9090 7425 - LCC:Point mpoint;\001
|
|
||||||
-6
|
|
||||||
6 8640 4815 11820 5850
|
|
||||||
6 8730 5490 9555 5625
|
|
||||||
4 0 32 50 -1 2 12 0.0000 4 135 825 8730 5625 - Info info\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8640 5355 10710 5355
|
|
||||||
2 1 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8640 5715 10710 5715
|
|
||||||
2 2 0 1 32 7 50 -1 -1 0.000 0 0 -1 0 0 5
|
|
||||||
8640 4995 10710 4995 10710 5850 8640 5850 8640 4995
|
|
||||||
2 2 1 1 32 7 45 -1 20 4.000 0 0 -1 0 0 5
|
|
||||||
9585 4815 11790 4815 11790 5085 9585 5085 9585 4815
|
|
||||||
4 0 32 50 -1 2 16 0.0000 4 255 1695 8775 5310 Cell_attribute\001
|
|
||||||
4 0 32 40 -1 1 10 0.0000 4 150 2190 9630 4995 CMap,Info_,Tag,OnMerge,OnSplit\001
|
|
||||||
-6
|
|
||||||
2 1 0 2 0 0 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
1 0 2.00 210.00 210.00
|
|
||||||
9630 6885 9630 5850
|
|
||||||
2 1 1 2 0 0 50 -1 -1 6.000 0 0 -1 0 0 4
|
|
||||||
9000 7335 8235 7335 8235 5715 7605 5715
|
|
||||||
2 1 1 2 0 0 50 -1 -1 6.000 0 0 -1 0 0 2
|
|
||||||
8235 5711 8640 5715
|
|
||||||
2 1 0 2 0 0 50 -1 -1 0.000 0 0 -1 1 0 4
|
|
||||||
1 0 2.00 210.00 210.00
|
|
||||||
4455 6930 4455 6660 2610 6660 2610 6300
|
|
||||||
2 1 1 2 0 0 35 -1 -1 6.000 0 0 -1 0 0 2
|
|
||||||
7109 6826 7111 6018
|
|
||||||
4 0 0 50 -1 2 12 5.4978 4 135 1440 7785 5445 <<instances Of>>\001
|
|
||||||
4 0 0 50 -1 2 12 0.0000 4 135 1365 6345 6435 <<instance Of>>\001
|
|
||||||
|
|
@ -1,291 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #9f9f9f
|
|
||||||
0 36 #000000
|
|
||||||
0 38 #787878
|
|
||||||
0 39 #ff0000
|
|
||||||
6 2527 1468 5109 4546
|
|
||||||
6 2819 3440 5090 4546
|
|
||||||
2 1 0 3 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3516 3535 2834 4531
|
|
||||||
2 1 0 3 36 0 596 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5075 3500 3516 3535
|
|
||||||
2 1 0 3 36 0 420 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2834 4531 5075 3500
|
|
||||||
-6
|
|
||||||
6 3421 1558 5071 3372
|
|
||||||
2 1 0 3 36 0 730 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3639 1573 3497 3339
|
|
||||||
2 1 0 3 36 0 517 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5056 3275 3639 1573
|
|
||||||
2 1 0 3 36 0 606 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3497 3339 5056 3275
|
|
||||||
-6
|
|
||||||
6 2527 1568 3516 4349
|
|
||||||
2 1 0 3 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3440 1583 2701 2346
|
|
||||||
2 1 0 3 36 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2701 2346 2610 4334
|
|
||||||
2 1 0 3 36 0 632 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2610 4334 3307 3356
|
|
||||||
2 1 0 3 36 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3307 3356 3440 1583
|
|
||||||
-6
|
|
||||||
6 2728 2433 5031 4471
|
|
||||||
2 1 0 3 36 0 297 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2743 4456 2839 2448
|
|
||||||
2 1 0 3 36 0 257 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2839 2448 5016 3408
|
|
||||||
2 1 0 3 36 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5016 3408 2743 4456
|
|
||||||
-6
|
|
||||||
6 2915 1468 5109 3217
|
|
||||||
2 1 0 3 36 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3660 1483 5094 3202
|
|
||||||
2 1 0 3 36 0 269 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5094 3202 2930 2236
|
|
||||||
2 1 0 3 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2930 2236 3660 1483
|
|
||||||
-6
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
|
|
||||||
3257 3838
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4217 3263 4224 3546
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3824 3907 3932 4084
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2641 3226 2809 3284
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3872 2630 3739 2893
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4242 2355 4366 2275
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3330 2525 3594 2579
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2920 3823 3280 3945
|
|
||||||
2 1 0 3 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3069 1938 3228 1930
|
|
||||||
-6
|
|
||||||
6 81 1052 3237 4406
|
|
||||||
6 373 2977 2962 4406
|
|
||||||
2 1 0 3 36 0 842 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1314 3024 388 3863
|
|
||||||
2 1 0 3 36 0 922 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2947 3406 1314 3024
|
|
||||||
2 1 0 3 36 0 687 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2203 4368 2947 3406
|
|
||||||
2 1 0 3 36 0 607 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
388 3863 2203 4368
|
|
||||||
-6
|
|
||||||
6 1289 1117 3192 3238
|
|
||||||
2 1 0 3 36 0 925 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1359 1178 1382 2825
|
|
||||||
2 1 0 3 36 0 775 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3113 1456 1359 1178
|
|
||||||
2 1 0 3 36 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3012 3191 3113 1456
|
|
||||||
2 1 0 3 36 0 933 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1382 2825 3012 3191
|
|
||||||
-6
|
|
||||||
6 89 1188 1231 3689
|
|
||||||
2 1 0 3 36 0 840 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
229 3674 1176 2857
|
|
||||||
2 1 0 3 36 0 913 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1176 2857 1137 1203
|
|
||||||
2 1 0 3 36 0 667 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1137 1203 104 1828
|
|
||||||
2 1 0 3 36 0 595 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
104 1828 229 3674
|
|
||||||
-6
|
|
||||||
6 2349 1524 3237 4273
|
|
||||||
2 1 0 3 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2445 2286 3222 1539
|
|
||||||
2 1 0 3 36 0 365 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2382 4258 2445 2286
|
|
||||||
2 1 0 3 36 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3111 3298 2382 4258
|
|
||||||
2 1 0 3 36 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3222 1539 3111 3298
|
|
||||||
-6
|
|
||||||
6 239 1052 3078 2073
|
|
||||||
2 1 0 3 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
254 1681 1279 1067
|
|
||||||
2 1 0 3 36 0 351 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2258 2058 254 1681
|
|
||||||
2 1 0 3 36 0 731 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1279 1067 3063 1344
|
|
||||||
2 1 0 3 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3063 1344 2258 2058
|
|
||||||
-6
|
|
||||||
6 81 1911 2224 4323
|
|
||||||
2 1 0 3 36 0 545 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
282 3799 160 1926
|
|
||||||
2 1 0 3 36 0 333 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
160 1926 2169 2325
|
|
||||||
2 1 0 3 36 0 345 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2169 2325 2131 4308
|
|
||||||
2 1 0 3 36 0 557 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2131 4308 282 3799
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 338 1848 85 85 338 1848 423 1848
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 1250 1249 85 85 1250 1249 1337 1249
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 1291 2909 85 85 1291 2909 1376 2909
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 169 3838 85 85 169 3838 255 3838
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 3253 3267 85 85 3253 3267 3339 3267
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 3345 1426 85 85 3345 1426 3430 1426
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 2586 2113 85 85 2586 2113 2672 2113
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 5183 3391 85 85 5183 3391 5269 3391
|
|
||||||
1 3 0 2 38 38 50 -1 20 0.000 1 0.0000 2420 4433 85 85 2420 4433 2507 4433
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1493 1901 1338 2214
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
665 3236 938 3415
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2087 2940 2025 3236
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2534 3877 2681 3877
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1344 4057 1165 4104
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2057 1164 2142 1344
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2689 1642 2909 1914
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
859 1304 859 1344 859 1383
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
125 2720 163 2735 188 2775 227 2791
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1125 1987 1359 1922
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2125 3164 2470 3174
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3002 2415 3197 2438
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1033 1268 1084 1368 1226 1276
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1366 1372 1271 1284
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1371 1083 1258 1204
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
338 1622 455 1692 373 1809
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
229 1937 294 1860
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
105 1884 313 1831
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
265 3681 185 3843
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
294 3603 373 3681 218 3821
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
451 3885 310 3951 224 3850
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1266 3063 1279 2925
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1162 2757 1255 2868
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1459 2841 1343 2885
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2170 2411 2545 2320 2578 2163
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2159 2043 2227 2103 2549 2094
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3003 2174 2811 2098 2620 2094
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2900 2475 2902 2366 2601 2110
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2693 2429 2629 2347 2589 2154
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2492 2231 2465 2171 2513 2122
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3220 1632 3291 1464
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3047 1448 3296 1416
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3044 1379 3296 1379
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3703 1528 3641 1416 3357 1412
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3630 1714 3405 1460
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3364 1642 3316 1460
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3011 3067 3220 3213
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3052 3361 3112 3373 3188 3297
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2881 3392 2975 3308 3207 3259
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3486 3578 3291 3297
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3571 3336 3497 3385 3301 3257
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3324 3108 3240 3217
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5021 3217 5117 3233 5182 3352
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4869 3096 4849 3152 5191 3401
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4941 3450 5131 3414
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4852 3509 4872 3539 5175 3445
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2678 4248 2686 4321 2420 4396
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2751 4352 2490 4429
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2963 4473 2773 4489 2472 4437
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2263 4288 2392 4426
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2371 4144 2352 4268 2416 4388
|
|
||||||
2 1 0 3 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2007 4277 2042 4440 2371 4437
|
|
||||||
|
|
@ -1,96 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #c10000
|
|
||||||
0 35 #008000
|
|
||||||
0 36 #0000ff
|
|
||||||
0 37 #000000
|
|
||||||
0 38 #000000
|
|
||||||
0 39 #000000
|
|
||||||
0 40 #000000
|
|
||||||
0 41 #000000
|
|
||||||
0 42 #000000
|
|
||||||
0 43 #000000
|
|
||||||
0 44 #000000
|
|
||||||
0 45 #000000
|
|
||||||
0 46 #000000
|
|
||||||
0 47 #000000
|
|
||||||
0 48 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
0 50 #000000
|
|
||||||
0 51 #000000
|
|
||||||
0 52 #a0a0a0
|
|
||||||
6 2219 1470 4406 3687
|
|
||||||
6 2219 1470 4406 3687
|
|
||||||
6 2219 1470 4406 3687
|
|
||||||
2 1 0 2 32 35 666 0 20 0.000 1 0 7 0 0 4
|
|
||||||
2237 2887 3955 1488 4388 3669 2237 2887
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 4801 413 7163 2689
|
|
||||||
6 4801 413 7163 2689
|
|
||||||
6 4801 874 6665 2689
|
|
||||||
2 1 0 2 32 36 918 0 20 0.000 1 0 7 0 0 5
|
|
||||||
5825 892 4819 1605 5625 2671 6647 1903 5825 892
|
|
||||||
-6
|
|
||||||
6 5808 413 7163 1921
|
|
||||||
2 1 0 2 32 36 797 0 20 0.000 1 0 7 0 0 5
|
|
||||||
6647 1903 5825 892 6152 430 7145 1616 6647 1903
|
|
||||||
-6
|
|
||||||
6 5607 1598 7163 2689
|
|
||||||
2 1 0 2 32 36 692 0 20 0.000 1 0 7 0 0 5
|
|
||||||
7145 1616 6647 1903 5625 2671 5936 2528 7145 1616
|
|
||||||
-6
|
|
||||||
6 4801 413 6169 1623
|
|
||||||
2 1 0 2 32 36 774 0 20 0.000 1 0 7 0 0 5
|
|
||||||
5825 892 4819 1605 4963 1266 6152 430 5825 892
|
|
||||||
-6
|
|
||||||
6 4946 413 7163 2545
|
|
||||||
2 1 0 2 32 36 376 0 20 0.000 1 0 7 0 0 5
|
|
||||||
6152 430 4963 1266 5936 2528 7145 1616 6152 430
|
|
||||||
-6
|
|
||||||
6 4801 1248 5953 2689
|
|
||||||
2 1 0 2 32 36 666 0 20 0.000 1 0 7 0 0 5
|
|
||||||
4819 1605 5625 2671 5936 2528 4963 1266 4819 1605
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 1501 115 3238 1682
|
|
||||||
6 1501 115 3238 1682
|
|
||||||
6 1501 115 3238 1682
|
|
||||||
2 1 0 2 32 34 815 0 20 0.000 1 0 7 0 0 5
|
|
||||||
3220 593 2646 1664 1519 1168 2126 133 3220 593
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 60 1008 1880 3341
|
|
||||||
6 60 1008 1880 3341
|
|
||||||
6 60 3021 1880 3341
|
|
||||||
2 1 0 2 32 17 375 0 20 0.000 1 0 7 0 0 4
|
|
||||||
78 3039 278 3074 1862 3323 78 3039
|
|
||||||
-6
|
|
||||||
6 60 1008 1880 3341
|
|
||||||
2 1 0 2 32 17 736 0 20 0.000 1 0 7 0 0 4
|
|
||||||
1862 3323 78 3039 1302 1025 1862 3323
|
|
||||||
-6
|
|
||||||
6 260 1008 1880 3341
|
|
||||||
2 1 0 2 32 17 738 0 20 0.000 1 0 7 0 0 4
|
|
||||||
1302 1025 1862 3323 278 3074 1302 1025
|
|
||||||
-6
|
|
||||||
6 60 1008 1319 3092
|
|
||||||
2 1 0 2 32 17 375 0 20 0.000 1 0 7 0 0 4
|
|
||||||
78 3039 278 3074 1302 1025 78 3039
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
2 1 0 2 0 17 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3657 850 5484 151
|
|
||||||
|
|
@ -1,316 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #9f9f9f
|
|
||||||
0 34 #000000
|
|
||||||
0 35 #ff0000
|
|
||||||
0 36 #ff0000
|
|
||||||
6 2621 1473 4786 3977
|
|
||||||
6 2672 1539 3504 3832
|
|
||||||
2 1 0 4 32 0 632 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2755 3802 3321 3008
|
|
||||||
2 1 0 4 32 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3321 3008 3428 1569
|
|
||||||
2 1 0 4 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3428 1569 2828 2188
|
|
||||||
2 1 0 4 32 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2828 2188 2755 3802
|
|
||||||
-6
|
|
||||||
6 3399 1547 4755 3039
|
|
||||||
2 1 0 2 32 0 606 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3475 2994 4740 2943
|
|
||||||
2 1 0 2 32 0 730 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3590 1562 3475 2994
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4740 2943 3590 1562
|
|
||||||
-6
|
|
||||||
6 2842 2257 4722 3917
|
|
||||||
2 1 0 2 32 0 297 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2863 3902 2940 2272
|
|
||||||
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4707 3051 2863 3902
|
|
||||||
2 1 0 2 32 0 257 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2940 2272 4707 3051
|
|
||||||
-6
|
|
||||||
6 2921 3059 4770 3977
|
|
||||||
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3490 3154 2936 3962
|
|
||||||
2 1 0 2 32 0 596 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4755 3125 3490 3154
|
|
||||||
2 1 0 2 32 0 420 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2936 3962 4755 3125
|
|
||||||
-6
|
|
||||||
6 3000 1473 4786 2899
|
|
||||||
2 1 0 2 32 0 269 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4771 2884 3015 2099
|
|
||||||
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3606 1488 4771 2884
|
|
||||||
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3015 2099 3606 1488
|
|
||||||
-6
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4059 2933 4065 3163
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3740 3456 3827 3599
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2779 2904 2916 2950
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3779 2419 3671 2633
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4079 2196 4180 2131
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3339 2334 3552 2377
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3006 3387 3299 3487
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3127 1858 3256 1851
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 3408 2133 8\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 3090 1791 5\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2621 3322 6\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 3169 3436 7\001
|
|
||||||
-6
|
|
||||||
6 88 1046 2682 3779
|
|
||||||
6 88 1743 1859 3707
|
|
||||||
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
166 1758 1797 2083
|
|
||||||
2 1 0 2 32 0 545 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
266 3278 166 1758
|
|
||||||
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1766 3692 266 3278
|
|
||||||
2 1 0 2 32 0 345 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1797 2083 1766 3692
|
|
||||||
-6
|
|
||||||
6 106 1156 1053 3192
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
121 1679 223 3177
|
|
||||||
2 1 0 2 32 0 667 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
959 1171 121 1679
|
|
||||||
2 1 0 2 32 0 913 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
992 2514 959 1171
|
|
||||||
2 1 0 2 32 0 840 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
223 3177 992 2514
|
|
||||||
-6
|
|
||||||
6 228 1046 2538 1881
|
|
||||||
2 1 0 2 32 0 351 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1869 1866 243 1560
|
|
||||||
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2523 1286 1869 1866
|
|
||||||
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
243 1560 1075 1061
|
|
||||||
2 1 0 2 32 0 731 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1075 1061 2523 1286
|
|
||||||
-6
|
|
||||||
6 1066 1091 2643 2833
|
|
||||||
2 1 0 2 32 0 933 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1159 2489 2481 2785
|
|
||||||
2 1 0 2 32 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2481 2785 2564 1378
|
|
||||||
2 1 0 2 32 0 775 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2564 1378 1140 1152
|
|
||||||
2 1 0 2 32 0 925 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1140 1152 1159 2489
|
|
||||||
-6
|
|
||||||
6 337 2603 2444 3779
|
|
||||||
2 1 0 2 32 0 687 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1825 3741 2429 2959
|
|
||||||
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
352 3331 1825 3741
|
|
||||||
2 1 0 2 32 0 842 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1103 2650 352 3331
|
|
||||||
2 1 0 2 32 0 922 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2429 2959 1103 2650
|
|
||||||
-6
|
|
||||||
6 1925 1415 2682 3681
|
|
||||||
2 1 0 4 32 0 365 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1970 3651 2021 2050
|
|
||||||
2 1 0 4 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2021 2050 2652 1445
|
|
||||||
2 1 0 4 32 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2652 1445 2561 2872
|
|
||||||
2 1 0 4 32 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2561 2872 1970 3651
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 79 3414 188 188 79 3414 236 3518
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 110 1395 188 188 110 1395 266 1500
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1043 819 188 188 1043 819 1199 923
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1788 1570 188 188 1788 1570 1945 1675
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2727 1140 188 188 2727 1140 2884 1244
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3532 1273 188 188 3532 1273 3688 1378
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3132 2613 188 188 3132 2613 3288 2717
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3730 2741 188 188 3730 2741 3886 2846
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 5014 3062 188 188 5014 3062 5171 3167
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2633 4011 188 188 2633 4011 2790 4115
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1921 3967 188 188 1921 3967 2078 4071
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2297 2509 188 188 2297 2509 2454 2614
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 741 2376 188 188 741 2376 898 2480
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1249 1738 1123 1992
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
577 2822 798 2967
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1731 2581 1680 2822
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2093 3342 2214 3342
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1129 3488 982 3526
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1706 1140 1775 1286
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2219 1527 2398 1749
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
734 1254 734 1286 734 1318
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
139 2403 170 2416 190 2448 221 2461
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
950 1808 1140 1756
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1761 2763 2042 2771
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
|
|
||||||
3280 3400
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2473 2156 2632 2174
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1210 1086 1152 971
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
868 1228 899 1067 965 986
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1151 1262 1050 1181 1030 1001
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
124 1751 30 1644 15 1555
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
216 1766 217 1692 141 1578
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
324 3098 337 3204 242 3308
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
452 3360 392 3408 272 3394
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2476 1331 2609 1296
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2655 1595 2750 1437 2736 1323
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1880 3784 1866 3678
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1692 3676 1738 3774 1837 3801
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1968 3488 1910 3576 1917 3780
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3377 1610 3402 1494 3460 1449
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3670 1558 3665 1474 3613 1442
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3573 1711 3525 1646 3532 1466
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3063 2048 2971 2084 3067 2441
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2833 2251 2997 2469
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3084 2336 3106 2426
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2815 3716 2771 3883
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2870 3792 2799 3916
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3013 3859 2813 3971
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3641 2992 3708 2930
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4695 2889 4791 2922 4839 2987
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4653 3133 4823 3053
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4631 3083 4744 3059 4824 3022
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4695 2849 4823 2892 4866 2948
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1713 1842 1719 1744
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1802 2184 1865 2044 1806 1756
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2083 1978 2054 1792 1941 1690
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2171 2902 2215 2676
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2486 2707 2413 2659
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2494 2955 2325 2877 2299 2693
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2512 1365 2633 1343 2662 1308
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
346 1494 285 1466
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
995 2436 923 2440
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1024 2730 759 2638 730 2564
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1225 2505 1155 2549 878 2494
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3323 2951 3428 3047 3606 2893
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3427 3238 3437 3115 3658 2920
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
261 3198 183 3258
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 3583 2790 3,2,0\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 1863 2515 4\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2108 1855 1\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2657 1872 2\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2227 3509 3\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 -60 3468 0,0,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 603 2434 0,2,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 -41 1438 0,0,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 904 863 0,2,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 1651 1610 2,0,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 2592 1197 2,2,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 3403 1326 3,2,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 2984 2653 3,0,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 2161 2569 2,2,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 1776 4020 2,0,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 2504 4066 3,0,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 4883 3113 5,1,1\001
|
|
||||||
|
|
@ -1,317 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #9f9f9f
|
|
||||||
0 34 #000000
|
|
||||||
0 35 #ff0000
|
|
||||||
0 36 #ff0000
|
|
||||||
0 37 #0000ff
|
|
||||||
6 2128 1425 4342 3997
|
|
||||||
6 2172 1493 3024 3848
|
|
||||||
2 1 0 4 32 0 632 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2255 3818 2837 3001
|
|
||||||
2 1 0 4 32 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2837 3001 2948 1523
|
|
||||||
2 1 0 4 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2948 1523 2331 2159
|
|
||||||
2 1 0 4 32 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2331 2159 2255 3818
|
|
||||||
-6
|
|
||||||
6 2426 3057 4325 3997
|
|
||||||
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3011 3152 2441 3982
|
|
||||||
2 1 0 2 32 0 596 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4310 3122 3011 3152
|
|
||||||
2 1 0 2 32 0 420 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2441 3982 4310 3122
|
|
||||||
-6
|
|
||||||
6 2919 1502 4310 3032
|
|
||||||
2 1 0 2 32 0 606 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2995 2988 4295 2935
|
|
||||||
2 1 0 2 32 0 730 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3113 1517 2995 2988
|
|
||||||
2 1 0 2 32 0 517 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4295 2935 3113 1517
|
|
||||||
-6
|
|
||||||
6 2347 2231 4276 3935
|
|
||||||
2 1 0 2 32 0 297 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2366 3920 2446 2246
|
|
||||||
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4261 3046 2366 3920
|
|
||||||
2 1 0 2 32 0 257 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2446 2246 4261 3046
|
|
||||||
-6
|
|
||||||
6 2507 1425 4342 2890
|
|
||||||
2 1 0 2 32 0 269 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4327 2875 2522 2068
|
|
||||||
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3130 1440 4327 2875
|
|
||||||
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2522 2068 3130 1440
|
|
||||||
-6
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3596 2925 3601 3161
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3267 3462 3357 3609
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2281 2895 2421 2942
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3307 2396 3196 2617
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3616 2168 3719 2101
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2856 2310 3074 2353
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2514 3391 2814 3494
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2638 1820 2770 1813
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2930 2148 8\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2693 3410 7\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2128 3258 6\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2357 2021 5\001
|
|
||||||
-6
|
|
||||||
6 105 1058 2767 3864
|
|
||||||
6 121 1171 1092 3262
|
|
||||||
2 1 0 2 32 0 595 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
136 1708 242 3247
|
|
||||||
2 1 0 2 32 0 667 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
998 1186 136 1708
|
|
||||||
2 1 0 2 32 0 913 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1032 2565 998 1186
|
|
||||||
2 1 0 2 32 0 840 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
242 3247 1032 2565
|
|
||||||
-6
|
|
||||||
6 105 1774 1920 3791
|
|
||||||
2 1 0 2 32 0 333 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
183 1789 1859 2122
|
|
||||||
2 1 0 2 32 0 545 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
286 3351 183 1789
|
|
||||||
2 1 0 2 32 0 557 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1827 3776 286 3351
|
|
||||||
2 1 0 2 32 0 345 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1859 2122 1827 3776
|
|
||||||
-6
|
|
||||||
6 359 2658 2523 3864
|
|
||||||
2 1 0 2 32 0 687 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1887 3826 2508 3023
|
|
||||||
2 1 0 2 32 0 607 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
374 3405 1887 3826
|
|
||||||
2 1 0 2 32 0 842 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1146 2705 374 3405
|
|
||||||
2 1 0 2 32 0 922 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2508 3023 1146 2705
|
|
||||||
-6
|
|
||||||
6 1110 1105 2725 2892
|
|
||||||
2 1 0 2 32 0 933 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1202 2540 2562 2845
|
|
||||||
2 1 0 2 32 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2562 2845 2646 1398
|
|
||||||
2 1 0 2 32 0 775 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2646 1398 1184 1166
|
|
||||||
2 1 0 2 32 0 925 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1184 1166 1202 2540
|
|
||||||
-6
|
|
||||||
6 247 1058 2620 1914
|
|
||||||
2 1 0 2 32 0 351 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1933 1899 262 1585
|
|
||||||
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2605 1305 1933 1899
|
|
||||||
2 1 0 2 32 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
262 1585 1117 1073
|
|
||||||
2 1 0 2 32 0 731 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1117 1073 2605 1305
|
|
||||||
-6
|
|
||||||
6 1993 1438 2767 3765
|
|
||||||
2 1 0 4 32 0 365 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2037 3735 2089 2089
|
|
||||||
2 1 0 4 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2089 2089 2737 1468
|
|
||||||
2 1 0 4 32 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2737 1468 2644 2934
|
|
||||||
2 1 0 4 32 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2644 2934 2037 3735
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 111 3523 193 193 111 3523 272 3629
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 791 2399 193 193 791 2399 952 2506
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 36 1402 193 193 36 1402 197 1509
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1063 857 193 193 1063 857 1222 965
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1843 1613 193 193 1843 1613 2002 1720
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 2910 1183 193 193 2910 1183 3071 1290
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 3291 2759 193 193 3291 2759 3451 2867
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 4579 3043 193 193 4579 3043 4740 3151
|
|
||||||
1 3 0 1 0 7 51 -1 -1 0.000 1 0.0000 1988 4049 193 193 1988 4049 2148 4156
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1296 1768 1166 2029
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
604 2882 832 3031
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1791 2635 1738 2882
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2162 3416 2286 3416
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1171 3566 1022 3606
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1765 1154 1836 1305
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2292 1552 2476 1780
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
766 1271 766 1305 766 1337
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
155 2451 187 2464 207 2497 239 2511
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
988 1841 1184 1786
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1822 2821 2110 2830
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
|
|
||||||
3382 3476
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2553 2198 2716 2217
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1255 1098 1194 1001
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
904 1245 936 1079 977 1025
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1189 1276 1090 1196 1074 1046
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
140 1782 43 1672 34 1592
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
235 1797 236 1721 133 1565
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
345 3166 358 3274 239 3375
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
476 3435 416 3484 292 3468
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2555 1350 2738 1281
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2740 1621 2814 1469 2830 1348
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1946 3866 1929 3761
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1751 3759 1798 3860 1873 3892
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2034 3566 1975 3657 1996 3857
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1704 1859 1738 1773
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1856 2225 1785 2019 1818 1806
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2242 2965 3096 2790
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2565 2717 3098 2757
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2575 3018 2775 2909 3103 2821
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2593 1386 2694 1356 2768 1322
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
329 1543 205 1496
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1035 2486 961 2492
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1065 2787 792 2693 745 2581
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1270 2556 1199 2602 921 2538
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4249 2879 4347 2914 4393 2977
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4205 3130 4388 3053
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4183 3079 4299 3054 4384 3015
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4249 2838 4380 2882 4418 2938
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2876 1585 2920 1446 2904 1372
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3186 1500 3186 1421 3049 1311
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3096 1669 3023 1595 2963 1366
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2573 2016 2078 1964 1940 1768
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2367 3842 2162 3968
