Merge remote-tracking branch 'cgal/master' into SLS-Weighted_skeleton-GF

This commit is contained in:
Mael Rouxel-Labbé 2023-04-21 13:06:47 +02:00
commit bad7775b53
25 changed files with 1450 additions and 570 deletions

View File

@ -110,22 +110,75 @@ public:
typedef typename boost::property_traits<PMap>::value_type type;
};
template <typename PolygonMesh,
typename VPM_from_NP>
struct GetVertexPointMap_impl
{
typedef VPM_from_NP type;
typedef VPM_from_NP const_type;
template<class NamedParameters>
static const_type
get_const_map(const NamedParameters& np, const PolygonMesh&)
{
return parameters::get_parameter(np, internal_np::vertex_point);
}
template<class NamedParameters>
static type
get_map(const NamedParameters& np, PolygonMesh&)
{
return parameters::get_parameter(np, internal_np::vertex_point);
}
};
template <typename PolygonMesh>
struct GetVertexPointMap_impl<PolygonMesh, internal_np::Param_not_found>
{
typedef typename property_map_selector<PolygonMesh, boost::vertex_point_t>::const_type const_type;
typedef typename property_map_selector<PolygonMesh, boost::vertex_point_t>::type type;
template<class NamedParameters>
static const_type
get_const_map(const NamedParameters& /* np */, const PolygonMesh& pm)
{
return get_const_property_map(boost::vertex_point, pm);
}
template<class NamedParameters>
static type
get_map(const NamedParameters& /* np */, PolygonMesh& pm)
{
return get_property_map(boost::vertex_point, pm);
}
};
template <typename PolygonMesh,
typename NamedParameters = parameters::Default_named_parameters>
class GetVertexPointMap
{
typedef typename property_map_selector<PolygonMesh, boost::vertex_point_t>::const_type
DefaultVPMap_const;
typedef typename property_map_selector<PolygonMesh, boost::vertex_point_t>::type
DefaultVPMap;
typedef typename internal_np::Lookup_named_param_def<internal_np::vertex_point_t,
NamedParameters,
internal_np::Param_not_found>::type VPM_from_NP;
typedef GetVertexPointMap_impl<PolygonMesh, VPM_from_NP> Impl;
public:
typedef typename internal_np::Lookup_named_param_def<internal_np::vertex_point_t,
NamedParameters,
DefaultVPMap>::type type;
typedef typename internal_np::Lookup_named_param_def<internal_np::vertex_point_t,
NamedParameters,
DefaultVPMap_const>::type const_type;
typedef typename Impl::type type;
typedef typename Impl::const_type const_type;
static const_type
get_const_map(const NamedParameters& np, const PolygonMesh& pm)
{
return Impl::get_const_map(np, pm);
}
static type
get_map(const NamedParameters& np, PolygonMesh& pm)
{
return Impl::get_map(np, pm);
}
};
template<typename PolygonMesh, typename NamedParameters>
@ -138,10 +191,15 @@ public:
typedef typename CGAL::Kernel_traits<Point>::Kernel Kernel;
};
template <typename PolygonMesh,
typename NamedParametersGT = parameters::Default_named_parameters,
typename NamedParametersVPM = NamedParametersGT>
class GetGeomTraits
template<typename PolygonMesh, class GT, class NamedParametersVPM>
struct GetGeomTraits_impl
{
typedef GT type;
};
template<typename PolygonMesh, class NamedParametersVPM>
struct GetGeomTraits_impl<PolygonMesh, internal_np::Param_not_found, NamedParametersVPM>
{
typedef typename CGAL::graph_has_property<PolygonMesh, boost::vertex_point_t>::type Has_internal_pmap;
@ -154,12 +212,20 @@ class GetGeomTraits
typedef typename boost::mpl::if_c<Has_internal_pmap::value ||
!std::is_same<internal_np::Param_not_found, NP_vpm>::value,
typename GetK<PolygonMesh, NamedParametersVPM>::Kernel,
Fake_GT>::type DefaultKernel;
Fake_GT>::type type;
};
public:
template <typename PolygonMesh,
typename NamedParametersGT = parameters::Default_named_parameters,
typename NamedParametersVPM = NamedParametersGT>
struct GetGeomTraits
{
typedef typename internal_np::Lookup_named_param_def<internal_np::geom_traits_t,
NamedParametersGT,
DefaultKernel>::type type;
internal_np::Param_not_found>::type GT_from_NP;
typedef typename GetGeomTraits_impl<PolygonMesh,
GT_from_NP,
NamedParametersVPM>::type type;
};
// Define the following structs:
@ -278,6 +344,21 @@ public:
typedef typename CGAL::Identity_property_map<const Dummy_point> const_type;
};
template <typename PointRange, typename NamedParameters>
struct GetPolygonSoupGeomTraits
{
typedef typename internal_np::Lookup_named_param_def <
internal_np::geom_traits_t,
NamedParameters,
typename CGAL::Kernel_traits<
typename boost::property_traits<
typename GetPointMap<PointRange, NamedParameters>::type
>::value_type
>::type
> ::type type;
};
template <class PointRange, class NamedParameters, class PointMap = Default, class NormalMap = Default>
struct Point_set_processing_3_np_helper
{

View File

@ -40,11 +40,15 @@ CGAL tetrahedral Delaunay refinement algorithm.
- Added the function `CGAL::Polygon_mesh_processing::remove_almost_degenerate_faces()` to remove badly shaped triangles faces in a mesh.
- Added the function `CGAL::Polygon_mesh_processing::triangulate_polygons()`, which allows users to triangulate polygon soups.
- Added the functions `CGAL::Polygon_mesh_processing::remesh_planar_patches()` and
`CGAL::Polygon_mesh_processing::remesh_almost_coplanar_patches()` to retriangulate patches of coplanar faces in a mesh.
- Added a named parameter to `CGAL::Polygon_mesh_processing::smooth_shape()` to disable scaling to compensate volume loss.
- Added the functions `CGAL::Polygon_mesh_processing::does_triangle_soup_self_intersect()` and `CGAL::Polygon_mesh_processing::triangle_soup_self_intersections()` to identify and report self-intersections in a triangle soup, similarly to existing functions on triangle meshes.
### [3D Simplicial Mesh Data Structure](https://doc.cgal.org/5.6/Manual/packages.html#PkgSMDS3) (new package)
- This new package wraps all the existing code that deals with a `MeshComplex_3InTriangulation_3` to describe 3D simplicial meshes, and makes the data structure independent from the tetrahedral mesh generation package.
@ -117,6 +121,7 @@ extracted from labeled images.
### [2D Minkowski Sums](https://doc.cgal.org/5.6/Manual/packages.html#PkgMinkowskiSum2)
- Fixed a bug that made holes in the Minkowski sum disappear
- Fixed hole filtering. The code used to erroneously remove holes from the container of holes of polygons with holes that did not affect the minkowsi sum. Now it simply adds those that do affect it.
[Release 5.5](https://github.com/CGAL/cgal/releases/tag/v5.5)
-----------

View File

@ -26,22 +26,25 @@ if( NOT GMP_in_cache )
NAMES gmp.h
HINTS ENV GMP_INC_DIR
ENV GMP_DIR
$ENV{GMP_DIR}/include
${CGAL_INSTALLATION_PACKAGE_DIR}/auxiliary/gmp/include
PATH_SUFFIXES include
DOC "The directory containing the GMP header files"
)
find_library(GMP_LIBRARY_RELEASE NAMES gmp libgmp-10 mpir
find_library(GMP_LIBRARY_RELEASE NAMES gmp libgmp-10 gmp-10 mpir
HINTS ENV GMP_LIB_DIR
ENV GMP_DIR
$ENV{GMP_DIR}/lib
${CGAL_INSTALLATION_PACKAGE_DIR}/auxiliary/gmp/lib
PATH_SUFFIXES lib
DOC "Path to the Release GMP library"
)
find_library(GMP_LIBRARY_DEBUG NAMES gmpd gmp libgmp-10 mpir
find_library(GMP_LIBRARY_DEBUG NAMES gmpd gmp libgmp-10 gmp-10 mpir
HINTS ENV GMP_LIB_DIR
ENV GMP_DIR
$ENV{GMP_DIR}/include
${CGAL_INSTALLATION_PACKAGE_DIR}/auxiliary/gmp/lib
PATH_SUFFIXES lib
DOC "Path to the Debug GMP library"