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2521 3876 2181 4033
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3147 2985 3201 2927
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2839 2943 2948 3042 3135 2877
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2947 3238 2956 3111 3169 2909
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2333 3710 2335 3810 2144 3924
|
|
||||||
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2420 1760 2647 1836
|
|
||||||
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2073 2894 2303 2911
|
|
||||||
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2431 3202 2623 3304
|
|
||||||
2 1 0 3 37 7 20 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2697 2277 2891 2309
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
280 3269 184 3345
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2334 2309 1968 2100 1866 1804
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
2567 2303 2490 2140 2032 2027 1905 1792
|
|
||||||
2 1 0 1 35 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2235 1943 1998 1731
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2185 1883 1\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 1916 2644 4\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2720 2075 2\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 135 2548 3233 3\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 -28 3574 0,0,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 660 2452 0,2,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 -86 1453 0,0,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 933 908 0,2,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 1711 1661 2,0,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 2781 1243 2,2,2\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 3155 2796 2,2,0\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 4462 3092 5,1,1\001
|
|
||||||
4 0 34 50 -1 0 9 0.0000 4 135 315 1857 4092 2,0,0\001
|
|
||||||
|
|
@ -1,383 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #535353
|
|
||||||
0 34 #787878
|
|
||||||
0 35 #9f9f9f
|
|
||||||
0 36 #ff0000
|
|
||||||
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4607.828 5141.248 3015 635 4311 371 5699 488
|
|
||||||
2 0 2.00 180.00 150.00
|
|
||||||
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4019.209 1002.002 5429 3263 4156 3663 2769 3355
|
|
||||||
2 0 2.00 180.00 150.00
|
|
||||||
6 -5 227 2881 3667
|
|
||||||
6 571 382 2787 2424
|
|
||||||
2 1 0 1 35 0 953 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1660 2424 1689 2189
|
|
||||||
2 1 0 1 35 0 770 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2787 1570 2629 1470
|
|
||||||
2 1 0 1 35 0 667 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1672 437 1704 533
|
|
||||||
2 1 0 1 35 0 860 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
571 1375 783 1309
|
|
||||||
2 1 0 2 33 0 960 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
808 2103 2590 2276
|
|
||||||
2 1 0 2 33 0 703 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2667 608 760 458
|
|
||||||
2 1 0 4 32 0 791 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2590 2276 2667 608
|
|
||||||
2 1 0 4 32 0 872 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
760 458 808 2103
|
|
||||||
-6
|
|
||||||
6 -5 506 636 3221
|
|
||||||
2 1 0 1 35 0 762 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
556 2830 374 2660
|
|
||||||
2 1 0 1 35 0 323 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
209 2469 66 2344
|
|
||||||
2 1 0 1 35 0 445 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
474 777 291 939
|
|
||||||
2 1 0 2 33 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
540 521 10 1413
|
|
||||||
2 1 0 2 33 0 349 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10 1413 117 3206
|
|
||||||
2 1 0 2 33 0 839 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
602 2174 540 521
|
|
||||||
2 1 0 2 33 0 740 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
117 3206 602 2174
|
|
||||||
-6
|
|
||||||
6 187 350 2726 1628
|
|
||||||
2 1 0 1 35 0 334 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2726 1143 2535 945
|
|
||||||
2 1 0 1 35 0 71 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1245 1628 1285 1340
|
|
||||||
2 1 0 2 33 0 409 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
202 1245 712 365
|
|
||||||
2 1 0 2 33 0 83 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2397 1439 202 1245
|
|
||||||
2 1 0 2 33 0 631 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
712 365 2654 511
|
|
||||||
2 1 0 2 33 0 305 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2654 511 2397 1439
|
|
||||||
-6
|
|
||||||
6 335 2265 2639 3571
|
|
||||||
2 1 0 1 35 0 667 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2639 2893 2448 3030
|
|
||||||
2 1 0 1 35 0 444 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1264 3451 1383 3406
|
|
||||||
2 1 0 2 33 0 757 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
773 2337 350 3293
|
|
||||||
2 1 0 2 33 0 483 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
359 3276 2363 3502
|
|
||||||
2 1 0 2 33 0 670 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2339 3502 2563 2513
|
|
||||||
2 1 0 2 33 0 945 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2563 2513 773 2337
|
|
||||||
-6
|
|
||||||
6 75 1499 2560 3583
|
|
||||||
2 1 0 1 35 0 206 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2560 2594 2328 2684
|
|
||||||
2 1 0 4 32 0 58 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
155 1529 2363 1730
|
|
||||||
2 1 0 2 33 0 176 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2363 1730 2297 3568
|
|
||||||
2 1 0 2 33 0 403 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2297 3568 255 3338
|
|
||||||
2 1 0 2 33 0 285 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
255 3338 155 1529
|
|
||||||
-6
|
|
||||||
6 2468 685 2878 3487
|
|
||||||
2 1 0 2 33 0 327 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2603 1646 2834 700
|
|
||||||
2 1 0 2 33 0 740 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2834 700 2746 2383
|
|
||||||
2 1 0 2 33 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2746 2383 2520 3472
|
|
||||||
2 1 0 2 33 0 222 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2520 3472 2603 1646
|
|
||||||
-6
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 576 299 72 72 576 299 633 343
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2609 2375 72 72 2609 2375 2667 2420
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 724 2222 72 72 724 2222 782 2267
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2425 1592 72 72 2425 1592 2481 1636
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 219 1389 72 72 219 1389 276 1434
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 130 3331 72 72 130 3331 187 3377
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2466 3595 72 72 2466 3595 2524 3640
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 2805 503 72 72 2805 503 2862 547
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
729 2429 642 2318 658 2222
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
884 2116 783 2197
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
604 2084 701 2194
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2206 3568 2239 3620 2454 3642
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2382 3319 2441 3367 2454 3589
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2563 3306 2641 3415 2486 3559
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2720 2528 2647 2409
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2619 2222 2670 2269 2645 2344
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2427 2490 2450 2439 2596 2383
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
247 3275 158 3311
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
484 3300 306 3410 159 3385
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
172 3104 199 3168 166 3334
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
23 1495 204 1411
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
304 1541 248 1429
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
255 1171 250 1353
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
811 361 739 302 610 297
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
719 582 582 511 579 353
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
457 656 429 516 525 338
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2588 590 2762 539
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2614 661 2720 628 2794 562
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2836 837 2881 739 2843 544
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2287 1432 2390 1557
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2631 1534 2478 1553
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2364 1837 2427 1799 2433 1600
|
|
||||||
-6
|
|
||||||
6 5388 266 8318 3673
|
|
||||||
6 5964 465 7953 2409
|
|
||||||
2 1 0 1 35 0 949 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
7051 2409 7025 2216
|
|
||||||
2 1 0 1 35 0 831 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
7147 1325 7030 1421
|
|
||||||
2 1 0 1 35 0 859 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
5964 1360 6121 1340
|
|
||||||
2 1 0 4 32 0 839 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7923 2303 6095 495
|
|
||||||
2 1 0 2 33 0 876 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6095 495 6146 2131
|
|
||||||
2 1 0 2 33 0 962 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6146 2131 7923 2303
|
|
||||||
-6
|
|
||||||
6 5388 491 6028 3206
|
|
||||||
2 1 0 1 35 0 758 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
5949 2816 5766 2645
|
|
||||||
2 1 0 1 35 0 338 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
5536 2505 5459 2329
|
|
||||||
2 1 0 1 35 0 449 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
5866 763 5684 924
|
|
||||||
2 1 0 2 33 0 452 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5932 506 5403 1398
|
|
||||||
2 1 0 2 33 0 356 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5403 1398 5510 3191
|
|
||||||
2 1 0 2 33 0 834 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5993 2158 5932 506
|
|
||||||
2 1 0 2 33 0 737 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5510 3191 5993 2158
|
|
||||||
-6
|
|
||||||
6 5579 335 8119 1557
|
|
||||||
2 1 0 1 35 0 660 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
7156 465 7064 422
|
|
||||||
2 1 0 1 35 0 341 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
8119 1128 7927 930
|
|
||||||
2 1 0 1 35 0 77 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
6707 1557 6678 1325
|
|
||||||
2 1 0 2 33 0 414 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5594 1230 6104 350
|
|
||||||
2 1 0 2 33 0 96 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7790 1424 5594 1230
|
|
||||||
2 1 0 2 33 0 631 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6104 350 8046 496
|
|
||||||
2 1 0 2 33 0 313 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8046 496 7790 1424
|
|
||||||
-6
|
|
||||||
6 6180 316 8204 2246
|
|
||||||
2 1 0 2 32 0 689 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8124 542 6210 393
|
|
||||||
2 1 0 2 32 0 776 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8042 2216 8124 542
|
|
||||||
2 1 0 4 32 0 818 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6210 393 8042 2216
|
|
||||||
-6
|
|
||||||
6 5690 2250 8002 3662
|
|
||||||
2 1 0 1 32 0 455 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
6591 3482 6694 3480
|
|
||||||
2 1 0 2 32 0 754 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6166 2322 5705 3367
|
|
||||||
2 1 0 2 32 0 487 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5705 3367 7708 3593
|
|
||||||
2 1 0 2 32 0 936 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7955 2498 6166 2322
|
|
||||||
2 1 0 2 32 0 669 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7708 3593 7955 2498
|
|
||||||
-6
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5480 3314 72 72 5480 3314 5536 3359
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 6911 2809 72 72 6911 2809 6969 2854
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 6070 2307 72 72 6070 2307 6128 2352
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5549 1413 72 72 5549 1413 5607 1457
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 5939 338 72 72 5939 338 5995 382
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 8246 509 72 72 8246 509 8303 554
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 7872 1521 72 72 7872 1521 7930 1566
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 7900 3599 72 72 7900 3599 7956 3644
|
|
||||||
1 3 0 1 34 34 50 -1 20 0.000 1 0.0000 8012 2393 72 72 8012 2393 8070 2437
|
|
||||||
2 1 0 3 32 0 259 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5484 1570 6780 2798
|
|
||||||
2 1 0 1 35 0 209 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
7953 2579 7791 2617
|
|
||||||
2 1 0 1 35 0 248 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
6146 2209 6281 2107
|
|
||||||
2 1 0 1 35 0 761 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
8083 1406 8180 1555
|
|
||||||
2 1 0 1 35 0 666 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
7841 3015 8032 2879
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5830 3364 5669 3466 5490 3372
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5584 3194 5513 3283
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5575 3034 5654 3245 5523 3316
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5401 1531 5505 1434
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5564 1617 5533 1442
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5738 1465 5720 1411 5572 1402
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5654 1130 5564 1166 5560 1402
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6102 2485 6056 2365
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5985 2140 6043 2280
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6199 2135 6094 2263
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6829 2594 6954 2651 6931 2777
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5855 618 5802 486 5915 327
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6234 346 6107 280 5962 310
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6253 445 6148 435 5977 322
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6121 649 6036 610 5942 365
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8068 529 8218 473
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8012 626 8246 539
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8237 835 8277 707 8250 547
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7689 1413 7723 1487 7834 1516
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7825 1759 7880 1694 7849 1572
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8017 1555 7876 1529
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8055 2103 8101 2174 8022 2360
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8134 2408 8040 2375
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7867 2492 7966 2408
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7721 3479 7876 3591
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7647 3604 7740 3673 7861 3622
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7942 3291 8012 3421 7910 3595
|
|
||||||
2 1 0 2 33 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8137 2369 7912 3457
|
|
||||||
2 1 0 2 33 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7995 1631 8226 686
|
|
||||||
2 1 0 2 33 0 737 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8226 686 8137 2369
|
|
||||||
2 1 0 2 32 0 57 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5613 1460 7829 1659
|
|
||||||
2 1 0 2 32 0 307 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5587 3370 5484 1570
|
|
||||||
2 1 0 2 32 0 422 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7759 3617 5587 3370
|
|
||||||
2 1 0 2 32 0 173 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7829 1659 7759 3627
|
|
||||||
2 1 0 4 32 0 231 0 -1 0.000 1 0 7 1 0 3
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6770 2781 6860 2656 5613 1460
|
|
||||||
2 1 0 1 36 34 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7887 2240 7984 2352
|
|
||||||
2 1 0 2 33 0 232 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7912 3457 7995 1631
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 225 540 6034 2898 dh4\001
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 240 540 6890 1031 dh5\001
|
|
||||||
-6
|
|
||||||
4 0 0 50 -1 0 15 0.0000 4 210 3000 3557 4244 remove_cell<LCC,1>(lcc,dh5)\001
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 225 540 1343 2021 dh1\001
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 225 540 1982 1036 dh3\001
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 225 540 833 1028 dh2\001
|
|
||||||
4 0 0 50 -1 0 15 0.0000 4 210 3000 3391 3950 remove_cell<LCC,1>(lcc,dh4)\001
|
|
||||||
4 0 0 50 -1 0 21 0.0000 4 225 180 6994 3030 p\001
|
|
||||||
4 0 0 50 -1 0 15 0.0000 4 225 4815 1927 -90 dh4=lcc.insert_dangling_cell_1_in_cell_2(dh1,p)\001
|
|
||||||
4 0 0 50 -1 0 15 0.0000 4 210 4830 2211 210 dh5=insert_cell_1_in_cell_2<LCC>(lcc,dh2,dh3)\001
|
|
||||||
|
|
@ -1,602 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #9f9f9f
|
|
||||||
0 34 #000000
|
|
||||||
0 35 #575757
|
|
||||||
0 36 #5e5e5e
|
|
||||||
0 37 #535353
|
|
||||||
0 38 #787878
|
|
||||||
0 39 #ff0000
|
|
||||||
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4507.770 1910.299 5709 3869 4502 4208 3323 3879
|
|
||||||
2 0 2.00 180.00 150.00
|
|
||||||
5 1 0 2 0 7 50 -1 -1 0.000 0 0 1 0 4402.683 3078.407 3330 1400 4358 1087 5515 1426
|
|
||||||
2 0 2.00 180.00 150.00
|
|
||||||
6 5029 1179 7818 4138
|
|
||||||
6 5029 1935 6935 4062
|
|
||||||
2 1 0 2 36 0 545 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5215 3598 5107 1950
|
|
||||||
2 1 0 2 36 0 333 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5107 1950 6876 2302
|
|
||||||
2 1 0 2 36 0 345 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6876 2302 6842 4047
|
|
||||||
2 1 0 2 36 0 557 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6842 4047 5215 3598
|
|
||||||
-6
|
|
||||||
6 5042 1298 6061 3504
|
|
||||||
2 1 0 2 36 0 840 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5168 3489 6002 2770
|
|
||||||
2 1 0 2 36 0 913 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6002 2770 5967 1313
|
|
||||||
2 1 0 2 36 0 667 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5967 1313 5057 1864
|
|
||||||
2 1 0 2 36 0 595 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5057 1864 5168 3489
|
|
||||||
-6
|
|
||||||
6 6090 1231 7786 3111
|
|
||||||
2 1 0 2 36 0 925 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6163 1292 6183 2742
|
|
||||||
2 1 0 2 36 0 775 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7707 1537 6163 1292
|
|
||||||
2 1 0 2 36 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7618 3064 7707 1537
|
|
||||||
2 1 0 2 36 0 933 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6183 2742 7618 3064
|
|
||||||
-6
|
|
||||||
6 5174 1179 7678 2097
|
|
||||||
2 1 0 2 36 0 351 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6954 2067 5189 1735
|
|
||||||
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5189 1735 6092 1194
|
|
||||||
2 1 0 2 36 0 731 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6092 1194 7663 1438
|
|
||||||
2 1 0 2 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7663 1442 7351 1717
|
|
||||||
2 1 0 5 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7351 1717 6954 2067
|
|
||||||
-6
|
|
||||||
6 7023 1595 7818 4018
|
|
||||||
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7119 2267 7500 1902
|
|
||||||
2 1 0 2 36 0 365 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7063 4003 7119 2267
|
|
||||||
2 1 0 2 36 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7705 3158 7063 4003
|
|
||||||
2 1 0 2 36 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7803 1610 7705 3158
|
|
||||||
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7497 1903 7798 1615
|
|
||||||
-6
|
|
||||||
6 5293 2870 7576 4138
|
|
||||||
2 1 0 2 36 0 842 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6123 2917 5308 3656
|
|
||||||
2 1 0 2 36 0 922 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7561 3252 6123 2917
|
|
||||||
2 1 0 2 36 0 687 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6906 4100 7561 3252
|
|
||||||
2 1 0 2 36 0 607 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5308 3656 6906 4100
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 7181 1545 9466 4258
|
|
||||||
6 7446 3272 9449 4258
|
|
||||||
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8062 3367 7461 4243
|
|
||||||
2 1 0 2 36 0 596 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9434 3335 8062 3367
|
|
||||||
2 1 0 2 36 0 420 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7461 4243 9434 3335
|
|
||||||
-6
|
|
||||||
6 7969 1625 9432 3234
|
|
||||||
2 1 0 2 36 0 730 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8170 1640 8045 3193
|
|
||||||
2 1 0 2 36 0 517 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9417 3138 8170 1640
|
|
||||||
2 1 0 2 36 0 606 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8045 3193 9417 3138
|
|
||||||
-6
|
|
||||||
6 7181 1633 8071 4085
|
|
||||||
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7689 1965 7344 2319
|
|
||||||
2 1 0 2 36 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7344 2319 7264 4070
|
|
||||||
2 1 0 2 36 0 632 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7264 4070 7878 3208
|
|
||||||
2 1 0 2 36 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7878 3208 7995 1648
|
|
||||||
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7982 1660 7687 1967
|
|
||||||
-6
|
|
||||||
6 7366 2395 9397 4193
|
|
||||||
2 1 0 2 36 0 297 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7381 4178 7466 2410
|
|
||||||
2 1 0 2 36 0 257 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7466 2410 9382 3255
|
|
||||||
2 1 0 2 36 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9382 3255 7381 4178
|
|
||||||
-6
|
|
||||||
6 7531 1545 9466 3089
|
|
||||||
2 1 0 2 36 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8187 1560 9451 3074
|
|
||||||
2 1 0 2 36 0 269 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9451 3074 7546 2223
|
|
||||||
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7854 1904 8187 1560
|
|
||||||
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7551 2214 7853 1903
|
|
||||||
-6
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
|
|
||||||
7834 3634
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8679 3127 8685 3377
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8333 3694 8428 3850
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7291 3095 7439 3146
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8375 2570 8258 2802
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8700 2328 8810 2258
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7898 2478 8130 2524
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7537 3620 7854 3728
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7668 1961 7808 1953
|
|
||||||
-6
|
|
||||||
6 67 1048 4643 4128
|
|
||||||
6 67 1048 2857 4007
|
|
||||||
6 214 1048 2732 1966
|
|
||||||
2 1 0 5 32 0 448 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2702 1307 1993 1936
|
|
||||||
2 1 0 2 36 0 351 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1993 1936 229 1604
|
|
||||||
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
229 1604 1131 1063
|
|
||||||
2 1 0 2 36 0 731 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1131 1063 2702 1307
|
|
||||||
-6
|
|
||||||
6 67 1804 1974 3931
|
|
||||||
2 1 0 2 36 0 545 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
254 3468 146 1819
|
|
||||||
2 1 0 2 36 0 333 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
146 1819 1915 2171
|
|
||||||
2 1 0 2 36 0 345 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1915 2171 1881 3916
|
|
||||||
2 1 0 2 36 0 557 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1881 3916 254 3468
|
|
||||||
-6
|
|
||||||
6 82 1168 1100 3373
|
|
||||||
2 1 0 2 36 0 840 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
207 3358 1041 2639
|
|
||||||
2 1 0 2 36 0 913 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1041 2639 1006 1183
|
|
||||||
2 1 0 2 36 0 667 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1006 1183 97 1733
|
|
||||||
2 1 0 2 36 0 595 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
97 1733 207 3358
|
|
||||||
-6
|
|
||||||
6 332 2739 2615 4007
|
|
||||||
2 1 0 2 36 0 842 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1162 2786 347 3525
|
|
||||||
2 1 0 2 36 0 922 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2600 3122 1162 2786
|
|
||||||
2 1 0 2 36 0 687 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1945 3969 2600 3122
|
|
||||||
2 1 0 2 36 0 607 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
347 3525 1945 3969
|
|
||||||
-6
|
|
||||||
6 2062 1464 2857 3887
|
|
||||||
2 1 0 2 32 0 450 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2158 2136 2842 1479
|
|
||||||
2 1 0 2 36 0 365 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2102 3872 2158 2136
|
|
||||||
2 1 0 2 36 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2744 3027 2102 3872
|
|
||||||
2 1 0 2 36 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2842 1479 2744 3027
|
|
||||||
-6
|
|
||||||
6 1129 1100 2825 2980
|
|
||||||
2 1 0 2 36 0 925 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1202 1161 1222 2611
|
|
||||||
2 1 0 2 36 0 775 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2746 1406 1202 1161
|
|
||||||
2 1 0 2 36 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2657 2933 2746 1406
|
|
||||||
2 1 0 2 36 0 933 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1222 2611 2657 2933
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 2220 1414 4505 4128
|
|
||||||
6 2220 1502 3110 3954
|
|
||||||
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3034 1517 2383 2189
|
|
||||||
2 1 0 2 36 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2383 2189 2303 3939
|
|
||||||
2 1 0 2 36 0 632 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2303 3939 2917 3078
|
|
||||||
2 1 0 2 36 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2917 3078 3034 1517
|
|
||||||
-6
|
|
||||||
6 2570 1414 4505 2958
|
|
||||||
2 1 0 2 36 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3227 1429 4490 2943
|
|
||||||
2 1 0 2 36 0 269 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4490 2943 2585 2092
|
|
||||||
2 1 0 2 32 0 398 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2585 2092 3227 1429
|
|
||||||
-6
|
|
||||||
6 2485 3141 4488 4128
|
|
||||||
2 1 0 2 36 0 635 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3101 3236 2500 4113
|
|
||||||
2 1 0 2 36 0 596 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4473 3205 3101 3236
|
|
||||||
2 1 0 2 36 0 420 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2500 4113 4473 3205
|
|
||||||
-6
|
|
||||||
6 3008 1494 4471 3104
|
|
||||||
2 1 0 2 36 0 730 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3209 1509 3084 3063
|
|
||||||
2 1 0 2 36 0 517 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4456 3007 3209 1509
|
|
||||||
2 1 0 2 36 0 606 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
3084 3063 4456 3007
|
|
||||||
-6
|
|
||||||
6 2405 2264 4436 4062
|
|
||||||
2 1 0 2 36 0 297 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2420 4047 2505 2279
|
|
||||||
2 1 0 2 36 0 257 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2505 2279 4421 3124
|
|
||||||
2 1 0 2 36 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4421 3124 2420 4047
|
|
||||||
-6
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 1
|
|
||||||
2873 3503
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3718 2996 3724 3246
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3372 3563 3467 3719
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2330 2964 2478 3015
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3414 2439 3297 2671
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3740 2197 3849 2127
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2937 2347 3169 2394
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2576 3489 2893 3597
|
|
||||||
2 1 0 2 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2707 1830 2847 1823
|
|
||||||
-6
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 303 1751 75 75 303 1751 378 1751
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 1106 1223 75 75 1106 1223 1182 1223
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 1142 2685 75 75 1142 2685 1217 2685
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 154 3503 75 75 154 3503 230 3503
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2869 3000 75 75 2869 3000 2945 3000
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2950 1379 75 75 2950 1379 3025 1379
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2282 1984 75 75 2282 1984 2358 1984
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 4568 3109 75 75 4568 3109 4644 3109
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 2136 4026 75 75 2136 4026 2212 4026
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1320 1797 1183 2073
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
591 2973 831 3130
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1843 2712 1788 2973
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2236 3537 2366 3537
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1189 3695 1031 3737
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1816 1149 1891 1307
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2373 1569 2566 1809
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
762 1272 762 1307 762 1341
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
115 2518 149 2532 171 2567 205 2581
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
996 1873 1202 1816
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1876 2909 2180 2918
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2648 2250 2820 2270
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
207 1829 264 1761
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
303 1552 406 1613 334 1716
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
98 1782 281 1736
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1028 2551 1110 2649
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1290 2625 1188 2664
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1120 2820 1131 2699
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
239 3364 168 3507
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
264 3296 334 3364 197 3488
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
402 3544 278 3602 203 3513
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
915 1240 960 1328 1085 1247
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1208 1332 1124 1254
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1212 1077 1113 1184
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2688 1399 2907 1370
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2685 1338 2907 1338
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2840 1561 2903 1413
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2967 1569 2925 1409
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3265 1469 3211 1370 2961 1367
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3201 1633 3003 1409
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2199 2088 2175 2035 2218 1992
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1916 2246 2246 2166 2275 2028
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1906 1922 1966 1975 2249 1967
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2376 2262 2320 2190 2285 2020
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2649 2038 2480 1971 2312 1967
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2558 2303 2560 2207 2295 1981
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2656 2824 2840 2952
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2932 2860 2858 2956
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2692 3083 2745 3093 2812 3026
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2542 3110 2624 3036 2829 2993
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3149 3061 3084 3104 2911 2991
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3074 3274 2903 3026
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1998 3899 2111 4020
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2093 3772 2076 3881 2132 3987
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1772 3889 1803 4033 2093 4030
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2363 3864 2370 3928 2136 3994
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2427 3955 2197 4023
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2614 4062 2447 4076 2182 4030
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4292 2849 4274 2899 4575 3118
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4426 2956 4510 2970 4567 3075
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4355 3161 4522 3129
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4277 3213 4294 3239 4561 3157
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 420 1866 1662 dh1\001
|
|
||||||
-6
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 9535 3237 75 75 9535 3237 9611 3237
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7977 1460 75 75 7977 1460 8053 1460
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7628 1775 75 75 7628 1775 7703 1775
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7234 2317 75 75 7234 2317 7310 2317
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 6011 1111 75 75 6011 1111 6086 1111
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 6099 2821 75 75 6099 2821 6174 2821
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7847 3092 75 75 7847 3092 7922 3092
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 7121 4208 75 75 7121 4208 7196 4208
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 5118 3664 75 75 5118 3664 5193 3664
|
|
||||||
1 3 0 1 38 38 50 -1 20 0.000 1 0.0000 4966 1764 75 75 4966 1764 5041 1764
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6281 1928 6144 2204
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5552 3104 5792 3261
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6804 2843 6749 3104
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7196 3667 7327 3667
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6150 3826 5992 3867
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6776 1279 6852 1438
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5723 1403 5723 1438 5723 1472
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
5076 2649 5110 2663 5132 2698 5166 2712
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5957 2004 6163 1947
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6837 3040 7141 3049
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7609 2381 7781 2401
|
|
||||||
2 1 0 1 33 36 45 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7483 1550 7677 1790
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5068 1965 5011 1937 4968 1806
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5163 1958 4983 1785
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5262 1682 5003 1742
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6168 1201 6045 1121
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6162 1369 6016 1135
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5914 1351 6006 1142
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7658 1527 7935 1478
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7623 1478 7956 1432
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7800 1708 7938 1488
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7935 1694 7959 1503
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8157 1743 8001 1503
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8224 1599 8186 1470 8019 1474
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7531 1877 7500 1820 7574 1742
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7326 1770 7595 1738
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7648 2007 7623 1820
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7906 1855 7640 1781
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6866 2053 6909 2121 7254 2319
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7215 2160 7244 2277
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7588 2170 7396 2134 7244 2262
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7332 2456 7248 2333
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6880 2390 7198 2316
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7566 2450 7500 2357 7272 2326
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5992 2650 6101 2798
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6271 2760 6133 2802
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6048 2978 6072 2837
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5237 3432 5251 3499 5138 3641
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5405 3693 5305 3728 5132 3689
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5210 3480 5107 3611
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6958 4023 7120 4208
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7071 3836 6989 3900 7120 4148
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6766 4023 6788 4165 7092 4226
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7332 3971 7322 4074 7149 4176
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7389 4098 7152 4197
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7562 4201 7502 4289 7117 4232
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7669 3207 7839 3153
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7484 3229 7588 3164 7824 3112
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7623 2983 7824 3069
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7899 2938 7843 2962 7832 3034
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7987 3465 7878 3094
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8140 3190 8037 3235 7888 3100
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9279 2995 9297 3061 9519 3221
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9357 3061 9499 3100 9534 3186
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9300 3291 9499 3281
|
|
||||||
2 1 0 1 39 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9283 3330 9530 3295
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 195 420 6718 1863 dh2\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 255 4320 2700 4500 CGAL::remove_cell<LCC,0>(lcc,dh2)\001
|
|
||||||
4 0 0 50 -1 0 16 0.0000 4 255 4890 2745 945 dh2=lcc.insert_barycenter_in_cell<1>(dh1)\001
|
|
||||||
|
|
@ -1,213 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #505050
|
|
||||||
0 34 #ffffff
|
|
||||||
0 35 #808080
|
|
||||||
0 38 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
6 -2 1632 3997 4165
|
|
||||||
6 -2 1632 2576 2525
|
|
||||||
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 2561 1847
|
|
||||||
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 1908 2510
|
|
||||||
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 13 2218
|
|
||||||
2 1 0 3 38 34 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 938 1647
|
|
||||||
2 1 0 3 32 34 542 0 20 0.000 1 0 7 0 0 5
|
|
||||||
2561 1847 1908 2510 13 2218 938 1647 2561 1847
|
|
||||||
-6
|
|
||||||
6 -2 2203 3639 4165
|
|
||||||
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 13 2218
|
|
||||||
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 1908 2510
|
|
||||||
2 1 0 3 38 34 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 3624 4150
|
|
||||||
2 1 0 3 32 34 397 0 20 0.000 1 0 7 0 0 4
|
|
||||||
13 2218 1908 2510 3624 4150 13 2218
|
|
||||||
-6
|
|
||||||
6 -2 1632 3997 4165
|
|
||||||
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 13 2218
|
|
||||||
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 3624 4150
|
|
||||||
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 3982 3157
|
|
||||||
2 1 0 3 38 34 457 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 938 1647
|
|
||||||
2 1 0 3 32 34 458 0 20 0.000 1 0 7 0 0 5
|
|
||||||
13 2218 3624 4150 3982 3157 938 1647 13 2218
|
|
||||||
-6
|
|
||||||
6 1893 1832 3997 4165
|
|
||||||
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 1908 2510
|
|
||||||
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 2561 1847
|
|
||||||
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 3982 3157
|
|
||||||
2 1 0 3 38 34 611 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 3624 4150
|
|
||||||
2 1 0 3 32 34 612 0 20 0.000 1 0 7 0 0 5
|
|
||||||
1908 2510 2561 1847 3982 3157 3624 4150 1908 2510
|
|
||||||
-6
|
|
||||||
6 923 1632 3997 3172
|
|
||||||
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 2561 1847
|
|
||||||
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 938 1647
|
|
||||||
2 1 0 3 38 34 915 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 3982 3157
|
|
||||||
2 1 0 3 32 34 916 0 20 0.000 1 0 7 0 0 4
|
|
||||||
2561 1847 938 1647 3982 3157 2561 1847
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 -2 -2 2624 2525
|
|
||||||
6 -2 1632 2576 2525
|
|
||||||
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 13 2218
|
|
||||||
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 1908 2510
|
|
||||||
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 2561 1847
|
|
||||||
2 1 0 3 38 33 541 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 938 1647
|
|
||||||
2 1 0 3 32 33 542 0 20 0.000 1 0 7 0 0 5
|
|
||||||
13 2218 1908 2510 2561 1847 938 1647 13 2218
|
|
||||||
-6
|
|
||||||
6 1893 -2 2624 2525
|
|
||||||
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 2561 1847
|
|
||||||
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 1908 2510
|
|
||||||
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 1911 299
|
|
||||||
2 1 0 3 38 33 368 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 2609 13
|
|
||||||
2 1 0 3 32 33 369 0 20 0.000 1 0 7 0 0 5
|
|
||||||
2561 1847 1908 2510 1911 299 2609 13 2561 1847
|
|
||||||
-6
|
|
||||||
6 923 -2 2624 1862
|
|
||||||
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 2561 1847
|
|
||||||
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 2609 13
|
|
||||||
2 1 0 3 38 33 740 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 938 1647
|
|
||||||
2 1 0 3 32 33 741 0 20 0.000 1 0 7 0 0 4
|
|
||||||
2561 1847 2609 13 938 1647 2561 1847
|
|
||||||
-6
|
|
||||||
6 -2 284 1926 2525
|
|
||||||
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 1908 2510
|
|
||||||
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 13 2218
|
|
||||||
2 1 0 3 38 33 396 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 1911 299
|
|
||||||
2 1 0 3 32 33 397 0 20 0.000 1 0 7 0 0 4
|
|
||||||
1908 2510 13 2218 1911 299 1908 2510
|
|
||||||
-6
|
|
||||||
6 -2 -2 2624 2233
|
|
||||||
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
13 2218 1911 299
|
|
||||||
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 1647 13 2218
|
|
||||||
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 938 1647
|
|
||||||
2 1 0 3 38 33 505 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 2609 13
|
|
||||||
2 1 0 3 32 33 506 0 20 0.000 1 0 7 0 0 5
|
|
||||||
1911 299 13 2218 938 1647 2609 13 1911 299
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 1893 -2 3997 4165
|
|
||||||
6 1893 1832 3997 4165
|
|
||||||
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 2561 1847
|
|
||||||
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 1908 2510
|
|
||||||
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 3624 4150
|
|
||||||
2 1 0 3 38 0 409 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 3982 3157
|
|
||||||
2 1 0 3 32 49 410 0 20 0.000 1 0 7 0 0 5
|
|
||||||
2561 1847 1908 2510 3624 4150 3982 3157 2561 1847
|
|
||||||
-6
|
|
||||||
6 1893 284 3639 4165
|
|
||||||
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 3624 4150
|
|
||||||
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 1908 2510
|
|
||||||
2 1 0 3 38 0 198 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 1911 299
|
|
||||||
2 1 0 3 32 49 199 0 20 0.000 1 0 7 0 0 4
|
|
||||||
3624 4150 1908 2510 1911 299 3624 4150
|
|
||||||
-6
|
|
||||||
6 1896 -2 3997 4165
|
|
||||||
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 3624 4150
|
|
||||||
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 1911 299
|
|
||||||
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 2609 13
|
|
||||||
2 1 0 3 38 0 257 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3624 4150 3982 3157
|
|
||||||
2 1 0 3 32 49 258 0 20 0.000 1 0 7 0 0 5
|
|
||||||
3624 4150 1911 299 2609 13 3982 3157 3624 4150
|
|
||||||
-6
|
|
||||||
6 1893 -2 2624 2525
|
|
||||||
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 1908 2510
|
|
||||||
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 2561 1847
|
|
||||||
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1911 299 2609 13
|
|
||||||
2 1 0 3 38 0 584 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1908 2510 1911 299
|
|
||||||
2 1 0 3 32 49 585 0 20 0.000 1 0 7 0 0 5
|
|
||||||
1908 2510 2561 1847 2609 13 1911 299 1908 2510
|
|
||||||
-6
|
|
||||||
6 2546 -2 3997 3172
|
|
||||||
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3982 3157 2561 1847
|
|
||||||
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2609 13 3982 3157
|
|
||||||
2 1 0 3 38 0 781 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2561 1847 2609 13
|
|
||||||
2 1 0 3 32 49 782 0 20 0.000 1 0 7 0 0 4
|
|
||||||
2561 1847 3982 3157 2609 13 2561 1847
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 2604 22 91 91 2604 22 2671 82
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 1932 297 91 91 1932 297 1999 357
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 1914 2522 91 91 1914 2522 1981 2582
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 35 2211 91 91 35 2211 102 2271
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 3595 4151 91 91 3595 4151 3662 4211
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 4018 3177 91 91 4018 3177 4085 3237
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 941 1650 91 91 941 1650 1008 1710
|
|
||||||
1 3 0 3 35 35 50 -1 20 0.000 1 0.0000 2562 1866 91 91 2562 1866 2629 1926
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
1891 2527 2554 1865
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
2604 15 2564 1830
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
2573 1855 4024 3197
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
944 1654 3994 3167
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
935 1650 2585 27
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
13 2213 941 1646
|
|
||||||
2 1 0 3 32 35 50 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
2525 1676 2674 2012
|
|
||||||
2 1 1 3 32 35 52 -1 -1 8.000 0 0 -1 0 0 2
|
|
||||||
950 1648 2547 1847
|
|
||||||
|
|
@ -1,130 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #b1b1b1
|
|
||||||
0 34 #343434
|
|
||||||
0 35 #2a2a2a
|
|
||||||
0 36 #5a5a5a
|
|
||||||
0 37 #ffffff
|
|
||||||
0 38 #ff0000
|
|
||||||
5 1 0 3 34 34 50 -1 -1 0.000 0 0 0 0 3146.229 3242.500 3452 3021 3452 3464 2898 3527
|
|
||||||
5 1 0 3 34 34 50 -1 -1 0.000 0 0 0 0 4035.984 1656.683 3833 1492 4196 1450 4042 1918
|
|
||||||
6 4169 1022 4528 1427
|
|
||||||
4 0 34 500 -1 -1 16 0.0000 4 195 135 4393 1427 2\001
|
|
||||||
4 0 34 500 -1 32 24 0.0000 4 390 225 4169 1322 b\001
|
|
||||||
-6
|
|
||||||
6 3571 3056 3915 3470
|
|
||||||
4 0 34 500 -1 32 24 0.0000 4 390 225 3571 3356 b\001
|
|
||||||
4 0 34 500 -1 -1 16 0.0000 4 195 135 3780 3470 3\001
|
|
||||||
-6
|
|
||||||
1 3 0 1 36 36 50 -1 20 0.000 1 0.0000 3541 1386 189 189 3541 1386 3730 1386
|
|
||||||
1 3 0 1 36 36 50 -1 20 0.000 1 0.0000 2645 3232 189 189 2645 3232 2835 3232
|
|
||||||
2 1 0 2 33 33 749 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
3556 1721 3529 721 3425 1045 3221 1030 3224 1307 3029 1286
|
|
||||||
2983 1499 2837 1520 2898 2841 3549 1720
|
|
||||||
2 1 0 2 33 33 750 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
3294 1542 3264 138 3143 604 2876 508 2852 1027 2479 913
|
|
||||||
2393 1350 2048 1230 2202 3088 3294 1542
|
|
||||||
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 9
|
|
||||||
3486 1862 1892 2155 1674 2365 1900 2612 1326 2917 1443 3373
|
|
||||||
915 3764 2458 3474 3486 1862
|
|
||||||
2 1 0 2 33 34 790 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
4144 4126 4072 3604 4485 3516 4419 2966 4956 2909 4754 2518
|
|
||||||
5077 2502 3973 1490 3008 3166 4133 4157
|
|
||||||
2 1 0 2 33 34 790 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
3910 4749 3934 4364 4376 4350 4259 3843 4716 3756 4580 3147
|
|
||||||
4862 3145 3486 1862 2458 3474 3939 4779
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
2760 3765 3743 2077
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
4165 1678 3218 3361
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
2973 2891 3999 1215
|
|
||||||
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
3301 1542 1935 1765 1957 2011 1559 2257 1638 2584 1189 2750
|
|
||||||
1276 3091 841 3345 2213 3090 3293 1538
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
2026 3117 1590 3198
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
1594 3198 1152 3278
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
1715 3615 1336 3674
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2079 3560 1708 3619
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
2774 3751 3172 4089
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
3167 4087 3442 4333
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
3610 3706 3885 3953
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3222 3347 3615 3704
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4165 2500 3740 2092
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
4159 2494 4435 2742
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
4530 1990 4806 2238
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
4175 1683 4536 1997
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3986 865 3988 1247
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
3965 564 3987 887
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
3265 354 3278 706
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
3298 1063 3285 653
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
2082 1685 2123 2095
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2145 2460 2118 2082
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
2641 1650 2221 1715
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3092 1578 2635 1650
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
2727 2011 2344 2074
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
3099 1950 2714 2011
|
|
||||||
2 1 0 2 35 34 510 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 179.06 179.06
|
|
||||||
2985 2850 2959 2407
|
|
||||||
2 1 1 2 35 34 510 -1 -1 3.000 0 0 -1 0 0 2
|
|
||||||
2953 2103 2969 2432
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
3303 1044 2159 2507
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
2046 3103 3172 1553
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 223.82 179.06
|
|
||||||
3141 1938 2053 3560
|
|
||||||
2 1 0 4 38 36 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2698 3332 2947 3425
|
|
||||||
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3136 2599 2689 2815 2629 3141
|
|
||||||
2 1 0 4 38 36 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2171 2940 2533 3185
|
|
||||||
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3033 2082 3197 2082 3499 1445
|
|
||||||
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3170 1162 3499 1360
|
|
||||||
2 1 0 4 38 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4015 1911 3534 1403
|
|
||||||
|
|
@ -1,86 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #b1b1b1
|
|
||||||
0 34 #343434
|
|
||||||
0 35 #5a5a5a
|
|
||||||
0 36 #ff0000
|
|
||||||
0 37 #ffffff
|
|
||||||
5 1 0 3 34 34 50 -1 -1 0.000 0 1 0 0 3227.055 2802.692 3509 2632 2985 2579 2921 2925
|
|
||||||
5 1 0 3 34 34 50 -1 -1 0.000 0 0 1 0 3507.636 2860.485 3535 2651 3718 2841 3601 3050
|
|
||||||
0 0 2.00 120.00 120.00
|
|
||||||
5 1 0 3 34 34 50 -1 -1 0.000 0 1 1 0 4002.298 2197.992 3823 2153 4020 2382 4184 2232
|
|
||||||
0 0 2.00 120.00 120.00
|
|
||||||
6 4001 2397 4344 2787
|
|
||||||
4 0 34 500 -1 -1 16 0.0000 4 195 135 4209 2768 0\001
|
|
||||||
4 0 34 500 -1 32 24 0.0000 4 390 225 4001 2697 b\001
|
|
||||||
-6
|
|
||||||
6 3742 2839 4078 3229
|
|
||||||
4 0 34 500 -1 -1 16 0.0000 4 195 135 3943 3196 1\001
|
|
||||||
4 0 34 500 -1 32 24 0.0000 4 390 225 3742 3139 b\001
|
|
||||||
-6
|
|
||||||
6 2486 2423 2843 2813
|
|
||||||
4 0 34 500 -1 -1 16 0.0000 4 195 135 2708 2780 3\001
|
|
||||||
4 0 34 500 -1 32 24 0.0000 4 390 225 2486 2723 b\001
|
|
||||||
-6
|
|
||||||
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 3581 2022 127 127 3581 2022 3708 2022
|
|
||||||
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 5310 3697 127 127 5310 3697 5437 3697
|
|
||||||
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 5148 4908 127 127 5148 4908 5275 4908
|
|
||||||
1 3 0 1 35 35 50 -1 20 0.000 1 0.0000 3184 3018 127 127 3184 3018 3311 3018
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
2834 3062 3291 2276
|
|
||||||
2 1 0 2 33 34 774 0 -1 0.000 1 0 7 0 0 9
|
|
||||||
3221 1951 2153 2148 2007 2289 2158 2454 1774 2658 1852 2964
|
|
||||||
1498 3226 2533 3032 3221 1951
|
|
||||||
2 1 0 2 33 37 790 0 -1 0.000 1 0 7 0 0 5
|
|
||||||
4937 5157 5101 3692 3218 1961 2530 3042 4937 5157
|
|
||||||
2 1 0 2 33 33 749 0 -1 0.000 1 0 7 0 0 10
|
|
||||||
3865 1773 3806 712 3702 1036 3498 1021 3501 1298 3306 1277
|
|
||||||
3260 1490 3114 1511 3175 2832 3862 1762
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
3936 1974 3384 2848
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
3370 2867 5444 4625
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
5471 4644 5586 3588
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
5596 3563 3959 1997
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
3309 2249 4951 3726
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
4793 4825 2851 3073
|
|
||||||
2 1 0 4 32 34 500 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 150.00 120.00
|
|
||||||
4963 3717 4798 4795
|
|
||||||
2 1 0 2 33 37 790 0 -1 0.000 1 0 7 0 0 5
|
|
||||||
5583 4959 5747 3494 3864 1763 3176 2844 5583 4959
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5490 4448 5587 4633 5192 4900
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4678 4710 4745 4921 5115 4916
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4945 3847 5305 3698
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5469 3421 5310 3698
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3671 2019 3871 2075
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3394 2306 3522 2039
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3265 3010 3455 2918
|
|
||||||
2 1 0 4 36 35 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2957 2840 3142 2984
|
|
||||||
|
|
@ -1,372 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 35 #a0a0a0
|
|
||||||
0 36 #0000ff
|
|
||||||
0 38 #000000
|
|
||||||
0 55 #5a5a5a
|
|
||||||
0 56 #ff0000
|
|
||||||
6 64 -2 4441 4360
|
|
||||||
2 1 0 2 38 0 417 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
79 1466 1267 134
|
|
||||||
2 1 0 2 38 0 826 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1875 13 766 1227
|
|
||||||
2 1 0 2 38 0 509 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1267 134 1875 13
|
|
||||||
2 1 0 2 38 0 734 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
766 1227 79 1466
|
|
||||||
2 1 0 2 38 0 314 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1230 373 196 1549
|
|
||||||
2 1 0 2 38 0 368 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
200 1554 1273 1620
|
|
||||||
2 1 0 2 38 0 238 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1266 1630 1232 386
|
|
||||||
2 1 0 2 35 0 369 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
656 819 648 1028
|
|
||||||
2 1 0 2 38 0 901 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
978 1271 1960 222
|
|
||||||
2 1 0 2 38 0 941 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2000 1337 978 1271
|
|
||||||
2 1 0 2 35 0 866 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1307 635 1513 693
|
|
||||||
2 1 0 2 38 0 844 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1967 229 2000 1349
|
|
||||||
2 1 0 2 36 0 531 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2861 1863 1889 1439
|
|
||||||
2 1 0 2 36 0 252 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2598 1305 1571 868
|
|
||||||
2 1 0 2 36 0 692 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3086 1064 2147 675
|
|
||||||
2 1 0 2 36 0 435 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2850 478 1875 134
|
|
||||||
2 1 0 2 35 0 275 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1244 1008 1571 868
|
|
||||||
2 1 0 2 35 0 792 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1994 763 2147 675
|
|
||||||
2 1 0 2 35 0 505 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1587 70 1878 130
|
|
||||||
2 1 0 2 38 0 311 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1551 203 1591 1575
|
|
||||||
2 1 0 2 38 0 573 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1591 1575 2159 1316
|
|
||||||
2 1 0 2 38 0 739 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2159 1316 2134 84
|
|
||||||
2 1 0 2 38 0 478 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2143 80 1560 203
|
|
||||||
2 1 0 2 35 0 752 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
439 1340 452 1613
|
|
||||||
2 1 0 2 35 0 607 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1889 1439 1633 1703
|
|
||||||
2 1 0 2 35 0 914 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1532 1307 1336 1527
|
|
||||||
2 1 0 2 35 0 430 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
742 1589 699 1801
|
|
||||||
2 1 0 2 38 0 752 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
94 1752 777 1488
|
|
||||||
2 1 0 2 38 0 885 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
777 1488 1911 1569
|
|
||||||
2 1 0 2 38 0 489 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1324 1851 94 1752
|
|
||||||
2 1 0 2 38 0 621 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1911 1569 1324 1851
|
|
||||||
2 1 0 2 35 0 676 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3821 2309 3816 2631
|
|
||||||
2 1 0 2 35 0 621 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3895 1591 3824 1697
|
|
||||||
2 1 0 2 35 0 682 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3321 1233 3086 1064
|
|
||||||
2 1 0 2 35 0 368 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2850 478 3082 674
|
|
||||||
2 1 0 2 35 0 133 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2598 1305 2689 1644
|
|
||||||
2 1 0 2 35 0 478 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2861 1863 3088 2352
|
|
||||||
2 1 0 2 35 0 55 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3410 2014 3224 2125
|
|
||||||
2 1 0 2 35 0 354 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
4175 3025 4172 3316
|
|
||||||
2 1 0 2 35 0 125 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3225 2864 3464 2992
|
|
||||||
2 1 0 2 38 0 65 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2701 2400 3814 3395
|
|
||||||
2 1 0 2 38 0 183 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
4028 3505 2918 2514
|
|
||||||
2 1 0 2 38 0 7 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3814 3395 2697 992
|
|
||||||
2 1 0 2 38 0 72 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2689 992 2720 2421
|
|
||||||
2 1 0 2 38 0 465 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2914 2506 3304 2181
|
|
||||||
2 1 0 2 38 0 192 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2607 2026 2590 566
|
|
||||||
2 1 0 2 38 0 468 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3089 1716 2607 2026
|
|
||||||
2 1 0 2 38 0 643 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3084 398 3089 1716
|
|
||||||
2 1 0 2 38 0 368 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2590 566 3084 398
|
|
||||||
2 1 0 2 38 0 343 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3423 530 2833 775
|
|
||||||
2 1 0 2 38 0 103 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2833 775 3988 3258
|
|
||||||
2 1 0 2 38 0 721 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3321 1871 3319 718
|
|
||||||
2 1 0 2 38 0 715 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
4335 2757 3321 1871
|
|
||||||
2 1 0 2 38 0 635 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3304 2181 4340 3093
|
|
||||||
2 1 0 2 38 0 330 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3988 3258 4422 2716
|
|
||||||
2 1 0 2 38 0 353 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
4340 3093 4031 3498
|
|
||||||
2 1 0 2 38 0 571 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
4426 2716 3386 542
|
|
||||||
2 1 0 2 38 0 672 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3331 714 4335 2757
|
|
||||||
2 1 0 2 36 0 884 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1350 1532 1438 2641
|
|
||||||
2 1 0 2 36 0 629 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1607 1708 1763 2875
|
|
||||||
2 1 0 2 36 0 488 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
710 1794 843 3004
|
|
||||||
2 1 0 2 36 0 759 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
462 1617 567 2755
|
|
||||||
2 1 0 2 36 0 526 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3083 2362 2247 3100
|
|
||||||
2 1 0 2 36 0 682 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3809 2629 2978 3353
|
|
||||||
2 1 0 2 36 0 240 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3465 2997 2523 3811
|
|
||||||
2 1 0 2 36 0 417 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
4166 3307 3290 4053
|
|
||||||
2 1 0 2 35 0 485 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
3290 4053 3006 4018
|
|
||||||
2 1 0 2 35 0 261 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2523 3811 2135 3823
|
|
||||||
2 1 0 2 35 0 601 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2247 3100 1763 2875
|
|
||||||
2 1 0 2 35 0 747 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
769 2945 567 2755
|
|
||||||
2 1 0 2 35 0 423 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
938 3242 843 3004
|
|
||||||
2 1 0 2 35 0 855 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2212 3169 2109 3259
|
|
||||||
2 1 0 2 38 0 361 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1592 3315 305 3172
|
|
||||||
2 1 0 2 38 0 223 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2694 4345 1592 3315
|
|
||||||
2 1 0 2 38 0 300 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
305 3172 2694 4345
|
|
||||||
2 1 0 2 38 0 402 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2779 4284 439 3140
|
|
||||||
2 1 0 2 38 0 727 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
439 3140 1067 2768
|
|
||||||
2 1 0 2 38 0 484 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
229 2940 1477 3072
|
|
||||||
2 1 0 2 38 0 814 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1067 2768 3212 3779
|
|
||||||
2 1 0 2 38 0 748 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
874 2587 229 2940
|
|
||||||
2 1 0 2 38 0 617 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1477 3072 2022 2695
|
|
||||||
2 1 0 2 38 0 458 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3077 4324 3484 3810
|
|
||||||
2 1 0 2 38 0 296 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1982 3312 3077 4324
|
|
||||||
2 1 0 2 38 0 489 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3212 3779 2779 4284
|
|
||||||
2 1 0 2 35 0 355 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1574 3695 1462 3740
|
|
||||||
2 1 0 2 35 0 909 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
1805 2782 1438 2641
|
|
||||||
2 1 0 2 35 0 781 0 -1 0.000 1 0 7 0 0 2
|
|
||||||
2752 3238 2978 3353
|
|
||||||
2 1 0 2 38 0 881 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2016 2704 868 2595
|
|
||||||
2 1 0 2 38 0 890 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3145 3622 1322 2757
|
|
||||||
2 1 0 2 38 0 727 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
3484 3810 2484 2907
|
|
||||||
2 1 0 2 38 0 565 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2484 2907 1982 3312
|
|
||||||
2 1 0 2 38 0 833 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
2241 2765 3163 3618
|
|
||||||
2 1 0 2 38 0 936 0 -1 0.000 1 0 7 0 1 2
|
|
||||||
0 0 2.00 139.76 139.76
|
|
||||||
1303 2751 2315 2832
|
|
||||||
-6
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 3944 3738 148 148 3944 3738 4092 3738
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 3414 4418 148 148 3414 4418 3562 4418
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 769 2053 148 148 769 2053 917 2053
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 150 2480 148 148 150 2480 298 2480
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2332 1869 148 148 2332 1869 2480 1869
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 1931 2304 148 148 1931 2304 2079 2304
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2339 511 148 148 2339 511 2487 511
|
|
||||||
1 3 0 1 55 55 50 -1 20 0.000 1 0.0000 2707 129 148 148 2707 129 2855 129
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3474 713 3467 380 2720 74
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3331 944 3148 373 2734 95
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2992 428 2700 122
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1700 33 2183 -42 2624 88
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2135 176 2597 122
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1782 408 2216 237 2590 169
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2591 756 2373 525
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2926 756 2373 530
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2789 1186 2694 735 2400 551
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1629 176 1861 477 2332 558
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1186 217 1799 551 2257 572
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1246 578 1792 654 2257 585
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1990 1241 2236 1773
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2093 1336 2325 1787
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1697 1548 1759 1800 2250 1828
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1431 1773 1902 2244
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1561 1391 1486 1664 1923 2189
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1124 1589 1840 2271
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
373 1766 141 2387
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
305 1425 31 1711 86 2401
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
257 1391 121 2360
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
653 1506 708 2033
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
830 1159 735 1991
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1103 1282 797 1943
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
353 2858 217 2510
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
537 3186 203 3063 196 2551
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
530 3207 114 3118 114 2572
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
988 2599 830 2060
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
953 2832 797 2101
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1486 2838 1151 2715 871 2073
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1943 2756 2175 2722 2263 1910
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2215 2825 2338 1968
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2544 2961 2375 1956
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4208 2493 3950 3714
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4365 2813 4447 3093 4045 3707
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4250 3025 3983 3667
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3124 3727 3969 3803
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3007 3482 3840 3701
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3389 3912 3922 3830
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2816 4219 3025 4405 3389 4451
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2993 4219 3083 4158 3382 4410
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2489 4254 2557 4417 3329 4526
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3643 3263 3389 4284
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4095 3414 3718 3500 3472 4393
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3951 3133 3677 3441 3430 4353
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2108 3223 1971 2353
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1799 3490 1923 2401
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1383 3058 1882 2394
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2724 2311 2006 2256
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2650 1997 2629 2175 1999 2216
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2999 2579 2670 2579 1992 2311
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3088 1579 2828 1579 2369 1783
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 4
|
|
||||||
3437 1962 3061 2078 2793 1722 2410 1845
|
|
||||||
2 1 0 2 56 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3211 2263 2533 2092 2389 1949
|
|
||||||
|
|
@ -1,46 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ffffff
|
|
||||||
0 35 #505050
|
|
||||||
0 37 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 237 2526 91 91 237 2526 328 2526
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 525 548 91 91 525 548 616 548
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 2431 666 91 91 2431 666 2522 666
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 2575 2094 91 91 2575 2094 2666 2094
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 3165 3699 91 91 3165 3699 3256 3699
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 4239 2225 91 91 4239 2225 4330 2225
|
|
||||||
1 3 0 3 33 33 45 -1 20 0.000 1 0.0000 3656 797 91 91 3656 797 3747 797
|
|
||||||
2 1 0 5 37 34 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2575 2055 2438 679
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
283 2526 2536 2081
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
558 548 2418 666
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2471 679 3656 771
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3676 804 4246 2173
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4278 2212 3237 3614
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
519 555 237 2441
|
|
||||||
2 1 0 5 37 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
270 2579 3132 3699
|
|
||||||
2 1 0 1 32 49 500 0 20 0.000 1 0 7 0 0 4
|
|
||||||
2595 2081 198 2540 3185 3725 2575 2094
|
|
||||||
2 1 0 1 32 34 500 0 20 0.000 1 0 7 0 0 6
|
|
||||||
3172 3706 4252 2225 3669 778 2438 673 2589 2094 3178 3666
|
|
||||||
2 1 0 5 37 34 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3172 3666 2595 2140
|
|
||||||
2 1 0 1 35 35 500 0 20 0.000 1 0 7 0 0 5
|
|
||||||
2431 673 2575 2075 217 2540 519 542 2425 673
|
|
||||||
|
|
@ -1,147 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #565656
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ff0000
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1540 2918 77 77 1540 2918 1618 2918
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 158 1854 77 77 158 1854 237 1854
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 653 277 77 77 653 277 730 277
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 3144 156 77 77 3144 156 3222 156
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 2781 1456 77 77 2781 1456 2860 1456
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 3144 2445 77 77 3144 2445 3222 2445
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 426 3142 77 77 426 3142 504 3142
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 362 4023 77 77 362 4023 439 4023
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1454 4194 77 77 1454 4194 1532 4194
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 2853 3729 77 77 2853 3729 2931 3729
|
|
||||||
1 3 0 1 32 32 60 -1 20 0.000 1 0.0000 1235 1626 77 77 1235 1626 1311 1626
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1065 1738 1069 1649 1218 1620
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1432 1540 1425 1626 1274 1598
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1352 1812 1274 1819 1274 1668
|
|
||||||
2 1 0 4 34 32 65 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
734 507 786 374 712 277
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
3198 357 3081 320 3103 183
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2969 1552 2847 1562 2797 1482
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2633 1557 2627 1461 2728 1440
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2735 1273 2819 1316 2797 1396
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2969 2231 3081 2226 3133 2418
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2920 2534 2942 2434 3103 2434
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
3379 2310 3347 2412 3187 2429
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2839 3437 2931 3571 2868 3709
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
2573 3689 2665 3625 2830 3716
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1625 4056 1625 4164 1464 4207
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1274 3020 1289 2918 1512 2908
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1321 2689 1443 2764 1512 2877
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1693 2792 1705 2859 1555 2881
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
1812 3041 1729 2924 1588 2924
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
579 2985 595 3076 428 3103
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
551 3299 449 3299 417 3194
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
297 2019 204 2019 141 1859
|
|
||||||
2 1 0 4 34 32 65 -1 -1 4.000 0 0 -1 0 0 3
|
|
||||||
590 4004 529 4078 387 4046
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1450 4069 2712 3778
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
2712 3778 1352 3002
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
3002 2517 1742 3002
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1742 3002 2808 3584
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
2808 3584 3002 2517
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
3294 2324 3869 2170
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
2905 1449 3294 2324
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
3002 2324 2712 1547
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1546 2808 3002 2324
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
2712 1547 1352 1741
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1352 1547 2712 1353
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
2712 1353 3002 188
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
3196 286 2905 1449
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
673 383 1352 1547
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1159 1741 286 1934
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1352 2808 1159 1741
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1352 1741 1546 2808
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
480 3002 1352 2808
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
286 1934 480 3002
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
1352 3002 577 3196
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
577 3196 480 3971
|
|
||||||
2 1 0 3 0 7 50 -1 -1 6.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 258.68 258.68
|
|
||||||
480 3971 1450 4069
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
1991 1325 2101 1819
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
2737 704 3222 819
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
2761 2028 3198 1786
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
2232 2465 2435 2852
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
1139 2333 1551 2202
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
837 2827 997 3239
|
|
||||||
2 1 0 2 33 7 56 -1 -1 4.000 0 0 -1 0 0 2
|
|
||||||
1926 3509 2314 3190
|
|
||||||
|
Before Width: | Height: | Size: 18 KiB |
|
Before Width: | Height: | Size: 23 KiB |
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 16 KiB |
|
Before Width: | Height: | Size: 26 KiB |
|
Before Width: | Height: | Size: 25 KiB |
|
Before Width: | Height: | Size: 44 KiB |
|
Before Width: | Height: | Size: 55 KiB |
|
Before Width: | Height: | Size: 14 KiB |
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 20 KiB |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 7.8 KiB |
|
Before Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 77 KiB |
|
|
@ -1,865 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ff0000
|
|
||||||
0 35 #5050ff
|
|
||||||
0 36 #ff5050
|
|
||||||
0 37 #000000
|
|
||||||
0 38 #000000
|
|
||||||
0 39 #000000
|
|
||||||
0 40 #000000
|
|
||||||
0 41 #000000
|
|
||||||
0 42 #000000
|
|
||||||
0 43 #000000
|
|
||||||
0 44 #000000
|
|
||||||
0 45 #000000
|
|
||||||
0 46 #000000
|
|
||||||
0 47 #000000
|
|
||||||
0 48 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
0 50 #000000
|
|
||||||
0 51 #000000
|
|
||||||
0 52 #a0a0a0
|
|
||||||
0 53 #535353
|
|
||||||
0 54 #9f9f9f
|
|
||||||
0 55 #dd9d93
|
|
||||||
0 56 #f1ece0
|
|
||||||
0 57 #c3c3c3
|
|
||||||
0 58 #e2c8a8
|
|
||||||
0 59 #e1e1e1
|
|
||||||
0 60 #d2d2d2
|
|
||||||
0 61 #ededed
|
|
||||||
0 62 #da7a1a
|
|
||||||
0 63 #f1e41a
|
|
||||||
0 64 #887dc2
|
|
||||||
0 65 #b0a193
|
|
||||||
0 66 #837cdd
|
|
||||||
0 67 #d6d6d6
|
|
||||||
0 68 #8c8ca5
|
|
||||||
0 69 #4a4a4a
|
|
||||||
0 70 #8c6b6b
|
|
||||||
0 71 #5a5a5a
|
|
||||||
0 72 #636363
|
|
||||||
0 73 #8e8e8e
|
|
||||||
0 74 #b79b73
|
|
||||||
0 75 #4193ff
|
|
||||||
0 76 #bf703b
|
|
||||||
0 77 #db7700
|
|
||||||
0 78 #dab800
|
|
||||||
0 79 #006400
|
|
||||||
0 80 #5a6b3b
|
|
||||||
0 81 #d3d3d3
|
|
||||||
0 82 #aaaaaa
|
|
||||||
0 83 #8e8ea4
|
|
||||||
0 84 #f3b95d
|
|
||||||
0 85 #89996b
|
|
||||||
0 86 #646464
|
|
||||||
0 87 #b7e6ff
|
|
||||||
0 88 #86c0ec
|
|
||||||
0 89 #bdbdbd
|
|
||||||
0 90 #d39552
|
|
||||||
0 91 #98d2fe
|
|
||||||
0 92 #616161
|
|
||||||
0 93 #aeb2ae
|
|
||||||
0 94 #717171
|
|
||||||
0 95 #ff9a00
|
|
||||||
0 96 #8c9c6b
|
|
||||||
0 97 #f76b00
|
|
||||||
0 98 #5a6b39
|
|
||||||
0 99 #8c9c6b
|
|
||||||
0 100 #8c9c7b
|
|
||||||
0 101 #184a18
|
|
||||||
0 102 #adadad
|
|
||||||
0 103 #f7bd5a
|
|
||||||
0 104 #636b9c
|
|
||||||
0 105 #f7f7f7
|
|
||||||
0 106 #de0000
|
|
||||||
0 107 #adadad
|
|
||||||
0 108 #f7bd5a
|
|
||||||
0 109 #adadad
|
|
||||||
0 110 #f7bd5a
|
|
||||||
0 111 #636b9c
|
|
||||||
0 112 #526b29
|
|
||||||
0 113 #949494
|
|
||||||
0 114 #006300
|
|
||||||
0 115 #00634a
|
|
||||||
0 116 #7b844a
|
|
||||||
0 117 #e7bd7b
|
|
||||||
0 118 #a5b5c6
|
|
||||||
0 119 #6b6b94
|
|
||||||
0 120 #846b6b
|
|
||||||
0 121 #529c4a
|
|
||||||
0 122 #d6e7e7
|
|
||||||
0 123 #526363
|
|
||||||
0 124 #186b4a
|
|
||||||
0 125 #9ca5b5
|
|
||||||
0 126 #ff9400
|
|
||||||
0 127 #ff9400
|
|
||||||
0 128 #00634a
|
|
||||||
0 129 #7b844a
|
|
||||||
0 130 #63737b
|
|
||||||
0 131 #e7bd7b
|
|
||||||
0 132 #184a18
|
|
||||||
0 133 #f7bd5a
|
|
||||||
0 134 #f73829
|
|
||||||
0 135 #ffff52
|
|
||||||
0 136 #52794a
|
|
||||||
0 137 #639a5a
|
|
||||||
0 138 #c66142
|
|
||||||
0 139 #e76942
|
|
||||||
0 140 #ff7952
|
|
||||||
0 141 #dedede
|
|
||||||
0 142 #f3eed3
|
|
||||||
0 143 #f5ae5d
|
|
||||||
0 144 #95ce99
|
|
||||||
0 145 #b5157d
|
|
||||||
0 146 #eeeeee
|
|
||||||
0 147 #848484
|
|
||||||
0 148 #7b7b7b
|
|
||||||
0 149 #005a00
|
|
||||||
0 150 #e77373
|
|
||||||
0 151 #ffcb31
|
|
||||||
0 152 #29794a
|
|
||||||
0 153 #de2821
|
|
||||||
0 154 #2159c6
|
|
||||||
0 155 #f8f8f8
|
|
||||||
0 156 #e6e6e6
|
|
||||||
0 157 #21845a
|
|
||||||
0 158 #c2c2c2
|
|
||||||
0 159 #6e6e6e
|
|
||||||
0 160 #444444
|
|
||||||
0 161 #8e8f8e
|
|
||||||
0 162 #aeaeae
|
|
||||||
0 163 #333333
|
|
||||||
0 164 #949395
|
|
||||||
0 165 #747075
|
|
||||||
0 166 #555555
|
|
||||||
0 167 #b3b3b3
|
|
||||||
0 168 #6d6d6d
|
|
||||||
0 169 #454545
|
|
||||||
0 170 #9c0000
|
|
||||||
0 171 #8c8c8c
|
|
||||||
0 172 #424242
|
|
||||||
0 173 #8c8c8c
|
|
||||||
0 174 #424242
|
|
||||||
0 175 #8c8c8c
|
|
||||||
0 176 #424242
|
|
||||||
0 177 #8c8c8c
|
|
||||||
0 178 #424242
|
|
||||||
0 179 #8c8c8c
|
|
||||||
0 180 #424242
|
|
||||||
0 181 #8c8c8c
|
|
||||||
0 182 #424242
|
|
||||||
0 183 #575757
|
|
||||||
0 184 #5e5e5e
|
|
||||||
0 185 #787878
|
|
||||||
5 1 0 3 0 7 50 -1 -1 0.000 0 0 1 0 5499.845 6202.546 3872 484 5546 257 7275 528
|
|
||||||
2 0 1.00 210.00 210.00
|
|
||||||
5 1 0 3 0 7 50 -1 -1 0.000 0 0 1 0 5558.766 -2165.193 7505 3338 5883 3663 4329 3541
|
|
||||||
2 0 1.00 210.00 210.00
|
|
||||||
6 5378 520 10598 3747
|
|
||||||
6 5470 520 8385 3199
|
|
||||||
6 5596 520 8217 1017
|
|
||||||
2 1 0 2 32 0 462 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7246 984 5611 812
|
|
||||||
2 1 0 2 32 0 725 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5611 812 6717 569
|
|
||||||
2 1 0 2 32 0 799 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6717 569 8202 695
|
|
||||||
2 1 0 2 32 0 537 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8202 695 7246 984
|
|
||||||
-6
|
|
||||||
6 5522 640 6741 2719
|
|
||||||
2 1 0 2 32 0 857 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5671 2704 6705 2232
|
|
||||||
2 1 0 2 32 0 943 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6705 2232 6645 655
|
|
||||||
2 1 0 2 32 0 741 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6645 655 5537 910
|
|
||||||
2 1 0 2 32 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5537 910 5671 2704
|
|
||||||
-6
|
|
||||||
6 5470 921 7312 3101
|
|
||||||
2 1 0 2 32 0 627 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5683 2751 5547 936
|
|
||||||
2 1 0 2 32 0 599 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7227 3086 5683 2751
|
|
||||||
2 1 0 2 32 0 421 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7186 1120 7227 3086
|
|
||||||
2 1 0 2 32 0 449 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5547 936 7186 1120
|
|
||||||
-6
|
|
||||||
6 6730 575 8333 2523
|
|
||||||
2 1 0 2 32 0 821 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8246 781 6773 649
|
|
||||||
2 1 0 2 32 0 801 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8222 2466 8246 781
|
|
||||||
2 1 0 2 32 0 929 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6827 2222 8222 2466
|
|
||||||
2 1 0 2 32 0 949 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6773 649 6827 2222
|
|
||||||
-6
|
|
||||||
6 5741 2271 8193 3199
|
|
||||||
2 1 0 2 32 0 855 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
6780 2328 5756 2814
|
|
||||||
2 1 0 2 32 0 920 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8178 2581 6780 2328
|
|
||||||
2 1 0 2 32 0 691 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7287 3151 8178 2581
|
|
||||||
2 1 0 2 32 0 626 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
5756 2814 7287 3151
|
|
||||||
-6
|
|
||||||
6 7349 1922 8293 3167
|
|
||||||
2 1 0 4 35 0 678 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8263 2566 7379 3137
|
|
||||||
2 1 0 4 35 0 732 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7855 1952 8263 2566
|
|
||||||
2 1 0 4 35 0 571 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7379 3137 7855 1952
|
|
||||||
-6
|
|
||||||
6 7220 1094 7851 3124
|
|
||||||
2 1 0 4 35 0 416 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7340 3094 7307 1124
|
|
||||||
2 1 0 4 35 0 470 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7307 1124 7821 1901
|
|
||||||
2 1 0 4 35 0 552 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7821 1901 7340 3094
|
|
||||||
-6
|
|
||||||
6 7317 715 8283 1829
|
|
||||||
2 1 0 4 35 0 528 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7347 1033 8245 752
|
|
||||||
2 1 0 4 35 0 479 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7845 1795 7347 1033
|
|
||||||
2 1 0 4 35 0 663 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8253 745 7834 1799
|
|
||||||
-6
|
|
||||||
6 7859 763 8385 2519
|
|
||||||
2 1 0 4 36 0 680 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7889 1868 8320 793
|
|
||||||
2 1 0 4 35 0 738 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8292 2489 7889 1868
|
|
||||||
2 1 0 4 35 0 787 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8320 793 8292 2489
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 7415 697 10564 3703
|
|
||||||
6 7415 1163 8000 3079
|
|
||||||
2 1 0 4 35 0 390 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7524 1215 7504 3026
|
|
||||||
2 1 0 4 35 0 445 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7970 1919 7510 1193
|
|
||||||
2 1 0 4 35 0 529 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7503 3049 7962 1894
|
|
||||||
-6
|
|
||||||
6 7530 736 8429 1823
|
|
||||||
2 1 0 4 35 0 454 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7560 1056 8019 1793
|
|
||||||
2 1 0 4 35 0 504 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8392 783 7560 1056
|
|
||||||
2 1 0 4 35 0 641 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8004 1788 8399 766
|
|
||||||
-6
|
|
||||||
6 7548 2014 8434 3211
|
|
||||||
2 1 0 4 35 0 548 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8024 2044 7578 3181
|
|
||||||
2 1 0 4 35 0 657 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7578 3181 8388 2632
|
|
||||||
2 1 0 4 35 0 711 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8404 2663 8012 2046
|
|
||||||
-6
|
|
||||||
6 9646 1490 10104 3630
|
|
||||||
2 1 0 4 35 0 104 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9680 3600 9817 1528
|
|
||||||
2 1 0 4 36 0 276 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10065 2322 9680 3600
|
|
||||||
2 1 0 4 35 0 172 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9805 1520 10074 2353
|
|
||||||
-6
|
|
||||||
6 9723 2401 10327 3631
|
|
||||||
2 1 0 4 35 0 432 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10283 2977 9755 3599
|
|
||||||
2 1 0 4 35 0 299 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9753 3601 10108 2438
|
|
||||||
2 1 0 4 35 0 498 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10113 2431 10295 3015
|
|
||||||
-6
|
|
||||||
6 10151 1070 10564 2879
|
|
||||||
2 1 0 4 35 0 567 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10531 1120 10347 2849
|
|
||||||
2 1 0 4 35 0 507 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10347 2849 10203 2227
|
|
||||||
2 1 0 4 35 0 435 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10181 2264 10531 1100
|
|
||||||
-6
|
|
||||||
6 9829 908 10495 2175
|
|
||||||
2 1 0 4 35 0 243 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9862 1302 10451 938
|
|
||||||
2 1 0 4 35 0 414 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10465 938 10126 2145
|
|
||||||
2 1 0 4 35 0 182 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10126 2145 9862 1302
|
|
||||||
-6
|
|
||||||
6 7515 1152 9700 3605
|
|
||||||
2 1 0 2 32 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9548 3590 7618 3171
|
|
||||||
2 1 0 2 32 0 110 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9685 1401 9548 3590
|
|
||||||
2 1 0 2 32 0 145 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7604 1167 9685 1401
|
|
||||||
2 1 0 2 32 0 369 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7618 3171 7604 1167
|
|
||||||
-6
|
|
||||||
6 7648 697 10408 1260
|
|
||||||
2 1 0 2 32 0 581 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8575 726 10393 881
|
|
||||||
2 1 0 2 32 0 489 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7663 1027 8575 726
|
|
||||||
2 1 0 2 32 0 162 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9737 1245 7663 1027
|
|
||||||
2 1 0 2 32 0 254 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10393 881 9737 1245
|
|
||||||
-6
|
|
||||||
6 8484 740 10486 2878
|
|
||||||
2 1 0 2 32 0 764 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8615 814 8570 2526
|
|
||||||
2 1 0 2 32 0 739 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8570 2526 10255 2821
|
|
||||||
2 1 0 2 32 0 584 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10255 2821 10413 974
|
|
||||||
2 1 0 2 32 0 609 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10413 974 8615 814
|
|
||||||
-6
|
|
||||||
6 8052 780 8594 2550
|
|
||||||
2 1 0 4 35 0 718 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8082 1896 8470 2520
|
|
||||||
2 1 0 4 35 0 659 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8509 810 8082 1896
|
|
||||||
2 1 0 4 35 0 767 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8470 2520 8509 810
|
|
||||||
-6
|
|
||||||
6 7659 2587 10232 3703
|
|
||||||
2 1 0 2 32 0 447 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
9583 3655 10217 2950
|
|
||||||
2 1 0 2 32 0 367 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
7674 3236 9583 3655
|
|
||||||
2 1 0 2 32 0 649 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
8527 2644 7674 3236
|
|
||||||
2 1 0 2 32 0 729 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
10217 2950 8527 2644
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 8324 670 60 60 8324 670 8384 670
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10538 845 60 60 10538 845 10598 845
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 9757 1322 60 60 9757 1322 9817 1322
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7468 1072 60 60 7468 1072 7528 1072
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7894 1872 60 60 7894 1872 7954 1872
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 6724 639 60 60 6724 639 6784 639
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 5438 871 60 60 5438 871 5498 871
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 6773 2253 60 60 6773 2253 6833 2253
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 5603 2803 60 60 5603 2803 5663 2803
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 8313 2572 60 60 8313 2572 8373 2572
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 7407 3203 60 60 7407 3203 7467 3203
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10231 2183 60 60 10231 2183 10291 2183
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 10440 2895 60 60 10440 2895 10500 2895
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 9652 3687 60 60 9652 3687 9712 3687
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
6552 675 6573 628 6741 618
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6769 758 6710 637
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6814 576 6755 644
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7201 975 7227 1022 7427 1074
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7538 972 7491 1043
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7401 1267 7451 1104
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7595 1121 7481 1067
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7524 1236 7463 1102
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7720 1182 7635 1083 7496 1064
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7781 989 7470 1050
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7191 1206 7451 1081
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8078 764 8297 679
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8618 729 8543 663 8368 660
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8382 776 8342 691
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8229 793 8321 708
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8319 943 8352 851 8333 721
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8477 891 8420 735 8352 686
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8623 884 8512 695 8342 679
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8076 730 8076 662 8316 650
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7802 1728 7819 1816 7866 1851
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7795 1945 7875 1901
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7887 1997 7892 1903
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7998 1870 7925 1865
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8080 1776 7927 1842
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8104 1941 7937 1896
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8005 2108 7904 1898
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7904 1791 7859 1801 7878 1839
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7161 3069 7156 3164 7371 3223
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7333 3041 7309 3091 7382 3173
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7301 3142 7382 3215
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7753 3256 7637 3282 7413 3223
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7394 3068 7413 3176
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7576 3047 7562 3162 7430 3179
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7642 3136 7616 3219 7439 3218
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7618 3133 7569 3187 7437 3196
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6710 2166 6764 2227
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6927 2236 6790 2251
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6705 2368 6743 2281
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5681 2708 5617 2795
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5832 2831 5747 2859 5627 2828
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5721 2682 5733 2712 5636 2804
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5539 929 5412 873
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5606 943 5547 875 5452 861
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5756 776 5518 797 5464 835
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10308 929 10530 856
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10355 967 10534 861
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
10490 984 10530 955 10534 873
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
10506 1166 10579 1109 10556 866
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9643 1239 9718 1298
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9683 1451 9714 1442 9751 1338
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9900 1272 9829 1265 9773 1298
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9850 1451 9843 1359 9770 1319
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10261 2731 10442 2859
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
10310 2710 10442 2760 10435 2873
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
10294 2993 10369 2998 10417 2939
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
10134 2944 10216 2915 10438 2906
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9631 3599 9655 3661
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9445 3564 9487 3722 9631 3698
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9683 3507 9643 3547 9678 3656
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9768 3535 9690 3653
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10077 2307 10223 2186
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10176 2443 10218 2222
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10171 2096 10244 2179
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10100 2044 10190 2179
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8124 2568 8167 2546 8296 2554
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8183 2611 8285 2609
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8389 2519 8336 2545
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8423 2716 8330 2590
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8474 2469 8527 2540 8351 2571
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8632 2538 8497 2603 8343 2591
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8220 2432 8312 2576
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8281 2469 8318 2559
|
|
||||||
-6
|
|
||||||
6 -526 -70 4948 3854
|
|
||||||
6 1949 418 4885 3770
|
|
||||||
6 1949 482 2794 3160
|
|
||||||
2 1 0 4 35 0 390 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2033 1470 2040 3130
|
|
||||||
2 1 0 4 35 0 424 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2712 512 2033 1470
|
|
||||||
2 1 0 4 35 0 746 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2649 2059 2712 512
|
|
||||||
2 1 0 4 35 0 712 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2040 3130 2649 2059
|
|
||||||
-6
|
|
||||||
6 4169 847 4885 3704
|
|
||||||
2 1 0 4 36 0 206 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4205 3674 4504 1970
|
|
||||||
2 1 0 4 35 0 610 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4855 877 4558 2472
|
|
||||||
2 1 0 4 35 0 245 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4504 1970 4855 877
|
|
||||||
2 1 0 4 35 0 571 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4558 2472 4205 3674
|
|
||||||
-6
|
|
||||||
6 2127 2106 4477 3770
|
|
||||||
2 1 0 2 32 0 822 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4444 2528 2736 2156
|
|
||||||
2 1 0 2 32 0 594 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4076 3728 4444 2528
|
|
||||||
2 1 0 2 32 0 492 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2142 3236 4076 3728
|
|
||||||
2 1 0 2 32 0 719 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2736 2156 2142 3236
|
|
||||||
-6
|
|
||||||
6 2014 1541 4362 3738
|
|
||||||
2 1 0 2 32 0 190 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4347 2015 4066 3723
|
|
||||||
2 1 0 2 32 0 95 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2105 1556 4347 2015
|
|
||||||
2 1 0 2 32 0 358 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2104 3224 2105 1556
|
|
||||||
2 1 0 2 32 0 453 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4066 3723 2104 3224
|
|
||||||
-6
|
|
||||||
6 2687 425 4816 2443
|
|
||||||
2 1 0 2 32 0 636 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4475 2393 4759 807
|
|
||||||
2 1 0 2 32 0 567 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4759 807 2844 484
|
|
||||||
2 1 0 2 32 0 757 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2844 484 2768 2027
|
|
||||||
2 1 0 2 32 0 825 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2768 2027 4475 2393
|
|
||||||
-6
|
|
||||||
6 2134 418 4774 1849
|
|
||||||
2 1 0 2 32 0 531 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2818 433 4759 758
|
|
||||||
2 1 0 2 32 0 397 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2149 1388 2818 433
|
|
||||||
2 1 0 2 32 0 100 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4390 1834 2149 1388
|
|
||||||
2 1 0 2 32 0 234 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
4759 758 4390 1834
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 -363 62 2543 3171
|
|
||||||
6 -358 139 766 2612
|
|
||||||
2 1 0 2 32 0 851 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
-77 2597 751 1650
|
|
||||||
2 1 0 2 32 0 568 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
-343 989 -77 2597
|
|
||||||
2 1 0 2 32 0 598 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
608 154 -343 989
|
|
||||||
2 1 0 2 32 0 881 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
751 1650 608 154
|
|
||||||
-6
|
|
||||||
6 -275 62 2407 1306
|
|
||||||
2 1 0 2 32 0 691 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
689 77 2392 362
|
|
||||||
2 1 0 2 32 0 433 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2392 362 1663 1291
|
|
||||||
2 1 0 2 32 0 317 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1663 1291 -260 908
|
|
||||||
2 1 0 2 32 0 575 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
-260 908 689 77
|
|
||||||
-6
|
|
||||||
6 10 1692 2374 3171
|
|
||||||
2 1 0 2 32 0 747 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1718 3129 2359 2073
|
|
||||||
2 1 0 2 32 0 656 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
25 2698 1718 3129
|
|
||||||
2 1 0 2 32 0 857 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
839 1742 25 2698
|
|
||||||
2 1 0 2 32 0 948 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2359 2073 839 1742
|
|
||||||
-6
|
|
||||||
6 -363 1049 1757 3130
|
|
||||||
2 1 0 2 32 0 395 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1619 1457 1674 3115
|
|
||||||
2 1 0 2 32 0 312 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
-305 1064 1619 1457
|
|
||||||
2 1 0 2 32 0 540 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
-40 2680 -305 1064
|
|
||||||
2 1 0 2 32 0 623 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1674 3115 -40 2680
|
|
||||||
-6
|
|
||||||
6 742 92 2481 1975
|
|
||||||
2 1 0 1 32 0 783 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 1.00 120.00 120.00
|
|
||||||
2391 1946 2424 413
|
|
||||||
2 1 0 1 32 0 951 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 1.00 120.00 120.00
|
|
||||||
872 1621 2391 1946
|
|
||||||
2 1 0 1 32 0 890 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 1.00 120.00 120.00
|
|
||||||
742 129 872 1621
|
|
||||||
2 1 0 1 32 0 723 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 1.00 120.00 120.00
|
|
||||||
2424 413 742 129
|
|
||||||
-6
|
|
||||||
6 1693 444 2543 3103
|
|
||||||
2 1 0 4 35 0 409 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1816 3073 1779 1419
|
|
||||||
2 1 0 4 35 0 726 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2449 2016 1816 3073
|
|
||||||
2 1 0 4 36 0 760 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
2489 474 2449 2016
|
|
||||||
2 1 0 4 35 0 443 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 180.00 150.00
|
|
||||||
1779 1419 2489 474
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 2631 383 60 60 2631 383 2691 383
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4888 777 60 60 4888 777 4948 777
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4403 1921 60 60 4403 1921 4463 1921
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4665 2521 60 60 4665 2521 4725 2521
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 4163 3794 60 60 4163 3794 4223 3794
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 1900 3207 60 60 1900 3207 1960 3207
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 2552 2032 60 60 2552 2032 2612 2032
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 820 1677 60 60 820 1677 880 1677
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 -135 2774 60 60 -135 2774 -75 2774
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 679 -10 60 60 679 -10 739 -10
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 -466 993 60 60 -466 993 -406 993
|
|
||||||
1 3 0 1 185 185 50 -1 20 0.000 1 0.0000 1919 1455 60 60 1919 1455 1979 1455
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
-324 1067 -446 1008
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
-163 835 -253 816 -457 960
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
-237 1072 -264 1017 -449 984
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
-54 2621 -125 2751
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
-33 2542 -142 2640 -144 2735
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
147 2730 -112 2776
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
787 1810 768 1770 781 1702
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
738 1544 830 1647
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
969 1650 803 1680
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
781 94 697 2
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
754 217 716 192 681 21
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
531 203 645 10
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2336 419 2632 378
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2513 577 2630 359
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2646 601 2611 378
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2880 443 2820 381 2657 372
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1603 1283 1658 1357 1914 1444
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1854 1313 1914 1430
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2034 1599 1949 1444
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1622 1611 1881 1586 1916 1472
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2393 1818 2537 2006
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2643 1851 2554 2022
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2815 2050 2747 2074 2570 2041
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2407 2093 2540 2041
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1759 3067 1876 3171
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1802 2991 1897 3056 1892 3184
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2077 3073 2069 3190 1933 3184
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2227 3252 1914 3214
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4691 797 4868 754
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4715 868 4857 800
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4832 1064 4914 944 4892 814
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4285 1808 4293 1865 4400 1920
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4340 2080 4378 2009 4405 1939
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4541 1873 4386 1895
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4489 2317 4661 2421 4666 2532
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4528 2592 4680 2540
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4302 2500 4337 2459 4672 2516
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3926 3688 4144 3819
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4119 3576 4155 3789
|
|
||||||
2 1 0 1 34 7 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4220 3634 4166 3767
|
|
||||||
-6
|
|
||||||
4 0 0 50 -1 0 18 0.0000 4 255 6900 4247 3944 Vector<Dart_handle>v1 = {Dart_of_cell_range<0,2>(dh3)}\001
|
|
||||||
4 0 0 50 -1 0 22 0.0000 4 255 555 9465 2625 dh4\001
|
|
||||||
4 0 0 50 -1 0 18 0.0000 4 255 4935 4161 175 dh4=lcc.insert_barycenter_in_cell<2>(dh2)\001
|
|
||||||
4 0 0 50 -1 0 18 0.0000 4 255 4935 3780 -135 dh3=lcc.insert_barycenter_in_cell<2>(dh1)\001
|
|
||||||
4 0 0 50 -1 -1 18 0.0000 4 255 5985 4905 4635 dh in v1 U v2: CGAL::remove_cell<LCC,1>(lcc,dh)\001
|
|
||||||
4 0 0 50 -1 32 19 0.0000 4 210 225 4635 4635 "\001
|
|
||||||
4 0 0 50 -1 0 18 0.0000 4 255 6900 4365 4275 Vector<Dart_handle>v2 = {Dart_of_cell_range<0,2>(dh4)}\001
|
|
||||||
4 0 0 50 -1 0 22 0.0000 4 255 555 2430 270 dh1\001
|
|
||||||
4 0 0 50 -1 0 22 0.0000 4 255 555 4410 3285 dh2\001
|
|
||||||
4 0 0 50 -1 0 22 0.0000 4 255 555 7875 630 dh3\001
|
|
||||||
|
|
@ -1,11 +0,0 @@
|
||||||
|
|
||||||
\ccUserChapter{Linear cell complex\label{Linear_cell_complex}}
|
|
||||||
\ccChapterAuthor{Guillaume Damiand}
|
|
||||||
|
|
||||||
\input{Linear_cell_complex/PkgDescription.tex}
|
|
||||||
\minitoc
|
|
||||||
|
|
||||||
|
|
||||||
\input{Linear_cell_complex/Linear_cell_complex.tex}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,96 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: CombinatorialMapWithPoints.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\begin{ccRefConcept}{CellAttributeWithPoint}
|
|
||||||
|
|
||||||
\ccDefinition
|
|
||||||
|
|
||||||
The concept \ccRefName\ is a refinement of the \ccc{CellAttribute}
|
|
||||||
concept, to represent a cell attribute containing a point.
|
|
||||||
% For that, it refines a point concept wich can be either
|
|
||||||
% \ccc{Kernel::Point_2} or \ccc{Kernel::Point_3} or \ccc{Kernel::Point_d} concept.
|
|
||||||
|
|
||||||
\ccRefines
|
|
||||||
\ccRefConceptPage{CellAttribute} % \\
|
|
||||||
|
|
||||||
% If \ccc{ambient_dimension==2} \ccRefConceptPage{Kernel::Point_2}\\
|
|
||||||
% If \ccc{ambient_dimension==3} \ccRefConceptPage{Kernel::Point_3}\\
|
|
||||||
% Otherwise \ccRefConceptPage{Kernel::Point_d}
|
|
||||||
|
|
||||||
|
|
||||||
\ccTypes
|
|
||||||
%\ccParameters
|
|
||||||
% \ccc{Refs} must be a model of the \ccc{CombinatorialMap} concept.
|
|
||||||
% \ccc{T} must be \ccc{Tag_true} to enable the storage of a
|
|
||||||
% \ccc{Dart_handle} within the class (to be set to a dart which is part of the cell),
|
|
||||||
% and \ccc{Tag_false} otherwise.
|
|
||||||
% \ccNestedType{Traits}{The traits class, a model of the \ccc{LinearCellComplexTraits} concept.}
|
|
||||||
% \ccGlue
|
|
||||||
\ccNestedType{Point}{Type of the used point.} % Equals to \ccc{Traits::Point}.}
|
|
||||||
|
|
||||||
% A model of
|
|
||||||
% \ccc{Kernel::Point_2} if \ccc{ambient_dimension==2},
|
|
||||||
% a model of \ccc{Kernel::Point_3} if \ccc{ambient_dimension==3},
|
|
||||||
% or a model of \ccc{Kernel::Point_d} otherwise.}
|
|
||||||
|
|
||||||
% \ccc{FunctorOnMerge} functor used when two cell attributes are merged. Must contains a method \ccc{operator ()} taking two \ccc{CellAttribute} as parameters.
|
|
||||||
% \ccc{FunctorOnSplit} functor used when one cell attribute was split in two. Must contains a method \ccc{operator ()} taking two \ccc{CellAttribute} as parameters.
|
|
||||||
|
|
||||||
% This concept does not have any restriction on the number
|
|
||||||
% of additional template parameters.
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
|
|
||||||
% \ccNestedType{Supports_cell_dart}
|
|
||||||
% {equal to T (\ccc{Tag_true} or \ccc{Tag_false}).}
|
|
||||||
% +-----------------------------------+
|
|
||||||
% \ccConstants
|
|
||||||
% \ccVariable{static unsigned int ambient_dimension;}{The dimension of the ambient space.}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccCreation
|
|
||||||
\ccCreationVariable{cawp}
|
|
||||||
|
|
||||||
\ccConstructor{CellAttributeWithPoint();}{Default constructor.}
|
|
||||||
|
|
||||||
\ccConstructor{CellAttributeWithPoint(const Point&apoint);}
|
|
||||||
{Constructor initializing the point of \ccc{cawp} by the
|
|
||||||
copy contructor \ccc{Point(apoint)}.}
|
|
||||||
|
|
||||||
\ccConstructor{CellAttributeWithPoint(const Point&apoint, const Info& info);}
|
|
||||||
{Constructor initializing the point of \ccc{cawp} by the
|
|
||||||
copy contructor \ccc{Point(apoint)} and initializing the
|
|
||||||
information of \ccc{cawp} by the
|
|
||||||
copy contructor \ccc{Info(info)}.
|
|
||||||
Defined only if \ccc{Info} is different from \ccc{void}.}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Access Member Functions}
|
|
||||||
|
|
||||||
\ccMethod{Point& point();}
|
|
||||||
{Returns the point of \ccc{cawp}.}
|
|
||||||
|
|
||||||
\ccMethod{const Point& point() const;}
|
|
||||||
{Returns the point of \ccc{cawp}, when \ccc{cawp} is const.}
|
|
||||||
|
|
||||||
\ccHasModels
|
|
||||||
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
|
||||||
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}\\
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
%\ccRefConceptPage{LinearCellComplex}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}
|
|
||||||
%\ccRefConceptPage{LinearCellComplexTraits}\\
|
|
||||||
|
|
||||||
\end{ccRefConcept}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
@ -1,79 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: Cell_attribute_with_point.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\begin{ccRefClass}{Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
|
||||||
|
|
||||||
\ccInclude{CGAL/Cell_attribute_with_point.h}
|
|
||||||
|
|
||||||
\ccDefinition
|
|
||||||
|
|
||||||
The class \ccRefName\ represents an attribute containing a point and
|
|
||||||
containing an information when \ccc{Info_} is different from void.
|
|
||||||
This class can typically be used to associate a point to each 0-cell
|
|
||||||
of a combinatorial map.
|
|
||||||
|
|
||||||
% It inherits from the type of point defined in
|
|
||||||
% \ccc{LCC} so that we can use an instance of
|
|
||||||
% \ccc{Cell_attribute_with_point} everywhere an instance of
|
|
||||||
% \ccc{LCC::Point} is required.
|
|
||||||
|
|
||||||
\ccIsModel
|
|
||||||
\ccRefConceptPage{CellAttributeWithPoint}
|
|
||||||
|
|
||||||
\ccInheritsFrom
|
|
||||||
\ccRefIdfierPage{CGAL::Cell_attribute<CMap,Info_,Tag,OnMerge,OnSplit>} %\\
|
|
||||||
%\ccc{LCC::Point} see \ccRefConceptPage{LinearCellComplex}
|
|
||||||
|
|
||||||
\ccParameters
|
|
||||||
\ccc{LCC} must be an instanciation of \ccc{Linear_cell_complex} class\\
|
|
||||||
\ccc{Info_} is the type of the information contained in the attribute, \ccc{void} for no information. \\
|
|
||||||
\ccc{Tag} is \ccc{Tag_true} to enable the storage of a
|
|
||||||
\ccc{Dart_handle} of the associated cell, \ccc{Tag_false} otherwise.\\
|
|
||||||
\ccc{OnMerge} is a functor called when two attributes are merged. \\
|
|
||||||
\ccc{OnSplit} is a functor called when one attribute is split in two.
|
|
||||||
|
|
||||||
By default, \ccc{OnMerge} and \ccc{OnSplit} are equal to
|
|
||||||
\ccc{Null_functor}; \ccc{Tag} is equal to
|
|
||||||
\ccc{Tag_true}; and \ccc{Info_} is equal to \ccc{void}.
|
|
||||||
|
|
||||||
\ccTypes
|
|
||||||
\ccThree{typedef LCC::Dart_const_handle;}{}{}
|
|
||||||
% \ccTypedef{typedef Info_ Info;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{typedef Tag Supports_cell_dart;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{typedef OnMerge On_merge;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{typedef OnSplit On_split;}{}
|
|
||||||
%
|
|
||||||
% \ccTypedef{typedef LCC::Traits Traits;}{}
|
|
||||||
% \ccGlue
|
|
||||||
\ccTypedef{typedef LCC::Point Point;}{}
|
|
||||||
\ccGlue
|
|
||||||
%
|
|
||||||
%\ccTwo{typedef LCC::Dart_const_handle;;;;;}{}
|
|
||||||
%\ccThree{typedef LCC::Dart_const_handle;}{}{}
|
|
||||||
\ccTypedef{typedef LCC::Dart_handle Dart_handle;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef LCC::Dart_const_handle Dart_const_handle;}{}
|
|
||||||
|
|
||||||
\ccConstants
|
|
||||||
\ccVariable{static unsigned int ambient_dimension = LCC::ambient_dimension;}{}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Cell_attribute<CMap,Info_,Tag,OnMerge,OnSplit>}
|
|
||||||
|
|
||||||
\end{ccRefClass}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
@ -1,61 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: LinearCellComplexItems.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
\begin{ccRefConcept}{LinearCellComplexItems}
|
|
||||||
|
|
||||||
\ccDefinition The concept \ccRefName\ refines the concept of
|
|
||||||
\ccc{CombinatorialMapItems} by adding the requirement that
|
|
||||||
0-attributes are enabled, and associated with attributes which are a
|
|
||||||
model of the \ccc{CellAttributeWithPoint} concept.
|
|
||||||
|
|
||||||
% In addition to the requirements of \ccc{CombinatorialMapItems},
|
|
||||||
% the item class must also define the \ccc{Traits} type for the
|
|
||||||
% geometrical traits used, a model of the \ccc{LinearCellComplexTraits}
|
|
||||||
% concept.
|
|
||||||
|
|
||||||
% , and
|
|
||||||
% must define a \ccc{static const int ambient_dimension} for the
|
|
||||||
% dimension of the ambient space.
|
|
||||||
|
|
||||||
\ccRefines
|
|
||||||
\ccRefConceptPage{CombinatorialMapItems}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Requirements}
|
|
||||||
|
|
||||||
The first type in \ccc{Attributes} must be a model of the
|
|
||||||
\ccc{CellAttributeWithPoint} concept.
|
|
||||||
% \item \ccc{dimension}$\leq$\ccc{ambient_dimension} (?).
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
% \ccNestedType{Traits}{a model of the \ccc{LinearCellComplexTraits} concept.}
|
|
||||||
|
|
||||||
% \ccConstants
|
|
||||||
% \ccVariable{static unsigned int ambient_dimension;}
|
|
||||||
% {The dimension of the ambient space.}
|
|
||||||
|
|
||||||
\ccHasModels
|
|
||||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d,d2,Traits>}
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
\ccRefConceptPage{CellAttributeWithPoint}\\
|
|
||||||
%\ccRefConceptPage{LinearCellComplexTraits}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Dart<d,CMap>}
|
|
||||||
|
|
||||||
\end{ccRefConcept}
|
|
||||||
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
|
|
@ -1,85 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: LinearCellComplexTraits.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
\begin{ccRefConcept}{LinearCellComplexTraits}
|
|
||||||
|
|
||||||
Required types and functors for the \ccRefName\ concept. This
|
|
||||||
geometric traits concept is used in the \ccc{Linear_cell_complex}
|
|
||||||
class.
|
|
||||||
|
|
||||||
% \ccRefines
|
|
||||||
% A model of the concept \ccc{Kernel} if \ccc{Ambiant_dimension==2} or
|
|
||||||
% \ccc{Ambiant_dimension==3}; a model of the concept \ccc{Kernel_d} otherwise.
|
|
||||||
|
|
||||||
% \ccc{CopyConstructable}, \ccc{Assignable}.
|
|
||||||
|
|
||||||
\ccConstants
|
|
||||||
\ccVariable{static unsigned int ambient_dimension;}
|
|
||||||
{The ambient dimension, must be \mygt{}1.}
|
|
||||||
|
|
||||||
\ccTypes
|
|
||||||
|
|
||||||
% \ccNestedType{Kernel}{kernel type.}
|
|
||||||
|
|
||||||
\ccNestedType{FT}{a number type that is a model for FieldNumberType.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Point}{point type.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Vector}{vector type.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Direction}{direction type.}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccNestedType{Iso_cuboid}{iso cuboid type.}
|
|
||||||
|
|
||||||
\ccHeading{Constructions}
|
|
||||||
|
|
||||||
\ccNestedType{Construct_translated_point}{Functor with operator to construct the translation of a Point by a given Vector.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_vector}{Functor with operator to construct a vector going from the origin to a given point.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_vector}{Functor with operator to construct a vector given two points.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_sum_of_vectors}{Functor with operator to construct a vector wich is the sum of the two given vectors.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_scaled_vector}{Functor with operator to construct a vector which is equal to a given Vector scaled by a given number.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_midpoint}{Functor with operator to construct a point equal to the middle of the two given points.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Construct_direction}{Functor with operator returning a direction corresponding to the given vector.}
|
|
||||||
|
|
||||||
% \ccGlue
|
|
||||||
% \ccNestedType{Construct_iso_cuboid}{Functor with operator returning an iso cuboid created from two points (min and max points of the iso cuboid).}
|
|
||||||
|
|
||||||
\ccHeading{Generalized Predicates}
|
|
||||||
|
|
||||||
\ccNestedType{Collinear}{Functor with operator returning true iff the three given points are colinear.}
|
|
||||||
|
|
||||||
\textbf{If \ccc{ambient_dimension==3}}
|
|
||||||
|
|
||||||
\ccTypes
|
|
||||||
\ccNestedType{Construct_normal_3}{a model of \ccc{ConstructNormal_3}}
|
|
||||||
|
|
||||||
\ccHasModels
|
|
||||||
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}.
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
%\ccRefConceptPage{LinearCellComplex}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}\\
|
|
||||||
|
|
||||||
\end{ccRefConcept}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
|
|
@ -1,366 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: Linear_cell_complex.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\begin{ccRefClass}{Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}
|
|
||||||
|
|
||||||
\ccInclude{CGAL/Linear_cell_complex.h}
|
|
||||||
|
|
||||||
\ccDefinition
|
|
||||||
|
|
||||||
The class \ccRefName\ represents a linear cell complex in dimension \ccc{d},
|
|
||||||
in an ambient space of dimension \ccc{d2}. This is a model of the concept of
|
|
||||||
\ccc{CombinatorialMap} by adding a requirement to ensure that
|
|
||||||
each vertex of the map is associated with a
|
|
||||||
model of \ccc{CellAttributeWithPoint}.
|
|
||||||
|
|
||||||
% Darts and non void attributes are stored in memory using
|
|
||||||
% \ccc{CGAL::Compact_container}, using \ccc{Alloc} as allocator.
|
|
||||||
|
|
||||||
\ccIsModel
|
|
||||||
%\ccRefConceptPage{LinearCellComplex}
|
|
||||||
\ccRefConceptPage{CombinatorialMap}
|
|
||||||
|
|
||||||
\ccInheritsFrom
|
|
||||||
\ccRefIdfierPage{CGAL::Combinatorial_map<d,Items_,Alloc_>}
|
|
||||||
|
|
||||||
\ccParameters
|
|
||||||
\ccc{d} an integer for the dimension of the combinatorial map,\\
|
|
||||||
\ccc{d2} an integer for the dimension of the ambiant space,\\
|
|
||||||
\ccc{Traits_} must be a model of the \ccc{LinearCellComplexTraits} concept, satisfying \ccc{Traits_::ambiant_dimension==d2},\\
|
|
||||||
\ccc{Items_} must be a model of the \ccc{CombinatorialMapItems} concept,\\
|
|
||||||
\ccc{Alloc_} has to match the standard allocator requirements.
|
|
||||||
|
|
||||||
There are four default template arguments:
|
|
||||||
\ccc{d2} is equal to \ccc{d},
|
|
||||||
\ccc{Trait_} is equal to \ccc{CGAL::Linear_cell_complex_traits<d2,CGAL::Exact_predicates_inexact_constructions_kernel>} if
|
|
||||||
\ccc{d2} is 2 or 3, and this is \ccc{CGAL::Linear_cell_complex_traits<d2,CGAL::Cartesian_d<double>>} otherwise,
|
|
||||||
\ccc{Items_} is equal to \ccc{CGAL::Linear_cell_complex_min_items<d>} and
|
|
||||||
\ccc{Alloc_} is \ccc{CGAL_ALLOCATOR(int)}.
|
|
||||||
|
|
||||||
\begin{ccAdvanced}
|
|
||||||
Note that there is an additional, and undocumented, template
|
|
||||||
parameter \ccc{CMap} for
|
|
||||||
\ccc{Linear_cell_complex<d,d2,Traits_,Items_,Alloc_,CMap>} allowing
|
|
||||||
to inherit from any model of \ccc{CombinatorialMap} concept.
|
|
||||||
\end{ccAdvanced}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccCreation
|
|
||||||
\ccCreationVariable{lcc}
|
|
||||||
\ccConstructor{LinearCellComplex();}{}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccConstants
|
|
||||||
\ccVariable{static unsigned int ambient_dimension = d2;}{must be \mygt{}1.}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccTypes
|
|
||||||
\ccThree{typedef Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}{}{}
|
|
||||||
\ccTypedef{typedef Linear_cell_complex<d,d2,Traits_,Items_,Alloc_> Self;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef Items::Dart_wrapper<Self>::Dart Dart;}{The type of dart, must satisfy \ccc{Dart::dimension==d}.}
|
|
||||||
|
|
||||||
\ccTypedef{typedef Traits_ Traits;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef Items_ Items;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef Alloc_ Alloc;}{}
|
|
||||||
|
|
||||||
\ccTypedef{typedef Traits::FT FT;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef Traits::Point Point;}{}
|
|
||||||
\ccGlue
|
|
||||||
\ccTypedef{typedef Traits::Vector Vector;}{}
|
|
||||||
|
|
||||||
\ccNestedType{Vertex_attribute}
|
|
||||||
{Type of 0-attributes, a model of \ccc{CellAttributeWithPoint} concept
|
|
||||||
(a shortcut for \ccc{Attribute_type_d<0>::type}).}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Vertex_attribute_handle}
|
|
||||||
{Handle through 0-attributes
|
|
||||||
(a shortcut for \ccc{Attribute_handle_type_d<0>::type}).}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Vertex_attribute_const_handle}
|
|
||||||
{Const handle through 0-attributes
|
|
||||||
(a shortcut for \ccc{Attribute_const_handle_type_d<0>::type}).}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Vertex_attribute_range}
|
|
||||||
{Range of all the 0-attributes, a model of the \ccc{Range} concept
|
|
||||||
(a shortcut for \ccc{Attribute_range_d<0>::type}).
|
|
||||||
Iterator inner type is bidirectional iterator and value type is \ccc{Vertex_attribute}.}
|
|
||||||
\ccGlue
|
|
||||||
\ccNestedType{Vertex_attribute_const_range}
|
|
||||||
{Const range of all the 0-attributes, a model of the \ccc{ConstRange} concept
|
|
||||||
a shortcut for \ccc{Attribute_const_range_d<0>::type}).
|
|
||||||
Iterator inner type is bidirectional iterator and value type is \ccc{Vertex_attribute}.}
|
|
||||||
|
|
||||||
% \ccNestedType{Vertex_attribute}{First element of \ccc{Items::Dart_wrapper<Self>::Attributes}.}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Range Access Member Functions}
|
|
||||||
|
|
||||||
\ccMethod{Vertex_attribute_range& vertex_attributes();}
|
|
||||||
{Returns a range of all the 0-attributes in \ccc{lcc}
|
|
||||||
(a shortcut for \ccc{attributes<0>()}).}
|
|
||||||
|
|
||||||
\ccMethod{Vertex_attribute_const_range& vertex_attributes() const;}
|
|
||||||
{Returns a const range of all the 0-attributes in \ccc{lcc}
|
|
||||||
(a shortcut for \ccc{attributes<0>() const}).}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Access Member Functions}
|
|
||||||
|
|
||||||
\ccMethod{bool is_valid() const;}
|
|
||||||
{Returns true iff \ccc{lcc} is valid.}
|
|
||||||
A linear cell complex \ccc{lcc} is valid
|
|
||||||
if it is a valid combinatorial map, and if for all dart handle \emph{dh} such that
|
|
||||||
\ccc{*dh}\myin{}\ccc{lcc.darts()}: \ccc{dh->attribute<0>()!=NULL}.
|
|
||||||
|
|
||||||
|
|
||||||
\ccMethod{size_type number_of_vertex_attributes() const;}
|
|
||||||
{Returns the number of 0-attributes in \ccc{lcc}
|
|
||||||
(a shortcut for \ccc{number_of_attributes<0>()}).}
|
|
||||||
|
|
||||||
\ccHeading{Static Member Functions}
|
|
||||||
|
|
||||||
\ccMethod{static Vertex_attribute_handle vertex_attribute(Dart_handle dh);}
|
|
||||||
{Returns the 0-attribute associated with \ccc{dh}.
|
|
||||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{static Vertex_attribute_const_handle vertex_attribute(Dart_const_handle dh);}
|
|
||||||
{Returns the 0-attribute associated with \ccc{dh}, when \ccc{dh} is const.
|
|
||||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{static Point& point(Dart_handle dh);}
|
|
||||||
{Returns the point in the 0-attribute associated with the \ccc{dh}.
|
|
||||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{static const Point& point(Dart_const_handle dh);}
|
|
||||||
{Returns the point in the 0-attribute associated with the \ccc{dh},
|
|
||||||
when \ccc{dh} is const.
|
|
||||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Modifiers}
|
|
||||||
\ccMethod{Dart_handle create_dart(Vertex_attribute_handle vh);}
|
|
||||||
{Creates a new dart in \ccc{lcc}, sets its associated 0-attribute
|
|
||||||
to \ccc{vh} and returns the corresponding handle.
|
|
||||||
\ccPrecond{\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle create_dart(const Point& apoint);}
|
|
||||||
{Creates a new dart in \ccc{lcc}, creates a new 0-attribute
|
|
||||||
initialized with \ccc{apoint}, sets the associated 0-attribute
|
|
||||||
of the new dart to this new 0-attribute,
|
|
||||||
and returns the corresponding handle.}
|
|
||||||
|
|
||||||
\ccMethod{Vertex_attribute_handle create_vertex_attribute();}
|
|
||||||
{Creates a new 0-attribute in \ccc{lcc}, and returns the corresponding handle
|
|
||||||
(a shortcut for \ccc{create_attribute<0>()}).}
|
|
||||||
|
|
||||||
\ccMethod{Vertex_attribute_handle create_vertex_attribute(const Point& apoint);}
|
|
||||||
{Creates a new 0-attribute in \ccc{lcc} initialized with \ccc{apoint},
|
|
||||||
and returns the corresponding handle.}
|
|
||||||
|
|
||||||
\ccMethod{void erase_vertex_attribute(Vertex_attribute_handle vh);}
|
|
||||||
{Removes the 0-attribute pointed by \ccc{vh} from \ccc{cm}
|
|
||||||
(a shortcut for \ccc{erase_attribute<0>(vh)}).
|
|
||||||
\ccPrecond{\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{void set_vertex_attribute(Dart_handle dh, Vertex_attribute_handle vh);}
|
|
||||||
{Associates the 0-attribute of all the darts of the 0-cell
|
|
||||||
containing \ccc{dh} to \ccc{vh}
|
|
||||||
(a shortcut for \ccc{set_attribute<0>(dh,vh)}).
|
|
||||||
\ccPrecond{\ccc{*dh}\myin{}\ccc{lcc.darts()} and
|
|
||||||
\ccc{*vh}\myin{}\ccc{lcc.vertex_attributes()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Operations}
|
|
||||||
|
|
||||||
\ccMethod{template<unsigned int i> Point barycenter(Dart_const_handle dh) const;}
|
|
||||||
{Returns the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
\ccPrecond{0\myleq{}\emph{i}\myleq{}\ccc{dimension} and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{template <unsigned int i> Dart_handle insert_point_in_cell(Dart_handle dh, Point p);}
|
|
||||||
{Inserts a point, copy of \ccc{p}, in the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
Returns an handle on one dart of this cell.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% \begin{ccAdvanced}
|
|
||||||
If \emph{i}-attributes are non void,
|
|
||||||
\ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
with \emph{a} the original \emph{i}-attribute associated
|
|
||||||
with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
|
|
||||||
% \end{ccAdvanced}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{template <unsigned int i> Dart_handle insert_barycenter_in_cell(Dart_handle dh);}
|
|
||||||
{Inserts a point in the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
Returns an handle on one dart of this cell.
|
|
||||||
\ccPrecond{1\myleq{}\ccc{dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% \begin{ccAdvanced}
|
|
||||||
If \emph{i}-attributes are non void,
|
|
||||||
\ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
with \emph{a} the original \emph{i}-attribute associated
|
|
||||||
with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
|
|
||||||
% \end{ccAdvanced}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle insert_dangling_cell_1_in_cell_2(Dart_handle dh, Point p);}
|
|
||||||
{Inserts a 1-cell in a the 2-cell containing \ccc{adart}, the 1-cell
|
|
||||||
being attached only by one of its vertex to the 0-cell containing \ccc{dh}.
|
|
||||||
The second vertex is associated with a new 0-attribute containing a copy of
|
|
||||||
\ccc{p} as point. Returns an handle on one dart belonging to the new 0-cell.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccHeading{Constructions}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle make_segment(const Point& p0, const Point& p1);}
|
|
||||||
{Creates an isolated segment in \ccc{lcc} (two darts linked by \betadeux{})
|
|
||||||
having \ccc{p0}, \ccc{p1} as geometry.
|
|
||||||
Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}2.}
|
|
||||||
}
|
|
||||||
%
|
|
||||||
\def\LargFig{.3\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_segment}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/make_segment.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/make_segment.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\centerline{Example of \ccc{r=lcc.make_segment(p0,p1)}.}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle make_triangle(const Point& p0, const Point& p1, const Point& p2);}
|
|
||||||
{Creates an isolated triangle in \ccc{lcc} having \ccc{p0}, \ccc{p1}, \ccc{p2} as geometry.
|
|
||||||
Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}1.}
|
|
||||||
}
|
|
||||||
%
|
|
||||||
\def\LargFig{.3\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_triangle}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/make_triangle.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/make_triangle.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\centerline{Example of \ccc{r=lcc.make_triangle(p0,p1,p2)}.}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle make_quadrangle(const Point& p0,
|
|
||||||
const Point& p1,
|
|
||||||
const Point& p2,
|
|
||||||
const Point& p3);}
|
|
||||||
{Creates an isolated quadrangle in \ccc{lcc} having \ccc{p0} ,\ccc{p1},
|
|
||||||
\ccc{p2}, \ccc{p3} as geometry.
|
|
||||||
Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}1.}
|
|
||||||
}
|
|
||||||
%
|
|
||||||
\def\LargFig{.3\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_quadrilateral}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/make_quadrilateral.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/make_quadrilateral.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\centerline{Example of \ccc{r=lcc.make_quadrangle(p0,p1,p2,p3)}.}
|
|
||||||
|
|
||||||
\ccMethod{Dart_handle make_tetrahedron(const Point& p0,
|
|
||||||
const Point& p1,
|
|
||||||
const Point& p2,
|
|
||||||
const Point& p3);}
|
|
||||||
{Creates an isolated tetrahedron in \ccc{lcc} having \ccc{p0} ,\ccc{p1},\ccc{p2},\ccc{p3} as geometry.
|
|
||||||
Returns an handle on the dart associated with \ccc{p0} and
|
|
||||||
belonging to the 2-cell having \ccc{p0}, \ccc{p1}, \ccc{p2}
|
|
||||||
as coordinates.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}2.}
|
|
||||||
}
|
|
||||||
%
|
|
||||||
\def\LargFig{.3\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_tetrahedron}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/make_tetrahedron.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/make_tetrahedron.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\centerline{Example of \ccc{r=lcc.make_tetrahedron(p0,p1,p2,p3)}.}
|
|
||||||
|
|
||||||
\ccFunction{Dart_handle make_hexahedron(const Point& p0,
|
|
||||||
const Point& p1,
|
|
||||||
const Point& p2,
|
|
||||||
const Point& p3,
|
|
||||||
const Point& p4,
|
|
||||||
const Point& p5,
|
|
||||||
const Point& p6,
|
|
||||||
const Point& p7);}
|
|
||||||
{Creates an isolated hexahedron in \ccc{lcc} having \ccc{p0}, \ccc{p1},
|
|
||||||
\ccc{p2}, \ccc{p3}, \ccc{p4}, \ccc{p5}, \ccc{p6}, \ccc{p7} as geometry.
|
|
||||||
Returns an handle on the dart associated with \ccc{p0} and
|
|
||||||
belonging to the 2-cell having \ccc{p0}, \ccc{p5}, \ccc{p6}, \ccc{p1}
|
|
||||||
as coordinates.
|
|
||||||
\ccPrecond{\ccc{dimension}\mygeq{}2.}
|
|
||||||
}
|
|
||||||
\def\LargFig{.4\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_hexahedron}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/make_hexahedron.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/make_hexahedron.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\centerline{Example of \ccc{r=lcc.make_hexahedron(p0,p1,p2,p3,p4,p5,p6,p7)}.}
|
|
||||||
|
|
||||||
% +-----------------------------------+
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefConceptPage{CombinatorialMap}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Combinatorial_map<d,Items_,Alloc_>}\\
|
|
||||||
\ccRefConceptPage{Dart}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexTraits}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}
|
|
||||||
|
|
||||||
\end{ccRefClass}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
@ -1,551 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: Linear_cell_complex_constructors.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Linear_cell_complex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_segment<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_segment(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1);}
|
|
||||||
% {Creates an isolated segment in \ccc{lcc} (two darts linked by \betadeux{})
|
|
||||||
% having \ccc{p0}, \ccc{p1} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_segment}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_segment.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_segment.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_segment(lcc,p0,p1)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_triangle<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_triangle(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1,
|
|
||||||
% const typename LCC::Point& p2);}
|
|
||||||
% {Creates an isolated triangle in \ccc{lcc} having \ccc{p0}, \ccc{p1}, \ccc{p2} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_triangle}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_triangle.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_triangle.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_triangle(lcc,p0,p1,p2)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_quadrangle<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_quadrangle(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1,
|
|
||||||
% const typename LCC::Point& p2,
|
|
||||||
% const typename LCC::Point& p3);}
|
|
||||||
% {Creates an isolated quadrangle in \ccc{lcc} having \ccc{p0} ,\ccc{p1},
|
|
||||||
% \ccc{p2}, \ccc{p3} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_quadrilateral}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_quadrilateral.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_quadrilateral.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_quadrangle(lcc,p0,p1,p2,p3)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_rectangle<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
|
|
||||||
% const typename LCC::Iso_rectangle& ir);}
|
|
||||||
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{ir} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{ir[0]}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccHeading{Requirements}
|
|
||||||
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
|
|
||||||
|
|
||||||
%
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
% %----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_rectangle}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1);}
|
|
||||||
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{p0} and \ccc{p1} as
|
|
||||||
% diagonal opposite points. Returns an handle on the dart associated with \ccc{p0}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccHeading{Requirements}
|
|
||||||
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
|
|
||||||
|
|
||||||
%
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_rectangle}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_rectangle.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_rectangle.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_rectangle(lcc,p0,p1)}.}
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_square}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_square(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p,
|
|
||||||
% typename LCC::FT l);}
|
|
||||||
% {Creates an isolated square in \ccc{lcc} having \ccc{p} as based point, and \ccc{l}
|
|
||||||
% as size. Returns an handle on the dart associated with \ccc{p}.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}$\geq 1$ and \ccc{LCC::ambient_dimension}$\geq 2$.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_square}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_square.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_square.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_square(lcc,p,l)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_tetrahedron<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_tetrahedron(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1,
|
|
||||||
% const typename LCC::Point& p2,
|
|
||||||
% const typename LCC::Point& p3);}
|
|
||||||
% {Creates an isolated tetrahedron in \ccc{lcc} having \ccc{p0} ,\ccc{p1},\ccc{p2},\ccc{p3} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p0} and
|
|
||||||
% belonging to the 2-cell having \ccc{p0}, \ccc{p1}, \ccc{p2}
|
|
||||||
% as coordinates.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_tetrahedron}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_tetrahedron.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_tetrahedron.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_tetrahedron(lcc,p0,p1,p2,p3)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_hexahedron<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_hexahedron(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1,
|
|
||||||
% const typename LCC::Point& p2,
|
|
||||||
% const typename LCC::Point& p3,
|
|
||||||
% const typename LCC::Point& p4,
|
|
||||||
% const typename LCC::Point& p5,
|
|
||||||
% const typename LCC::Point& p6,
|
|
||||||
% const typename LCC::Point& p7);}
|
|
||||||
% {Creates an isolated hexahedron in \ccc{lcc} having \ccc{p0}, \ccc{p1},
|
|
||||||
% \ccc{p2}, \ccc{p3}, \ccc{p4}, \ccc{p5}, \ccc{p6}, \ccc{p7} as geometry.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p0} and
|
|
||||||
% belonging to the 2-cell having \ccc{p0}, \ccc{p5}, \ccc{p6}, \ccc{p1}
|
|
||||||
% as coordinates.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
|
||||||
% }
|
|
||||||
% \def\LargFig{.4\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_hexahedron}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_hexahedron.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_hexahedron.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_hexahedron(lcc,p0,p1,p2,p3,p4,p5,p6,p7)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_iso_cuboid<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
|
|
||||||
% const typename LCC::Iso_cuboid& ic);}
|
|
||||||
% {Creates an isolated cuboid in \ccc{lcc} having points in \ccc{ic} as points.
|
|
||||||
% Returns an handle on the dart associated with \ccc{ic[0]},
|
|
||||||
% and belonging to the 2-cell having
|
|
||||||
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccHeading{Requirements}
|
|
||||||
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
|
|
||||||
|
|
||||||
%
|
|
||||||
% \def\LargFig{.4\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_cuboid.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,ic)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
% %%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_iso_cuboid}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p0,
|
|
||||||
% const typename LCC::Point& p1);}
|
|
||||||
% {Creates an isolated cuboid in \ccc{lcc} given having \ccc{p0} and
|
|
||||||
% \ccc{p1} as diagonal opposite points. We denote by \ccc{ic} the
|
|
||||||
% \ccc{Iso_cuboid_3} build from \ccc{p0} and \ccc{p1}.
|
|
||||||
% Returns an handle on the dart associated with \ccc{ic[0]},
|
|
||||||
% and belonging to the 2-cell having
|
|
||||||
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccHeading{Requirements}
|
|
||||||
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
|
|
||||||
|
|
||||||
%
|
|
||||||
% \def\LargFig{.4\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_cuboid.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,p0,p1)}.}
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{make_cube}
|
|
||||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{typename LCC::Dart_handle make_cube(LCC& lcc,
|
|
||||||
% const typename LCC::Point& p,
|
|
||||||
% typename LCC::FT l);}
|
|
||||||
% {Creates an isolated cube in \ccc{lcc} having \ccc{p} as based point, and
|
|
||||||
% \ccc{l} as size.
|
|
||||||
% Returns an handle on the dart associated with \ccc{p},
|
|
||||||
% and belonging to the 2-cell having
|
|
||||||
% \ccc{p},\ccc{p}+(0,0,\ccc{l}), \ccc{p}+(\ccc{l},0,\ccc{l}), \ccc{a}+(\ccc{l},0,0).
|
|
||||||
% as coordinates.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}$\geq 2$ and \ccc{LCC::ambient_dimension}$\geq 3$.}
|
|
||||||
% }
|
|
||||||
% %
|
|
||||||
% \def\LargFig{.3\textwidth}
|
|
||||||
% \begin{ccTexOnly}
|
|
||||||
% \begin{center}
|
|
||||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cube}
|
|
||||||
% \end{center}
|
|
||||||
% \end{ccTexOnly}
|
|
||||||
% \begin{ccHtmlOnly}
|
|
||||||
% <CENTER>
|
|
||||||
% <A HREF="fig/png/make_cube.png">
|
|
||||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cube.png" alt=""></A>
|
|
||||||
% </CENTER>
|
|
||||||
% \end{ccHtmlOnly}
|
|
||||||
% \centerline{Example of \ccc{r=make_cube(lcc,p,l)}.}
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
|
||||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
\begin{ccRefFunction}{import_from_plane_graph<LCC>}
|
|
||||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
\ccFunction{template<class LCC>
|
|
||||||
typename LCC::Dart_handle import_from_plane_graph(LCC& lcc,
|
|
||||||
std::istream& ais);}
|
|
||||||
{Converts an embedded plane graph read from \ccc{ais} into \ccc{lcc}.
|
|
||||||
Objects are added in \ccc{lcc}, existing objects are not modified.
|
|
||||||
Returns a dart created during the import.
|
|
||||||
\ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}==2.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccHeading{File format}
|
|
||||||
The file format must be the following:
|
|
||||||
\begin{itemize}
|
|
||||||
\item first line: \verb|nbvertices nbedges|;
|
|
||||||
\item \verb|nbvertices| lines: \verb|x y| the coordinates of the \myith{} vertex;
|
|
||||||
\item \verb|nbedges| lines: \verb|i j| the index of the two vertices of the edge (first vertex
|
|
||||||
being 0).
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
Here a small example:
|
|
||||||
\begin{verbatim}
|
|
||||||
5 6
|
|
||||||
|
|
||||||
1.0 3.0
|
|
||||||
0.0 2.0
|
|
||||||
2.0 2.0
|
|
||||||
0.0 0.0
|
|
||||||
2.0 0.0
|
|
||||||
|
|
||||||
0 1
|
|
||||||
0 2
|
|
||||||
1 2
|
|
||||||
1 3
|
|
||||||
2 4
|
|
||||||
3 4
|
|
||||||
\end{verbatim}
|
|
||||||
%
|
|
||||||
\def\LargFig{.6\textwidth}
|
|
||||||
\begin{ccTexOnly}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/import_graph}
|
|
||||||
\end{center}
|
|
||||||
\end{ccTexOnly}
|
|
||||||
\begin{ccHtmlOnly}
|
|
||||||
<CENTER>
|
|
||||||
<A HREF="fig/png/import_graph.png">
|
|
||||||
<img src="../Linear_cell_complex_ref/fig/png/import_graph.png" alt=""></A>
|
|
||||||
</CENTER>
|
|
||||||
\end{ccHtmlOnly}
|
|
||||||
\begin{center}
|
|
||||||
Example of \ccc{import_graph} reading the above file as istream. \\
|
|
||||||
\textbf{Left}: A planar graph embedded in the plane with
|
|
||||||
\emph{P0}=(1.0,3.0), \emph{P1}=(0.0,2.0), \emph{P2}=(2.0,2.0), \emph{P3}=(0.0,0.0), \emph{P4}=(2.0,0.0).
|
|
||||||
\textbf{Right}: the 2D linear cell complex reconstructed.
|
|
||||||
\end{center}
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}\\
|
|
||||||
\end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
\begin{ccRefFunction}{import_from_triangulation_3<LCC,Triangulation>}
|
|
||||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
\ccFunction{template <class LCC,class Triangulation_>
|
|
||||||
typename LCC::Dart_handle import_from_triangulation_3(LCC& lcc,
|
|
||||||
const Triangulation_ &atr);}
|
|
||||||
{Converts \ccc{atr} (a \ccc{Triangulation_3}) into \ccc{lcc}.
|
|
||||||
Objects are added in \ccc{lcc}, existing objects are not modified.
|
|
||||||
Returns a dart created during the import.
|
|
||||||
\ccPrecond{\ccc{LCC::dimension}\mygeq{}3.}
|
|
||||||
}
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}\\
|
|
||||||
\end{ccRefFunction}
|
|
||||||
%----------------------------------------------------------------------------
|
|
||||||
\begin{ccRefFunction}{import_from_polyhedron<LCC,Polyhedron>}
|
|
||||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
|
||||||
|
|
||||||
\ccFunction{template<class LCC,class Polyhedron>
|
|
||||||
typename LCC::Dart_handle import_from_polyhedron(LCC& lcc,
|
|
||||||
Polyhedron &apoly);}
|
|
||||||
{Converts \ccc{apoly} (a \ccc{Polyhedron}) into \ccc{lcc}. Objects are added in \ccc{lcc},
|
|
||||||
existing objects are not modified.
|
|
||||||
Returns a dart created during the import.
|
|
||||||
\ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
|
||||||
}
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
|
|
||||||
\end{ccRefFunction}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
@ -1,70 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: Linear_cell_complex_min_items.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
\begin{ccRefClass}{Linear_cell_complex_min_items<d>} % ,d2,Traits
|
|
||||||
% \ccRefLabel{CGAL::Linear_cell_complex_min_items}
|
|
||||||
|
|
||||||
\ccInclude{CGAL/Linear_cell_complex_min_items.h}
|
|
||||||
|
|
||||||
\ccDefinition
|
|
||||||
|
|
||||||
The class \ccRefName\ defines the type of darts which is a
|
|
||||||
\ccc{Dart_wrapper::Dart<d,LCC>}, and the traits class used. In
|
|
||||||
this class, 0-attributes are enabled and associated with
|
|
||||||
\ccc{Cell_attribute_with_point}.
|
|
||||||
|
|
||||||
\ccIsModel
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}
|
|
||||||
|
|
||||||
\ccParameters
|
|
||||||
\ccc{d} the dimension of the combinatorial map. % \\
|
|
||||||
% \ccc{d2} the dimension of the ambient space.\\
|
|
||||||
% \ccc{Traits} the traits class used.\\
|
|
||||||
|
|
||||||
% By default, \ccc{d2} is equal to \ccc{d}. There is a default
|
|
||||||
% template argument for Traits class which depends on \ccc{d2}. This is
|
|
||||||
% \ccc{CGAL::Exact_predicates_inexact_constructions_kernel type} if
|
|
||||||
% \ccc{d2} is 2 or 3, and this is \ccc{CGAL::Cartesian_d<double>}
|
|
||||||
% otherwise.
|
|
||||||
|
|
||||||
\ccExample
|
|
||||||
|
|
||||||
The following example shows one implementation of the
|
|
||||||
\ccRefName\ class.
|
|
||||||
|
|
||||||
%, unsigned int d2, class Traits_>
|
|
||||||
% typedef Traits_ Traits;
|
|
||||||
\begin{ccExampleCode}
|
|
||||||
template <unsigned int d>
|
|
||||||
struct Linear_cell_complex_min_items
|
|
||||||
{
|
|
||||||
template <class LCC>
|
|
||||||
struct Dart_wrapper
|
|
||||||
{
|
|
||||||
typedef CGAL::Dart<d, LCC> Dart;
|
|
||||||
|
|
||||||
typedef CGAL::Cell_attribute_with_point<LCC> Vertex_attrib;
|
|
||||||
typedef CGAL::cpp0x::tuple<Vertex_attrib> Attributes;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
\end{ccExampleCode}
|
|
||||||
|
|
||||||
\end{ccRefClass}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Dart<d,CMap>}
|
|
||||||
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
|
|
@ -1,186 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: Linear_cell_complex_operations.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
% \begin{ccRefFunction}{barycenter<LCC,i>}
|
|
||||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
|
||||||
% \ccFunction{template<class LCC, unsigned int i>
|
|
||||||
% typename LCC::Point barycenter(const LCC& lcc,
|
|
||||||
% typename LCC::Dart_const_handle dh);}
|
|
||||||
% {Returns the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
% \ccPrecond{0\myleq{}\emph{i}\myleq{}\ccc{LCC::dimension} and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% for example $i=2$ for facet, or $i=3$ for volume).\\
|
|
||||||
% \ccCommentHeading{Template parameter}\\
|
|
||||||
% \ccc{LCC} must be a model of the \ccc{CombinatorialLCCWithPoints} concept.
|
|
||||||
% \ccCommentHeading{Parameters} \\
|
|
||||||
% \ccc{lcc}: the combinatorial map used;\\
|
|
||||||
% \ccc{adart}: a dart belonging to the cell;\\
|
|
||||||
% \ccCommentHeading{Returns} \\
|
|
||||||
% the barycenter of the cell.
|
|
||||||
% }
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
\begin{ccRefFunction}{compute_normal_of_cell_0<LCC>}
|
|
||||||
\ccInclude{Linear_cell_complex_operations.h}\\
|
|
||||||
\ccFunction{template <class LCC>
|
|
||||||
typename LCC::Vector compute_normal_of_cell_0(const LCC& lcc,
|
|
||||||
typename LCC::Dart_const_handle dh);}
|
|
||||||
{Returns the normal vector of the 0-cell containing \ccc{dh}.
|
|
||||||
\ccPrecond{\ccc{LCC::ambient_dimension}==3 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
|
||||||
\end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
\begin{ccRefFunction}{compute_normal_of_cell_2<LCC>}
|
|
||||||
\ccInclude{Linear_cell_complex_operations.h}\\
|
|
||||||
\ccFunction{template <class LCC>
|
|
||||||
typename LCC::Vector compute_normal_of_cell_2(const LCC& lcc,
|
|
||||||
typename LCC::Dart_const_handle dh);}
|
|
||||||
{Returns the normal vector of the 2-cell containing \ccc{dh}.
|
|
||||||
\ccPrecond{\ccc{LCC::ambient_dimension}==3 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
|
||||||
\end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{insert_barycenter_in_cell<LCC,i>}
|
|
||||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC, unsigned int i>
|
|
||||||
% typename LCC::Dart_handle insert_barycenter_in_cell(LCC& lcc,
|
|
||||||
% typename LCC::Dart_handle dh);}
|
|
||||||
% {Inserts a point in the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
% Returns an handle on one dart of this cell.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% % \begin{ccAdvanced}
|
|
||||||
% If \emph{i}-attributes are non void,
|
|
||||||
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
% with \emph{a} the original \emph{i}-attribute associated
|
|
||||||
% with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
|
|
||||||
% % \end{ccAdvanced}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{insert_point_in_cell<LCC,i>}
|
|
||||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC, unsigned int i>
|
|
||||||
% typename LCC::Dart_handle insert_point_in_cell(LCC& lcc,
|
|
||||||
% typename LCC::Dart_handle dh,
|
|
||||||
% typename LCC::Point p);}
|
|
||||||
% {Inserts a point, copy of \ccc{p}, in the \emph{i}-cell containing \ccc{dh}.
|
|
||||||
% Returns an handle on one dart of this cell.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% % \begin{ccAdvanced}
|
|
||||||
% If \emph{i}-attributes are non void,
|
|
||||||
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
% with $a$ the original \emph{i}-attribute associated
|
|
||||||
% with $dh$ and $a'$ each new \emph{i}-attribute created during the operation.
|
|
||||||
% % \end{ccAdvanced}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{insert_cell_0_in_cell_2<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle insert_cell_0_in_cell_2(LCC & lcc,
|
|
||||||
% typename LCC::Dart_handle dh,
|
|
||||||
% typename LCC::Point p);}
|
|
||||||
% {Inserts a 0-cell in the 2-cell containing \ccc{dh}, associated with
|
|
||||||
% a 0-attribute having \ccc{p} as point.
|
|
||||||
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
|
|
||||||
% Returns an handle on one dart belonging to the new 0-cell.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% % \begin{ccAdvanced}
|
|
||||||
% If 2-attributes are non void,
|
|
||||||
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
% with \emph{a} the original 2-attribute associated
|
|
||||||
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
|
|
||||||
% % \end{ccAdvanced}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{insert_center_cell_0_in_cell_2<LCC>}
|
|
||||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle insert_center_cell_0_in_cell_2(LCC & lcc,
|
|
||||||
% typename LCC::Dart_handle dh);}
|
|
||||||
% {Inserts a 0-cell in the barycenter of the 2-cell containing \ccc{dh}.
|
|
||||||
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
|
|
||||||
% Returns an handle on one dart belonging to the new 0-cell.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
|
||||||
% % \begin{ccAdvanced}
|
|
||||||
% If 2-attributes are non void,
|
|
||||||
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
|
|
||||||
% with \emph{a} the original 2-attribute associated
|
|
||||||
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
|
|
||||||
% % \end{ccAdvanced}
|
|
||||||
% }
|
|
||||||
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
% \begin{ccRefFunction}{insert_dangling_cell_1_in_cell_2<LCC>}
|
|
||||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
|
||||||
|
|
||||||
% \ccFunction{template <class LCC>
|
|
||||||
% typename LCC::Dart_handle insert_dangling_cell_1_in_cell_2(LCC& lcc,
|
|
||||||
% typename LCC::Dart_handle dh,
|
|
||||||
% typename LCC::Point p);}
|
|
||||||
% {Inserts a 1-cell in a the 2-cell containing \ccc{adart}, the 1-cell
|
|
||||||
% being attached only by one of its vertex to the 0-cell containing \ccc{dh}.
|
|
||||||
% The second vertex is associated with a new 0-attribute containing a copy of
|
|
||||||
% \ccc{p} as point. Returns an handle on one dart belonging to the new 0-cell.
|
|
||||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
|
||||||
% }
|
|
||||||
% \ccSeeAlso
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
|
||||||
% \end{ccRefFunction}
|
|
||||||
%--------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
@ -1,152 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Reference manual page: LinearCellComplexTraits.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | 04.02.2010 Guillaume Damiand
|
|
||||||
% | Package: Combinatorial_map
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\ccRefPageBegin
|
|
||||||
%%RefPage: end of header, begin of main body
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
\begin{ccRefClass}{Linear_cell_complex_traits<d,K>}
|
|
||||||
|
|
||||||
\ccInclude{CGAL/Linear_cell_complex_traits.h}
|
|
||||||
|
|
||||||
\ccDefinition
|
|
||||||
|
|
||||||
This geometric traits concept is used in the
|
|
||||||
\ccc{Linear_cell_complex} class. It can take as parameter any model of the
|
|
||||||
concept \ccc{Kernel} (for example any \cgal\ kernel), and define inner
|
|
||||||
types and functors corresponding to the given dimension.
|
|
||||||
|
|
||||||
\ccIsModel
|
|
||||||
\ccRefConceptPage{LinearCellComplexTraits}
|
|
||||||
|
|
||||||
\ccInheritsFrom
|
|
||||||
\ccc{K}.
|
|
||||||
|
|
||||||
\ccParameters
|
|
||||||
\ccc{d} the dimension of the kernel\\
|
|
||||||
\ccc{K} a model of the concept \ccc{Kernel} if \ccc{d==2} or
|
|
||||||
\ccc{d==3}; a model of the concept \ccc{Kernel_d} otherwise.
|
|
||||||
|
|
||||||
\ccConstants
|
|
||||||
\ccVariable{static unsigned int ambient_dimension = d;}{}
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
% \ccTypedef{typedef K Kernel;}{}
|
|
||||||
|
|
||||||
\ccSeeAlso
|
|
||||||
|
|
||||||
%\ccRefConceptPage{LinearCellComplex}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}
|
|
||||||
|
|
||||||
\end{ccRefClass}
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
%%RefPage: end of main body, begin of footer
|
|
||||||
\ccRefPageEnd
|
|
||||||
% EOF
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
|
|
||||||
%for example \ccc{CGAL::Cartesian<double>} or \ccc{CGAL::Simple_cartesian<CGAL::Gmpq>}.
|
|
||||||
|
|
||||||
% \ccRefines
|
|
||||||
% \ccc{CopyConstructable}, \ccc{Assignable}.
|
|
||||||
|
|
||||||
% ... Question is all these typedef required ?
|
|
||||||
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
|
|
||||||
% % \ccNestedType{Kernel}{kernel type.}
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::FT FT;}{Number type.}
|
|
||||||
|
|
||||||
% \subsection{If \ccc{Dimension==2}}
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Point_2 Point;}{point type.}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Vector_2 Vector;}{vector type.}
|
|
||||||
% % \ccGlue
|
|
||||||
% % \ccTypedef{Kernel::Iso_rectangle_2 Iso_rectangle}{iso rectangle type.}
|
|
||||||
|
|
||||||
% \ccHeading{Constructions}
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Construct_translated_point_2 Construct_translated_point;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_vector_2 Construct_vector;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_sum_of_vectors_2 Construct_sum_of_vectors;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_scaled_vector_2 Construct_scaled_vector;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_midpoint_2 Construct_midpoint;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_direction_2 Construct_direction;}{}
|
|
||||||
|
|
||||||
% ...
|
|
||||||
|
|
||||||
% \subsection{If \ccc{Dimension==3}}
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Point_3 Point;}{point type.}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Vector_3 Vector;}{vector type.}
|
|
||||||
% % \ccGlue
|
|
||||||
% % \ccTypedef{Kernel::Iso_cuboid_3 }{iso cuboid type.}
|
|
||||||
|
|
||||||
% \ccHeading{Constructions}
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Construct_translated_point_3 Construct_translated_point;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_vector_3 Construct_vector;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_sum_of_vectors_3 Construct_sum_of_vectors;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_scaled_vector_3 Construct_scaled_vector;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_midpoint_3 Construct_midpoint;}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_direction_3 Construct_direction;}{}
|
|
||||||
|
|
||||||
% ...
|
|
||||||
|
|
||||||
% \subsection{If \ccc{Dimension>3}}
|
|
||||||
|
|
||||||
% \ccTypes
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Point_d;}{point type.}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Vector_d;}{vector type.}
|
|
||||||
|
|
||||||
% \ccHeading{Constructions}
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Construct_vector_d;}{a model of \ccc{Kernel::ConstructVector_d}}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Construct_midpoint_d;}{a model of \ccc{Kernel::ConstructMidpoint_d}}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{Kernel::Point_to_vector_d;}{a model of \ccc{Kernel::Point_to_vector_d}}
|
|
||||||
|
|
||||||
% \ccHeading{Generalized Predicates}
|
|
||||||
|
|
||||||
% \ccTypedef{Kernel::Compare_lexicographically_d;}{a model of \ccc{Kernel::Compare_lexicographically_d}}
|
|
||||||
|
|
||||||
% \ccHeading{Operators}
|
|
||||||
|
|
||||||
% Because there is no construction for these operations.
|
|
||||||
|
|
||||||
% \ccTypedef{Vector_d(int,Base_vector,FT);}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{operator+(Point_d,Point_d);}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{operator+(Point_d,Vector_d);}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{operator+(Vector_d,Vector_d);}{}
|
|
||||||
% \ccGlue
|
|
||||||
% \ccTypedef{operator*(Vector_d,FT);}{}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,136 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #979797
|
|
||||||
0 33 #000000
|
|
||||||
0 34 #ff0000
|
|
||||||
6 5840 4297 6217 4674
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 6028 4485 173 173 6028 4485 6201 4485
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 5940 4525 p4\001
|
|
||||||
-6
|
|
||||||
6 3915 2379 4292 2756
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4104 2567 173 173 4104 2567 4276 2567
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 4012 2624 p1\001
|
|
||||||
-6
|
|
||||||
6 5881 2379 6258 2756
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 6070 2567 173 173 6070 2567 6242 2567
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 5978 2624 p2\001
|
|
||||||
-6
|
|
||||||
6 3915 4297 4292 4674
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4104 4485 173 173 4104 4485 4276 4485
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 4012 4542 p3\001
|
|
||||||
-6
|
|
||||||
6 4874 1420 5251 1797
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 5063 1608 173 173 5063 1608 5235 1608
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 4971 1665 p0\001
|
|
||||||
-6
|
|
||||||
6 8722 908 9100 1286
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 8911 1097 173 173 8911 1097 9084 1097
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 8819 1153 p0\001
|
|
||||||
-6
|
|
||||||
6 7396 2150 7773 2527
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7584 2338 173 173 7584 2338 7757 2338
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 7493 2395 p1\001
|
|
||||||
-6
|
|
||||||
6 9995 2153 10372 2530
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 10183 2342 173 173 10183 2342 10356 2342
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 10092 2398 p2\001
|
|
||||||
-6
|
|
||||||
6 10076 4313 10453 4690
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 10264 4501 173 173 10264 4501 10437 4501
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 10176 4541 p4\001
|
|
||||||
-6
|
|
||||||
6 7482 4381 7859 4758
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7671 4570 173 173 7671 4570 7843 4570
|
|
||||||
4 0 33 55 -1 0 13 0.0000 4 192 224 7579 4626 p3\001
|
|
||||||
-6
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4299 4482 5881 4482
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4299 2564 5881 2564
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4107 2756 4107 4338
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6025 2708 6025 4290
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5210 1653 5977 2420
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4898 1629 4130 2396
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
8087 2660 8087 4386
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8909 2353 8902 2756
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
8087 4386 9766 4386
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
9766 4386 9766 2660
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
8039 2468 9814 2468
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
9766 2660 8087 2660
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
9957 4578 7895 4578
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
7895 4578 7895 2325
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
9957 2372 9957 4578
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8902 4290 8902 4674
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8183 3523 7799 3523
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
10053 3523 9670 3523
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
7895 2325 8902 1318
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
8902 1605 8039 2468
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
9766 2468 8902 1605
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 191.81 191.81
|
|
||||||
8902 1318 9957 2372
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8605 2020 8333 1748
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9558 1803 9286 2075
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9025 1419 9090 1306 9009 1225
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8815 1710 8562 1397 8756 1193
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9558 2248 9827 2038 10085 2167
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9665 2657 9849 2528 10032 2431
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
9972 2673 10101 2479
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
8019 2193 7685 2200
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8180 2474 8008 2641 7631 2506
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8072 2899 7723 2823 7583 2506
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7878 4261 7712 4401
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
8229 4374 8180 4449 7820 4497
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9784 4223 10177 4255 10220 4331
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
9784 4584 9983 4675 10117 4622
|
|
||||||
|
|
@ -1,183 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ff0000
|
|
||||||
0 35 #008000
|
|
||||||
0 36 #0000ff
|
|
||||||
0 37 #000000
|
|
||||||
0 38 #000000
|
|
||||||
0 39 #000000
|
|
||||||
0 40 #000000
|
|
||||||
0 41 #000000
|
|
||||||
0 42 #000000
|
|
||||||
0 43 #000000
|
|
||||||
0 44 #000000
|
|
||||||
0 45 #000000
|
|
||||||
0 46 #000000
|
|
||||||
0 47 #000000
|
|
||||||
0 48 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
0 50 #000000
|
|
||||||
0 51 #000000
|
|
||||||
0 52 #a0a0a0
|
|
||||||
0 53 #009000
|
|
||||||
0 54 #979797
|
|
||||||
6 647 2587 1111 3051
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 879 2819 212 212 879 2819 1091 2819
|
|
||||||
4 0 32 55 -1 0 16 0.0000 4 236 275 769 2883 p0\001
|
|
||||||
-6
|
|
||||||
6 -40 24 4216 2709
|
|
||||||
6 362 24 3866 904
|
|
||||||
2 1 0 2 32 0 625 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2729 118 3846 523
|
|
||||||
2 1 0 2 32 0 232 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
3846 523 1049 818
|
|
||||||
2 1 0 2 32 0 353 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
1049 818 382 310
|
|
||||||
2 1 0 2 32 0 746 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
382 310 2729 118
|
|
||||||
-6
|
|
||||||
6 -40 483 807 2600
|
|
||||||
2 1 0 2 32 0 681 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
129 1752 62 502
|
|
||||||
2 1 0 2 32 0 334 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
62 502 652 1064
|
|
||||||
2 1 0 2 32 0 134 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
652 1064 698 2580
|
|
||||||
2 1 0 2 32 0 481 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
698 2580 129 1752
|
|
||||||
-6
|
|
||||||
6 2807 224 4216 2020
|
|
||||||
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
4131 669 2982 244
|
|
||||||
2 1 0 2 32 0 518 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
3979 2000 4131 669
|
|
||||||
2 1 0 2 32 0 782 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2908 1364 3979 2000
|
|
||||||
2 1 0 2 32 0 934 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2982 244 2908 1364
|
|
||||||
-6
|
|
||||||
6 1042 687 4023 2709
|
|
||||||
2 1 0 2 32 0 172 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
1159 1108 4004 772
|
|
||||||
2 1 0 2 32 0 92 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
1173 2643 1159 1108
|
|
||||||
2 1 0 2 32 0 337 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
3853 2152 1173 2643
|
|
||||||
2 1 0 2 32 0 417 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
4004 772 3853 2152
|
|
||||||
-6
|
|
||||||
6 245 203 2713 1649
|
|
||||||
2 1 0 2 32 0 809 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2611 223 324 420
|
|
||||||
2 1 0 2 32 0 954 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2554 1334 2611 223
|
|
||||||
2 1 0 2 32 0 907 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
376 1629 2554 1334
|
|
||||||
2 1 0 2 32 0 761 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
324 420 376 1629
|
|
||||||
-6
|
|
||||||
6 414 1425 3685 2618
|
|
||||||
2 1 0 2 32 0 769 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
3666 2120 2641 1444
|
|
||||||
2 1 0 2 32 0 427 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
1063 2599 3666 2120
|
|
||||||
2 1 0 2 32 0 532 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
433 1765 1063 2599
|
|
||||||
2 1 0 2 32 0 874 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 235.85 235.85
|
|
||||||
2641 1444 433 1765
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 2701 -334 3165 130
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2933 -102 212 212 2933 -102 3145 -102
|
|
||||||
4 0 32 55 -1 0 16 0.0000 4 236 275 2823 -38 p1\001
|
|
||||||
-6
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 2725 1292 118 118 2725 1292 2843 1292
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 155 306 118 118 155 306 273 306
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 918 1041 118 118 918 1041 1036 1041
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 -40 1684 118 118 -40 1684 78 1684
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 4044 2229 118 118 4044 2229 4162 2229
|
|
||||||
1 3 0 2 32 32 55 -1 20 0.000 1 0.0000 4163 488 118 118 4163 488 4281 488
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1133 2591 1080 2728
|
|
||||||
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1167 1987 1265 1911
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1167 2376 1073 2459 987 2643
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
524 2345 541 2630 682 2726
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
182 604 184 382
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
664 279 531 182 235 231
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
324 530 192 354
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
0 1629 104 1522
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
483 1624 416 1723 23 1662
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
478 1837 7 1697
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
923 724 905 953
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
657 1190 862 1080
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1260 1084 1158 1029 995 994
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2564 1184 2682 1244
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2556 1456 2647 1330
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2979 1398 2879 1430 2760 1362
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2975 206 2978 93
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2385 241 2399 -64 2729 -154
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2971 378 2849 295 2865 95
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3769 2170 3946 2257
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3588 2063 3713 2022 4051 2191
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4006 1830 4082 1913 4063 2141
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4017 631 4099 535
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3988 1009 4251 802 4217 560
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3506 568 3635 644 4087 530
|
|
||||||
4 0 0 60 -1 0 16 0.0000 4 118 79 1297 1953 r\001
|
|
||||||
|
|
@ -1,200 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ff0000
|
|
||||||
0 35 #008000
|
|
||||||
0 36 #0000ff
|
|
||||||
0 37 #000000
|
|
||||||
0 38 #000000
|
|
||||||
0 39 #000000
|
|
||||||
0 40 #000000
|
|
||||||
0 41 #000000
|
|
||||||
0 42 #000000
|
|
||||||
0 43 #000000
|
|
||||||
0 44 #000000
|
|
||||||
0 45 #000000
|
|
||||||
0 46 #000000
|
|
||||||
0 47 #000000
|
|
||||||
0 48 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
0 50 #000000
|
|
||||||
0 51 #000000
|
|
||||||
0 52 #a0a0a0
|
|
||||||
0 53 #979797
|
|
||||||
6 1907 2559 2394 3046
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2151 2803 223 223 2151 2803 2374 2803
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 2032 2876 p0\001
|
|
||||||
-6
|
|
||||||
6 1839 707 2327 1194
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2083 950 223 223 2083 950 2306 950
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 1969 1001 p5\001
|
|
||||||
-6
|
|
||||||
6 4884 240 5371 727
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 5127 484 223 223 5127 484 5350 484
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 5013 535 p6\001
|
|
||||||
-6
|
|
||||||
6 5271 2819 5758 3307
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 5514 3063 223 223 5514 3063 5737 3063
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 5400 3114 p1\001
|
|
||||||
-6
|
|
||||||
6 3772 -392 4260 95
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 4016 -148 223 223 4016 -148 4239 -148
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 3902 -97 p7\001
|
|
||||||
-6
|
|
||||||
6 628 240 1115 727
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 871 484 223 223 871 484 1094 484
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 757 535 p4\001
|
|
||||||
-6
|
|
||||||
6 88 94 5484 3254
|
|
||||||
6 1136 94 4746 736
|
|
||||||
2 1 0 2 32 0 764 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
3855 177 4725 551
|
|
||||||
2 1 0 2 32 0 402 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
4725 551 2273 621
|
|
||||||
2 1 0 2 32 0 429 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
2273 621 1156 540
|
|
||||||
2 1 0 2 32 0 791 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
1156 540 3855 177
|
|
||||||
-6
|
|
||||||
6 356 339 3677 2595
|
|
||||||
2 1 0 2 32 0 841 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
3655 360 1006 744
|
|
||||||
2 1 0 2 32 0 983 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
3157 1826 3655 360
|
|
||||||
2 1 0 2 32 0 926 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
377 2574 3157 1826
|
|
||||||
2 1 0 2 32 0 784 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
1006 744 377 2574
|
|
||||||
-6
|
|
||||||
6 88 780 1879 3030
|
|
||||||
2 1 0 2 32 0 700 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
109 2709 745 800
|
|
||||||
2 1 0 2 32 0 386 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
745 800 1786 945
|
|
||||||
2 1 0 2 32 0 87 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
1786 945 1750 3009
|
|
||||||
2 1 0 2 32 0 400 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
1750 3009 109 2709
|
|
||||||
-6
|
|
||||||
6 3573 329 5484 2613
|
|
||||||
2 1 0 2 32 0 803 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
5001 751 4103 350
|
|
||||||
2 1 0 2 32 0 670 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
5463 2592 5001 751
|
|
||||||
2 1 0 2 32 0 841 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
3593 1825 5463 2592
|
|
||||||
2 1 0 2 32 0 973 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
4103 350 3593 1825
|
|
||||||
-6
|
|
||||||
6 438 2037 5155 3254
|
|
||||||
2 1 0 2 32 0 813 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
5134 2882 3291 2058
|
|
||||||
2 1 0 2 32 0 381 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
2195 3192 5134 2882
|
|
||||||
2 1 0 2 32 0 458 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
458 2845 2195 3192
|
|
||||||
2 1 0 2 32 0 890 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
3291 2058 458 2845
|
|
||||||
-6
|
|
||||||
6 2323 700 5469 3117
|
|
||||||
2 1 0 2 32 0 338 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
2448 937 4936 809
|
|
||||||
2 1 0 2 32 0 63 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
2447 3022 2448 937
|
|
||||||
2 1 0 2 32 0 299 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
5422 2742 2447 3022
|
|
||||||
2 1 0 2 32 0 574 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 247.85 247.85
|
|
||||||
4936 809 5422 2742
|
|
||||||
-6
|
|
||||||
-6
|
|
||||||
6 -247 2812 241 3300
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 -3 3056 223 223 -3 3056 220 3056
|
|
||||||
4 0 32 55 -1 0 17 0.0000 4 248 289 -117 3107 p3\001
|
|
||||||
-6
|
|
||||||
6 3018 1505 3505 1993
|
|
||||||
1 3 0 2 32 7 54 -1 20 0.000 1 0.0000 3262 1749 223 223 3262 1749 3485 1749
|
|
||||||
4 0 32 53 -1 0 17 0.0000 4 248 289 3147 1800 p2\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2328 1658 2441 1580
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
212 2376 -62 2607 -47 2840
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
575 2541 212 2969
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
209 3063 509 3145 827 2925
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1970 2771 1557 2829 1547 2986
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2458 2534 2247 2597
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2415 3183 2221 3024
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2302 864 2551 810 2832 930
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2167 749 2189 634
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
891 1091 760 687
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4074 58 3958 221
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
4906 511 4745 631
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3438 1603 3300 1372
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
3154 1924 3037 2107
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4398 583 4548 733 5001 664
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5393 2884 5222 2764
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4645 2654 4948 2687 5332 2953
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5414 2286 5615 2440 5666 2892
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3453 1874 3661 2022 3873 1945
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
3793 -70 3465 -22 3449 369
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4155 42 3958 340 4059 481
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5231 690 5282 1048 4994 1087
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1070 343 1410 259 1594 470
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
917 820 884 712
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1965 1128 1754 1191
|
|
||||||
4 0 0 60 -1 0 21 0.0000 4 165 124 2193 1742 r\001
|
|
||||||
|
|
@ -1,51 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #979797
|
|
||||||
0 33 #000000
|
|
||||||
0 34 #ff0000
|
|
||||||
6 4628 4271 5145 4788
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4886 4530 237 237 4886 4530 5123 4530
|
|
||||||
4 0 33 55 -1 0 18 0.0000 4 263 307 4765 4584 p3\001
|
|
||||||
-6
|
|
||||||
6 4644 6324 5161 6841
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4902 6583 237 237 4902 6583 5139 6583
|
|
||||||
4 0 33 55 -1 0 18 0.0000 4 263 307 4777 6660 p0\001
|
|
||||||
-6
|
|
||||||
6 7106 5794 7622 6311
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7364 6053 237 237 7364 6053 7601 6053
|
|
||||||
4 0 33 55 -1 0 18 0.0000 4 263 307 7243 6107 p1\001
|
|
||||||
-6
|
|
||||||
6 7329 3931 7846 4448
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7587 4190 237 237 7587 4190 7824 4190
|
|
||||||
4 0 33 55 -1 0 18 0.0000 4 263 307 7466 4244 p2\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
4954 4774 4946 4923 5104 4987
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5313 6321 5231 6454 5119 6458
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7358 4196 7266 4217 7202 4390
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7219 5664 7332 5711 7365 5812
|
|
||||||
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5688 6305 5720 6215
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 218.99 218.99
|
|
||||||
7219 5803 5117 6365
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 218.99 218.99
|
|
||||||
7364 4366 7209 5807
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 218.99 218.99
|
|
||||||
5116 4747 7364 4372
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 218.99 218.99
|
|
||||||
5116 6366 5114 4746
|
|
||||||
4 0 0 60 -1 0 18 0.0000 4 131 88 5573 6470 r\001
|
|
||||||
|
|
@ -1,46 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #979797
|
|
||||||
0 33 #000000
|
|
||||||
0 34 #ff0000
|
|
||||||
0 35 #009000
|
|
||||||
6 4691 6126 5171 6607
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4931 6367 220 220 4931 6367 5151 6367
|
|
||||||
4 0 33 55 -1 0 16 0.0000 4 244 285 4813 6433 p0\001
|
|
||||||
-6
|
|
||||||
6 7483 4061 7963 4541
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7723 4301 220 220 7723 4301 7943 4301
|
|
||||||
4 0 33 55 -1 0 16 0.0000 4 244 285 7605 4368 p1\001
|
|
||||||
-6
|
|
||||||
1 3 0 2 33 33 55 -1 20 0.000 1 0.0000 4953 4278 122 122 4953 4278 5075 4278
|
|
||||||
1 3 0 2 33 33 55 -1 20 0.000 1 0.0000 7672 6154 122 122 7672 6154 7794 6154
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5148 6303 5285 6272 5316 6120
|
|
||||||
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5662 6190 5719 6126
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 203.54 203.54
|
|
||||||
7489 6126 5046 6126
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 203.54 203.54
|
|
||||||
5046 4416 7489 4416
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 203.54 203.54
|
|
||||||
5046 6126 5046 4416
|
|
||||||
2 1 0 2 0 32 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 2.00 203.54 203.54
|
|
||||||
7489 4416 7489 6126
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7308 4393 7508 4282
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5033 4566 4949 4502 4913 4350
|
|
||||||
2 1 0 1 34 7 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
7483 5981 7639 6065
|
|
||||||
4 0 0 60 -1 0 16 0.0000 4 122 81 5590 6341 r\001
|
|
||||||
|
|
@ -1,35 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #979797
|
|
||||||
0 33 #000000
|
|
||||||
0 34 #ff0000
|
|
||||||
6 4630 5292 5142 5804
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4886 5548 234 234 4886 5548 5120 5548
|
|
||||||
4 0 33 55 -1 0 17 0.0000 4 260 303 4762 5625 p0\001
|
|
||||||
-6
|
|
||||||
6 7750 4135 8262 4647
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 8006 4391 234 234 8006 4391 8240 4391
|
|
||||||
4 0 33 55 -1 0 17 0.0000 4 260 303 7886 4445 p1\001
|
|
||||||
-6
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 260.00 260.00
|
|
||||||
7651 4637 5243 5563
|
|
||||||
2 1 0 1 32 32 55 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
6346 4726 6540 5200
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5376 5230 4957 5175 4859 5318
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7561 4673 7761 4758 7899 4609
|
|
||||||
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5634 5040 5695 5108
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
|
|
||||||
0 0 2.00 260.00 260.00
|
|
||||||
5166 5308 7629 4387
|
|
||||||
4 0 0 60 -1 0 17 0.0000 4 130 87 5536 5057 r\001
|
|
||||||
|
|
@ -1,114 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Portrait
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #000000
|
|
||||||
0 33 #808080
|
|
||||||
0 34 #ff0000
|
|
||||||
0 35 #008000
|
|
||||||
0 36 #0000ff
|
|
||||||
0 37 #000000
|
|
||||||
0 38 #000000
|
|
||||||
0 39 #000000
|
|
||||||
0 40 #000000
|
|
||||||
0 41 #000000
|
|
||||||
0 42 #000000
|
|
||||||
0 43 #000000
|
|
||||||
0 44 #000000
|
|
||||||
0 45 #000000
|
|
||||||
0 46 #000000
|
|
||||||
0 47 #000000
|
|
||||||
0 48 #000000
|
|
||||||
0 49 #dddddd
|
|
||||||
0 50 #000000
|
|
||||||
0 51 #000000
|
|
||||||
0 52 #a0a0a0
|
|
||||||
0 53 #979797
|
|
||||||
6 157 157 2779 3921
|
|
||||||
2 1 0 2 32 0 986 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
388 2696 2484 3107
|
|
||||||
2 1 0 2 32 0 811 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
1985 482 388 2701
|
|
||||||
2 1 0 2 32 0 824 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
2494 3116 1995 471
|
|
||||||
2 1 0 2 32 0 456 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
1380 3620 180 2701
|
|
||||||
2 1 0 2 32 0 288 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
1968 180 1380 3620
|
|
||||||
2 1 0 2 32 0 744 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
180 2701 1968 180
|
|
||||||
2 1 0 2 32 0 760 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
2185 223 2719 3196
|
|
||||||
2 1 0 2 32 0 472 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
2719 3196 1629 3669
|
|
||||||
2 1 0 2 32 0 291 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
1629 3669 2185 223
|
|
||||||
2 1 0 2 32 0 492 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
310 3007 1445 3900
|
|
||||||
2 1 0 2 32 0 505 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
1445 3900 2593 3439
|
|
||||||
2 1 0 2 32 0 953 0 -1 0.000 1 0 7 1 0 2
|
|
||||||
0 0 2.00 221.92 221.92
|
|
||||||
2576 3423 321 3013
|
|
||||||
-6
|
|
||||||
6 -343 -360 3206 4446
|
|
||||||
6 1214 3923 1738 4446
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 1475 4185 240 240 1475 4185 1715 4185
|
|
||||||
4 0 32 55 -1 0 18 0.0000 4 266 311 1353 4240 p1\001
|
|
||||||
-6
|
|
||||||
6 2682 3139 3206 3663
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2944 3401 240 240 2944 3401 3183 3401
|
|
||||||
4 0 32 55 -1 0 18 0.0000 4 266 311 2821 3456 p2\001
|
|
||||||
-6
|
|
||||||
6 -343 2627 180 3151
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 -82 2888 240 240 -82 2888 157 2888
|
|
||||||
4 0 32 55 -1 0 18 0.0000 4 266 311 -209 2967 p0\001
|
|
||||||
-6
|
|
||||||
6 1912 -360 2436 164
|
|
||||||
1 3 0 2 32 53 55 -1 -1 0.000 1 0.0000 2174 -98 240 240 2174 -98 2414 -98
|
|
||||||
4 0 32 55 -1 0 18 0.0000 4 266 311 2051 -43 p3\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2140 3344 2399 3195 2721 3307
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
2710 3389 2474 3302
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
106 3041 310 3282 606 3247
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
373 2437 20 2489 10 2659
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
544 2736 488 2856 179 2898
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1247 3513 1140 3789 1298 4003
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
1712 3778 1635 4018
|
|
||||||
2 1 0 1 34 53 600 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1649 3555 1549 3635 1544 3947
|
|
||||||
2 1 0 1 0 53 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
593 3389 684 3291
|
|
||||||
2 1 0 1 34 53 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2291 109 2393 285 2265 563
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
1931 -30 1748 223 1812 682
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2019 79 2045 256 1942 433
|
|
||||||
2 1 0 1 34 53 800 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
2441 2815 2815 2883 2904 3164
|
|
||||||
4 0 0 60 -1 0 18 0.0000 4 133 89 470 3553 r\001
|
|
||||||
-6
|
|
||||||
|
|
@ -1,42 +0,0 @@
|
||||||
#FIG 3.2 Produced by xfig version 3.2.5b
|
|
||||||
Landscape
|
|
||||||
Center
|
|
||||||
Metric
|
|
||||||
A4
|
|
||||||
100.00
|
|
||||||
Single
|
|
||||||
-2
|
|
||||||
1200 2
|
|
||||||
0 32 #979797
|
|
||||||
0 33 #000000
|
|
||||||
0 34 #ff0000
|
|
||||||
6 4599 5014 5069 5483
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 4834 5249 215 215 4834 5249 5049 5249
|
|
||||||
4 0 33 55 -1 0 16 0.0000 4 239 279 4720 5319 p0\001
|
|
||||||
-6
|
|
||||||
6 7391 4005 7860 4475
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7625 4240 215 215 7625 4240 7840 4240
|
|
||||||
4 0 33 55 -1 0 16 0.0000 4 239 279 7515 4289 p2\001
|
|
||||||
-6
|
|
||||||
6 6865 6463 7335 6933
|
|
||||||
1 3 0 2 33 32 55 -1 -1 0.000 1 0.0000 7100 6698 215 215 7100 6698 7315 6698
|
|
||||||
4 0 33 55 -1 0 16 0.0000 4 239 279 6990 6747 p1\001
|
|
||||||
-6
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7234 4435 7246 4301 7416 4201
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
5328 5359 5129 5458 4986 5416
|
|
||||||
2 1 0 1 34 32 60 -1 -1 0.000 0 0 -1 0 0 3
|
|
||||||
7092 6483 7124 6322 7000 6191
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 1.00 119.45 119.45
|
|
||||||
6967 6423 5124 5237
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 1.00 119.45 119.45
|
|
||||||
5120 5239 7383 4393
|
|
||||||
2 1 0 2 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
|
|
||||||
0 0 1.00 119.45 119.45
|
|
||||||
7360 4404 6963 6435
|
|
||||||
2 1 0 1 0 32 60 -1 -1 0.000 0 0 -1 0 0 2
|
|
||||||
5352 5477 5408 5414
|
|
||||||
4 0 0 60 -1 0 16 0.0000 4 119 80 5251 5617 r\001
|
|
||||||
|
Before Width: | Height: | Size: 12 KiB |
|
Before Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 6.3 KiB |
|
Before Width: | Height: | Size: 4.3 KiB |
|
Before Width: | Height: | Size: 4.1 KiB |
|
Before Width: | Height: | Size: 14 KiB |
|
Before Width: | Height: | Size: 5.7 KiB |
|
|
@ -1,47 +0,0 @@
|
||||||
\ccRefChapter{Linear cell complex}
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Classified Reference Pages}
|
|
||||||
|
|
||||||
\subsection{Concepts}
|
|
||||||
|
|
||||||
%\ccRefConceptPage{LinearCellComplex}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexTraits}\\
|
|
||||||
\ccRefConceptPage{LinearCellComplexItems}\\
|
|
||||||
\ccRefConceptPage{CellAttributeWithPoint}
|
|
||||||
%\ccRefConceptPage{LinearCellComplexTraitsVector}
|
|
||||||
|
|
||||||
\subsection{Classes}
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_cartesian_traits}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_epik_traits}\\
|
|
||||||
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
|
||||||
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}
|
|
||||||
|
|
||||||
\subsection{Global Functions}
|
|
||||||
|
|
||||||
\subsubsection{Constructions for Linear cell complex}
|
|
||||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::make_square}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
|
||||||
%\ccRefIdfierPage{CGAL::make_cube}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}
|
|
||||||
|
|
||||||
\subsubsection{Operations for Linear cell complex}
|
|
||||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
|
||||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_point_in_cell<LCC,i>}\\
|
|
||||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,36 +0,0 @@
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | CBP Reference Manual: main.tex
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
% | Automatically generated driver file for the reference manual chapter
|
|
||||||
% | of this package. Do not edit manually, you may loose your changes.
|
|
||||||
% +------------------------------------------------------------------------+
|
|
||||||
\def\ccTagRmTrailingConst{\ccFalse}
|
|
||||||
|
|
||||||
\input{Linear_cell_complex_ref/intro.tex}
|
|
||||||
|
|
||||||
% First: concepts
|
|
||||||
% \input{Linear_cell_complex_ref/LinearCellComplex.tex}
|
|
||||||
|
|
||||||
\input{Linear_cell_complex_ref/LinearCellComplexTraits.tex}
|
|
||||||
\input{Linear_cell_complex_ref/LinearCellComplexItems.tex}
|
|
||||||
\input{Linear_cell_complex_ref/CellAttributeWithPoint.tex}
|
|
||||||
|
|
||||||
%\input{Linear_cell_complex_ref/LinearCellComplexTraitsVector.tex}
|
|
||||||
|
|
||||||
% Second: classes
|
|
||||||
\input{Linear_cell_complex_ref/Linear_cell_complex.tex}
|
|
||||||
|
|
||||||
\input{Linear_cell_complex_ref/Linear_cell_complex_min_items.tex}
|
|
||||||
\input{Linear_cell_complex_ref/Linear_cell_complex_traits.tex}
|
|
||||||
%\input{Linear_cell_complex_ref/Linear_cell_complex_cartesian_traits.tex}
|
|
||||||
%\input{Linear_cell_complex_ref/Linear_cell_complex_epik_traits.tex}
|
|
||||||
|
|
||||||
\input{Linear_cell_complex_ref/Cell_attribute_with_point.tex}
|
|
||||||
%\input{Linear_cell_complex_ref/Cell_attribute_with_point_and_info.tex}
|
|
||||||
|
|
||||||
|
|
||||||
% Third: global functions.
|
|
||||||
\input{Linear_cell_complex_ref/Linear_cell_complex_constructors.tex}
|
|
||||||
\input{Linear_cell_complex_ref/Linear_cell_complex_operations.tex}
|
|
||||||
|
|
||||||
%% EOF
|
|
||||||
|
|
@ -1,62 +0,0 @@
|
||||||
# Created by the script cgal_create_cmake_script
|
|
||||||
# This is the CMake script for compiling a CGAL application.
|
|
||||||
|
|
||||||
# cmake ../ -DCMAKE_BUILD_TYPE=Debug
|
|
||||||
# ou
|
|
||||||
# cmake ../ -DCMAKE_BUILD_TYPE=Release
|
|
||||||
|
|
||||||
project( Map_3_examples )
|
|
||||||
|
|
||||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.5)
|
|
||||||
|
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x -Wall")
|
|
||||||
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true)
|
|
||||||
|
|
||||||
if ( COMMAND cmake_policy )
|
|
||||||
cmake_policy( SET CMP0003 NEW )
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
# ADD_DEFINITIONS("-pg")
|
|
||||||
# set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pg")
|
|
||||||
|
|
||||||
# Pour le problème de valgrind avec CGAL
|
|
||||||
# add_definition(-DCGAL_DISABLE_ROUNDING_MATH_CHECK)
|
|
||||||
|
|
||||||
find_package(CGAL QUIET COMPONENTS Core )
|
|
||||||
|
|
||||||
if ( CGAL_FOUND )
|
|
||||||
|
|
||||||
include( ${CGAL_USE_FILE} )
|
|
||||||
|
|
||||||
include( CGAL_CreateSingleSourceCGALProgram )
|
|
||||||
include_directories(BEFORE ../../include)
|
|
||||||
include_directories(BEFORE ../../../Combinatorial_map/include)
|
|
||||||
|
|
||||||
create_single_source_cgal_program( "linear_cell_complex_3.cpp" )
|
|
||||||
create_single_source_cgal_program( "linear_cell_complex_4.cpp" )
|
|
||||||
create_single_source_cgal_program( "linear_cell_complex_3_with_colored_vertices.cpp" )
|
|
||||||
create_single_source_cgal_program( "map_3_subdivision.cpp" )
|
|
||||||
create_single_source_cgal_program( "plane_graph_to_map_2.cpp" )
|
|
||||||
create_single_source_cgal_program( "map_3_iterators.cpp" )
|
|
||||||
create_single_source_cgal_program( "exemple_incremental_builder.cpp" )
|
|
||||||
create_single_source_cgal_program( "polyhedron_clear.cpp" )
|
|
||||||
|
|
||||||
# If you want to visualize a map, there are 2 viewers based on qt and vtk
|
|
||||||
#include_directories("../../include/CGAL/Combinatorial_map_viewers/" )
|
|
||||||
#include("../../include/CGAL/Combinatorial_map_viewers/CMakeMapViewerQt.inc")
|
|
||||||
#include("../../include/CGAL/Combinatorial_map_viewers/CMakeMapViewerVtk.inc")
|
|
||||||
|
|
||||||
add_executable(voronoi_3 voronoi_3.cpp)
|
|
||||||
target_link_libraries(voronoi_3 ${CGAL_LIBRARIES} ${CGAL_3RD_PARTY_LIBRARIES})
|
|
||||||
# target_link_libraries(voronoi_3 ${MAP_VIEWER_LIBRARIES_QT})
|
|
||||||
# target_link_libraries(voronoi_3 ${MAP_VIEWER_LIBRARIES_VTK})
|
|
||||||
else()
|
|
||||||
|
|
||||||
message(STATUS "This program requires the CGAL library, and will not be compiled.")
|
|
||||||
|
|
||||||
endif()
|
|
||||||
|
|
||||||
|
|
@ -1,317 +0,0 @@
|
||||||
OFF
|
|
||||||
154 161 313
|
|
||||||
-0.000357203 -0.235365 -0.160125
|
|
||||||
-0.000357203 -0.201317 -0.488359
|
|
||||||
-0.000357203 -0.292821 0.0217439
|
|
||||||
0.190729 -0.13758 0.378379
|
|
||||||
0.13019 -0.267236 0.298845
|
|
||||||
0.190729 0.0100846 0.378379
|
|
||||||
0.0215368 0.217461 -0.51172
|
|
||||||
0.0299628 0.207248 -0.0999594
|
|
||||||
0.0292682 0.222545 -0.275104
|
|
||||||
0.0768803 0.121009 -0.13791
|
|
||||||
0.0359848 0.17055 -0.040928
|
|
||||||
0.0299468 -0.152925 -0.34216
|
|
||||||
0.025316 0.0079986 -0.671613
|
|
||||||
0.112137 0.0486489 -0.334468
|
|
||||||
0.17708 0.0141305 -0.001149
|
|
||||||
0.11094 0.149864 0.298845
|
|
||||||
0.0221919 -0.110187 -0.590456
|
|
||||||
0.0936803 -0.22453 0.026899
|
|
||||||
0.113404 -0.0498528 -0.316654
|
|
||||||
0.0652844 0.112329 -0.345801
|
|
||||||
0.17708 -0.120885 0.017739
|
|
||||||
0.0936803 0.144433 -0.0331753
|
|
||||||
-0.000357203 -0.335018 0.298845
|
|
||||||
-0.000357203 0.158995 -0.742002
|
|
||||||
-0.000357203 0.00799863 -0.742002
|
|
||||||
-0.000357203 0.231668 -0.508839
|
|
||||||
-0.000357203 -0.150077 -0.732558
|
|
||||||
-0.000357203 0.183546 0.298845
|
|
||||||
-0.000357203 0.232012 -0.275104
|
|
||||||
0.190729 0.0489168 0.495135
|
|
||||||
0.11094 0.149864 0.495135
|
|
||||||
0.13019 -0.267236 0.495135
|
|
||||||
0.190729 -0.0987481 0.495135
|
|
||||||
0.165251 0.0336246 0.567519
|
|
||||||
0.0961008 0.121112 0.567519
|
|
||||||
-0.000357203 0.150303 0.567519
|
|
||||||
-0.000357203 -0.299119 0.567519
|
|
||||||
0.112784 -0.240374 0.567519
|
|
||||||
0.165251 -0.0943517 0.567519
|
|
||||||
0.158169 0.0203713 0.567519
|
|
||||||
0.0832397 0.0961934 0.567519
|
|
||||||
-0.000357203 0.121493 0.567519
|
|
||||||
-0.000357203 -0.268007 0.567519
|
|
||||||
0.0976983 -0.217095 0.567519
|
|
||||||
0.158169 -0.0905415 0.567519
|
|
||||||
0.158169 0.0203713 0.484629
|
|
||||||
0.0832397 0.0961934 0.484629
|
|
||||||
-0.000357203 0.121493 0.484629
|
|
||||||
0.0976983 -0.217095 0.484629
|
|
||||||
0.158169 -0.0905415 0.484629
|
|
||||||
0.232021 -0.0969884 0.147736
|
|
||||||
0.222564 -0.0120031 0.135774
|
|
||||||
0.241484 -0.0124758 0.32577
|
|
||||||
0.251828 -0.105423 0.32577
|
|
||||||
0.221675 -0.0537317 -0.14475
|
|
||||||
0.547234 0.011391 0.135774
|
|
||||||
0.566079 0.0115894 0.32577
|
|
||||||
0.573698 -0.0568671 0.32577
|
|
||||||
0.545139 -0.0195028 -0.0723815
|
|
||||||
0.5542 -0.0512014 0.147736
|
|
||||||
0.873235 0.0322361 0.18891
|
|
||||||
0.883911 0.0323485 0.29654
|
|
||||||
0.888226 -0.00643099 0.29654
|
|
||||||
0.872049 0.0147353 0.0957062
|
|
||||||
0.877181 -0.00322145 0.195687
|
|
||||||
0.956323 0.0235341 0.192298
|
|
||||||
0.963222 0.0286616 0.264585
|
|
||||||
0.143323 0.0162689 -0.433251
|
|
||||||
0.0684487 0.00718598 -0.642478
|
|
||||||
0.142247 0.0417387 -0.448393
|
|
||||||
0.379652 0.0694599 -0.566806
|
|
||||||
0.37455 0.0944136 -0.566806
|
|
||||||
0.405166 0.0746761 -0.587722
|
|
||||||
0.343995 0.0918102 -0.908647
|
|
||||||
0.400064 0.0996298 -0.587722
|
|
||||||
0.420699 -0.131311 -0.566806
|
|
||||||
0.39516 -0.100331 -0.908647
|
|
||||||
0.446883 -0.129375 -0.587722
|
|
||||||
0.3308 0.214471 -0.908647
|
|
||||||
0.344344 0.242162 -0.566806
|
|
||||||
0.369364 0.249793 -0.587722
|
|
||||||
0.349639 0.09078 -0.834104
|
|
||||||
-0.0943947 0.144433 -0.0331752
|
|
||||||
-0.177794 0.0141305 -0.001149
|
|
||||||
-0.112851 0.0486489 -0.334468
|
|
||||||
-0.0659988 0.112329 -0.345801
|
|
||||||
-0.0775947 0.121009 -0.13791
|
|
||||||
-0.0260305 0.0079986 -0.671613
|
|
||||||
-0.0222512 0.217461 -0.51172
|
|
||||||
-0.0943947 -0.22453 0.026899
|
|
||||||
-0.130905 -0.267236 0.298845
|
|
||||||
-0.000357203 0.173965 -0.0160962
|
|
||||||
-0.111655 0.149864 0.298845
|
|
||||||
-0.0366992 0.17055 -0.040928
|
|
||||||
-0.0306611 -0.152925 -0.34216
|
|
||||||
-0.114118 -0.0498528 -0.316654
|
|
||||||
-0.177794 -0.120885 0.0177391
|
|
||||||
-0.0299827 0.222544 -0.275104
|
|
||||||
-0.0229063 -0.110187 -0.590456
|
|
||||||
-0.0306772 0.207248 -0.0999594
|
|
||||||
-0.000357203 0.216146 -0.0919062
|
|
||||||
-0.191443 0.0100846 0.378379
|
|
||||||
-0.191443 -0.13758 0.378379
|
|
||||||
-0.87395 0.0322361 0.18891
|
|
||||||
-0.957037 0.0235341 0.192298
|
|
||||||
-0.884625 0.0323485 0.29654
|
|
||||||
-0.963936 0.0286615 0.264585
|
|
||||||
-0.346372 0.0918103 -0.905359
|
|
||||||
-0.40588 0.0746761 -0.587722
|
|
||||||
-0.400779 0.0996299 -0.602235
|
|
||||||
-0.222389 -0.0537316 -0.14475
|
|
||||||
-0.111655 0.149864 0.495135
|
|
||||||
-0.191443 0.0489168 0.495135
|
|
||||||
-0.000357203 0.183546 0.495135
|
|
||||||
-0.130905 -0.267236 0.495135
|
|
||||||
-0.000357203 -0.335018 0.495135
|
|
||||||
-0.191443 -0.0987481 0.495135
|
|
||||||
-0.0968152 0.121112 0.567519
|
|
||||||
-0.165965 0.0336246 0.567519
|
|
||||||
-0.113498 -0.240374 0.567519
|
|
||||||
-0.165965 -0.0943517 0.567519
|
|
||||||
-0.0839541 0.0961934 0.567519
|
|
||||||
-0.143884 0.0203713 0.567519
|
|
||||||
-0.0984127 -0.217095 0.567519
|
|
||||||
-0.143884 -0.0905415 0.567519
|
|
||||||
-0.0839541 0.0961934 0.484629
|
|
||||||
-0.143884 0.0203713 0.484629
|
|
||||||
-0.0984127 -0.217095 0.484629
|
|
||||||
-0.000357203 -0.268007 0.484629
|
|
||||||
-0.143884 -0.0905415 0.484629
|
|
||||||
-0.223278 -0.0120031 0.135774
|
|
||||||
-0.242198 -0.0124758 0.32577
|
|
||||||
-0.252542 -0.105423 0.32577
|
|
||||||
-0.232736 -0.0969883 0.147736
|
|
||||||
-0.872763 0.0147353 0.0957062
|
|
||||||
-0.566794 0.0115894 0.32577
|
|
||||||
-0.547948 0.011391 0.135774
|
|
||||||
-0.574412 -0.0568671 0.32577
|
|
||||||
-0.554914 -0.0512014 0.147736
|
|
||||||
-0.545854 -0.0195028 -0.0723815
|
|
||||||
-0.888941 -0.00643099 0.29654
|
|
||||||
-0.877895 -0.00322148 0.195687
|
|
||||||
-0.069163 0.00718598 -0.642478
|
|
||||||
-0.144038 0.0162689 -0.433251
|
|
||||||
-0.142961 0.0417387 -0.448393
|
|
||||||
-0.375265 0.0944137 -0.58132
|
|
||||||
-0.350353 0.0907801 -0.834105
|
|
||||||
-0.380366 0.0694599 -0.566806
|
|
||||||
-0.421413 -0.131311 -0.658428
|
|
||||||
-0.397537 -0.100331 -0.882239
|
|
||||||
-0.447598 -0.129375 -0.691307
|
|
||||||
-0.333177 0.214471 -0.877766
|
|
||||||
-0.345058 0.242162 -0.663246
|
|
||||||
-0.370078 0.249793 -0.695961
|
|
||||||
5 14 13 19 9 21
|
|
||||||
3 24 6 19
|
|
||||||
4 2 17 4 22
|
|
||||||
5 27 15 21 10 91
|
|
||||||
4 18 20 17 11
|
|
||||||
4 18 11 24 12
|
|
||||||
3 6 24 23
|
|
||||||
4 28 8 6 25
|
|
||||||
3 25 6 23
|
|
||||||
3 16 1 26
|
|
||||||
4 17 2 0 11
|
|
||||||
4 11 0 1 16
|
|
||||||
3 10 21 9
|
|
||||||
3 8 19 6
|
|
||||||
4 7 100 91 10
|
|
||||||
3 7 10 9
|
|
||||||
4 21 15 5 14
|
|
||||||
4 20 3 4 17
|
|
||||||
4 60 61 66 65
|
|
||||||
3 73 74 72
|
|
||||||
5 14 54 20 18 13
|
|
||||||
4 15 30 29 5
|
|
||||||
4 27 113 30 15
|
|
||||||
4 4 31 115 22
|
|
||||||
4 3 32 31 4
|
|
||||||
4 5 29 32 3
|
|
||||||
4 30 34 33 29
|
|
||||||
4 113 35 34 30
|
|
||||||
4 31 37 36 115
|
|
||||||
4 32 38 37 31
|
|
||||||
4 29 33 38 32
|
|
||||||
4 34 40 39 33
|
|
||||||
4 35 41 40 34
|
|
||||||
4 37 43 42 36
|
|
||||||
4 38 44 43 37
|
|
||||||
4 33 39 44 38
|
|
||||||
4 40 46 45 39
|
|
||||||
4 41 47 46 40
|
|
||||||
4 43 48 128 42
|
|
||||||
4 44 49 48 43
|
|
||||||
4 39 45 49 44
|
|
||||||
4 7 8 28 100
|
|
||||||
4 7 9 19 8
|
|
||||||
3 14 51 54
|
|
||||||
4 5 52 51 14
|
|
||||||
4 3 53 52 5
|
|
||||||
4 20 50 53 3
|
|
||||||
3 50 20 54
|
|
||||||
3 60 65 63
|
|
||||||
4 52 56 55 51
|
|
||||||
4 53 57 56 52
|
|
||||||
4 50 59 57 53
|
|
||||||
4 51 55 58 54
|
|
||||||
4 54 58 59 50
|
|
||||||
4 56 61 60 55
|
|
||||||
4 57 62 61 56
|
|
||||||
4 59 64 62 57
|
|
||||||
4 55 60 63 58
|
|
||||||
4 58 63 64 59
|
|
||||||
4 66 62 64 65
|
|
||||||
3 65 64 63
|
|
||||||
3 66 61 62
|
|
||||||
4 12 68 67 18
|
|
||||||
4 13 69 68 12
|
|
||||||
4 18 67 69 13
|
|
||||||
4 69 71 81 68
|
|
||||||
4 67 70 71 69
|
|
||||||
3 76 77 75
|
|
||||||
3 79 80 78
|
|
||||||
4 70 72 74 71
|
|
||||||
5 73 76 75 70 81
|
|
||||||
4 72 77 76 73
|
|
||||||
4 70 75 77 72
|
|
||||||
5 71 79 78 73 81
|
|
||||||
4 74 80 79 71
|
|
||||||
4 73 78 80 74
|
|
||||||
4 81 70 67 68
|
|
||||||
5 86 85 84 83 82
|
|
||||||
4 24 87 84 85
|
|
||||||
4 90 89 2 22
|
|
||||||
5 93 82 92 27 91
|
|
||||||
4 89 96 95 94
|
|
||||||
3 94 95 87
|
|
||||||
4 88 97 28 25
|
|
||||||
3 88 25 23
|
|
||||||
3 1 98 26
|
|
||||||
4 0 2 89 94
|
|
||||||
4 1 0 94 98
|
|
||||||
4 24 98 94 87
|
|
||||||
3 82 93 86
|
|
||||||
3 85 97 88
|
|
||||||
4 91 100 99 93
|
|
||||||
3 93 99 86
|
|
||||||
4 101 92 82 83
|
|
||||||
4 90 102 96 89
|
|
||||||
4 106 105 103 104
|
|
||||||
3 26 98 24
|
|
||||||
3 109 107 108
|
|
||||||
5 95 96 110 83 84
|
|
||||||
4 112 111 92 101
|
|
||||||
4 111 113 27 92
|
|
||||||
4 115 114 90 22
|
|
||||||
4 114 116 102 90
|
|
||||||
4 116 112 101 102
|
|
||||||
4 118 117 111 112
|
|
||||||
4 117 35 113 111
|
|
||||||
4 36 119 114 115
|
|
||||||
4 119 120 116 114
|
|
||||||
4 120 118 112 116
|
|
||||||
4 122 121 117 118
|
|
||||||
4 121 41 35 117
|
|
||||||
4 42 123 119 36
|
|
||||||
4 123 124 120 119
|
|
||||||
4 124 122 118 120
|
|
||||||
4 126 125 121 122
|
|
||||||
4 125 47 41 121
|
|
||||||
4 128 127 123 42
|
|
||||||
4 127 129 124 123
|
|
||||||
4 129 126 122 124
|
|
||||||
4 28 97 99 100
|
|
||||||
4 85 86 99 97
|
|
||||||
3 130 83 110
|
|
||||||
4 130 131 101 83
|
|
||||||
4 131 132 102 101
|
|
||||||
4 132 133 96 102
|
|
||||||
3 96 133 110
|
|
||||||
3 104 103 134
|
|
||||||
4 136 135 131 130
|
|
||||||
4 135 137 132 131
|
|
||||||
4 137 138 133 132
|
|
||||||
4 139 136 130 110
|
|
||||||
4 138 139 110 133
|
|
||||||
4 103 105 135 136
|
|
||||||
4 105 140 137 135
|
|
||||||
4 140 141 138 137
|
|
||||||
4 134 103 136 139
|
|
||||||
4 141 134 139 138
|
|
||||||
4 141 140 106 104
|
|
||||||
3 141 104 134
|
|
||||||
3 105 106 140
|
|
||||||
4 143 142 87 95
|
|
||||||
4 142 144 84 87
|
|
||||||
4 144 143 95 84
|
|
||||||
4 146 145 144 142
|
|
||||||
4 145 147 143 144
|
|
||||||
3 150 149 148
|
|
||||||
3 153 152 151
|
|
||||||
4 109 108 147 145
|
|
||||||
5 147 148 149 107 146
|
|
||||||
4 149 150 108 107
|
|
||||||
4 150 148 147 108
|
|
||||||
5 107 151 152 145 146
|
|
||||||
4 152 153 109 145
|
|
||||||
4 153 151 107 109
|
|
||||||
4 143 147 146 142
|
|
||||||
10 128 48 49 45 46 47 125 126 129 127
|
|
||||||
3 88 23 24
|
|
||||||
4 19 13 12 24
|
|
||||||
3 16 26 24
|
|
||||||
3 11 16 24
|
|
||||||
3 85 88 24
|
|
||||||
|
|
@ -1,225 +0,0 @@
|
||||||
OFF2D
|
|
||||||
61 160
|
|
||||||
|
|
||||||
-5 -5
|
|
||||||
-3 -5
|
|
||||||
-3 -3
|
|
||||||
-5 -3
|
|
||||||
-3 -1
|
|
||||||
-5 -1
|
|
||||||
-3 1
|
|
||||||
-5 1
|
|
||||||
-3 3
|
|
||||||
-5 3
|
|
||||||
-3 5
|
|
||||||
-5 5
|
|
||||||
-1 -5
|
|
||||||
-1 -3
|
|
||||||
-1 -1
|
|
||||||
-1 1
|
|
||||||
-1 3
|
|
||||||
-1 5
|
|
||||||
1 -5
|
|
||||||
1 -3
|
|
||||||
1 -1
|
|
||||||
1 1
|
|
||||||
1 3
|
|
||||||
1 5
|
|
||||||
3 -5
|
|
||||||
3 -3
|
|
||||||
3 -1
|
|
||||||
3 1
|
|
||||||
3 3
|
|
||||||
3 5
|
|
||||||
5 -5
|
|
||||||
5 -3
|
|
||||||
5 -1
|
|
||||||
5 1
|
|
||||||
5 3
|
|
||||||
5 5
|
|
||||||
4 4
|
|
||||||
4 2
|
|
||||||
4 0
|
|
||||||
4 -2
|
|
||||||
4 -4
|
|
||||||
2 4
|
|
||||||
2 2
|
|
||||||
2 0
|
|
||||||
2 -2
|
|
||||||
2 -4
|
|
||||||
0 4
|
|
||||||
0 2
|
|
||||||
0 0
|
|
||||||
0 -2
|
|
||||||
0 -4
|
|
||||||
-2 4
|
|
||||||
-2 2
|
|
||||||
-2 0
|
|
||||||
-2 -2
|
|
||||||
-2 -4
|
|
||||||
-4 4
|
|
||||||
-4 2
|
|
||||||
-4 0
|
|
||||||
-4 -2
|
|
||||||
-4 -4
|
|
||||||
|
|
||||||
0 1
|
|
||||||
1 2
|
|
||||||
2 3
|
|
||||||
3 0
|
|
||||||
2 4
|
|
||||||
4 5
|
|
||||||
5 3
|
|
||||||
4 6
|
|
||||||
6 7
|
|
||||||
7 5
|
|
||||||
6 8
|
|
||||||
8 9
|
|
||||||
9 7
|
|
||||||
8 10
|
|
||||||
10 11
|
|
||||||
11 9
|
|
||||||
1 12
|
|
||||||
12 13
|
|
||||||
13 2
|
|
||||||
13 14
|
|
||||||
14 4
|
|
||||||
14 15
|
|
||||||
15 6
|
|
||||||
15 16
|
|
||||||
16 8
|
|
||||||
16 17
|
|
||||||
17 10
|
|
||||||
12 18
|
|
||||||
18 19
|
|
||||||
19 13
|
|
||||||
19 20
|
|
||||||
20 14
|
|
||||||
20 21
|
|
||||||
21 15
|
|
||||||
21 22
|
|
||||||
22 16
|
|
||||||
22 23
|
|
||||||
23 17
|
|
||||||
18 24
|
|
||||||
24 25
|
|
||||||
25 19
|
|
||||||
25 26
|
|
||||||
26 20
|
|
||||||
26 27
|
|
||||||
27 21
|
|
||||||
27 28
|
|
||||||
28 22
|
|
||||||
28 29
|
|
||||||
29 23
|
|
||||||
24 30
|
|
||||||
30 31
|
|
||||||
31 25
|
|
||||||
31 32
|
|
||||||
32 26
|
|
||||||
32 33
|
|
||||||
33 27
|
|
||||||
33 34
|
|
||||||
34 28
|
|
||||||
34 35
|
|
||||||
35 29
|
|
||||||
28 36
|
|
||||||
29 36
|
|
||||||
35 36
|
|
||||||
34 36
|
|
||||||
27 37
|
|
||||||
28 37
|
|
||||||
34 37
|
|
||||||
33 37
|
|
||||||
26 38
|
|
||||||
27 38
|
|
||||||
33 38
|
|
||||||
32 38
|
|
||||||
25 39
|
|
||||||
26 39
|
|
||||||
32 39
|
|
||||||
31 39
|
|
||||||
24 40
|
|
||||||
25 40
|
|
||||||
31 40
|
|
||||||
30 40
|
|
||||||
22 41
|
|
||||||
23 41
|
|
||||||
29 41
|
|
||||||
28 41
|
|
||||||
21 42
|
|
||||||
22 42
|
|
||||||
28 42
|
|
||||||
27 42
|
|
||||||
20 43
|
|
||||||
21 43
|
|
||||||
27 43
|
|
||||||
26 43
|
|
||||||
19 44
|
|
||||||
20 44
|
|
||||||
26 44
|
|
||||||
25 44
|
|
||||||
18 45
|
|
||||||
19 45
|
|
||||||
25 45
|
|
||||||
24 45
|
|
||||||
16 46
|
|
||||||
17 46
|
|
||||||
23 46
|
|
||||||
22 46
|
|
||||||
15 47
|
|
||||||
16 47
|
|
||||||
22 47
|
|
||||||
21 47
|
|
||||||
14 48
|
|
||||||
15 48
|
|
||||||
21 48
|
|
||||||
20 48
|
|
||||||
13 49
|
|
||||||
14 49
|
|
||||||
20 49
|
|
||||||
19 49
|
|
||||||
12 50
|
|
||||||
13 50
|
|
||||||
19 50
|
|
||||||
18 50
|
|
||||||
8 51
|
|
||||||
10 51
|
|
||||||
17 51
|
|
||||||
16 51
|
|
||||||
6 52
|
|
||||||
8 52
|
|
||||||
16 52
|
|
||||||
15 52
|
|
||||||
4 53
|
|
||||||
6 53
|
|
||||||
15 53
|
|
||||||
14 53
|
|
||||||
2 54
|
|
||||||
4 54
|
|
||||||
14 54
|
|
||||||
13 54
|
|
||||||
1 55
|
|
||||||
2 55
|
|
||||||
13 55
|
|
||||||
12 55
|
|
||||||
9 56
|
|
||||||
11 56
|
|
||||||
10 56
|
|
||||||
8 56
|
|
||||||
7 57
|
|
||||||
9 57
|
|
||||||
8 57
|
|
||||||
6 57
|
|
||||||
5 58
|
|
||||||
7 58
|
|
||||||
6 58
|
|
||||||
4 58
|
|
||||||
3 59
|
|
||||||
5 59
|
|
||||||
4 59
|
|
||||||
2 59
|
|
||||||
0 60
|
|
||||||
3 60
|
|
||||||
2 60
|
|
||||||
1 60
|
|
||||||