View File

@ -25,6 +25,7 @@ if (NOT MPFR_in_cache)
NAMES mpfr.h
HINTS ENV MPFR_INC_DIR
ENV MPFR_DIR
$ENV{MPFR_DIR}/include
${CGAL_INSTALLATION_PACKAGE_DIR}/auxiliary/gmp/include
PATH_SUFFIXES include
DOC "The directory containing the MPFR header files"
@ -33,6 +34,7 @@ if (NOT MPFR_in_cache)
find_library(MPFR_LIBRARIES NAMES mpfr libmpfr-4 libmpfr-1
HINTS ENV MPFR_LIB_DIR
ENV MPFR_DIR
$ENV{MPFR_DIR}/lib
${CGAL_INSTALLATION_PACKAGE_DIR}/auxiliary/gmp/lib
PATH_SUFFIXES lib
DOC "Path to the MPFR library"

View File

@ -597,4 +597,61 @@ inline std::string data_file_path(const std::string& filename)
} // end namespace CGAL
#if BOOST_VERSION < 107900
// Workaround for an accidental enable if of Eigen::Matrix in the
// boost::multiprecision::cpp_int constructor for some versions of
// boost
namespace Eigen{
template <class A, int B, int C, int D, int E, int F>
class Matrix;
template <class A, int B, class C>
class Ref;
template <class A, class B, int C>
class Product;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
}
namespace boost {
namespace multiprecision {
namespace detail {
template <typename T>
struct is_byte_container;
template <class A, int B, int C, int D, int E, int F>
struct is_byte_container< Eigen::Matrix<A, B, C, D, E, F>>
{
static const bool value = false;
};
template <class A, int B, class C>
struct is_byte_container< Eigen::Ref<A, B, C>>
{
static const bool value = false;
};
template <class A, class B, int C>
struct is_byte_container< Eigen::Product<A, B, C>>
{
static const bool value = false;
};
template <class A, class B, class C>
struct is_byte_container< Eigen::CwiseBinaryOp<A, B, C>>
{
static const bool value = false;
};
}
}
}
#endif // BOOST_VERSION < 107900
#endif // CGAL_CONFIG_H

View File

@ -8,10 +8,8 @@ int main() {
#define GMP_SONAME "libgmp-10"
#define MPFR_SONAME "libmpfr-4"
#define GMP_SONAME_BACKUP "gmp"
#define GMP_SONAME_BACKUP_2 "gmp-10"
#define MPFR_SONAME_BACKUP "mpfr-6"
#define GMP_MAJOR 5
#define MPFR_MAJOR 3
#include <iostream>
#include <cassert>
@ -35,12 +33,21 @@ bool get_version_info(const LPCTSTR name,
std::cerr << name << " is not loaded!\n";
return false;
}
else
std::cerr << name << " is loaded.\n";
char fileName[_MAX_PATH];
DWORD size = GetModuleFileName(g_dllHandle, fileName, _MAX_PATH);
fileName[size] = NULL;
std::cerr << "Query FileVersion of \"" << fileName << "\"\n";
DWORD handle = 0;
size = GetFileVersionInfoSize(fileName, &handle);
DWORD err = GetLastError();
if (size == 0) {
std::cerr << "GetFileVersionInfoSize failed with error " << err << std::endl;
}
BYTE* versionInfo = new BYTE[size];
if (!GetFileVersionInfo(fileName, handle, size, versionInfo))
{
@ -66,9 +73,11 @@ int main() {
int major, minor, patch, build;
if(!get_version_info(GMP_SONAME, major, minor, patch, build)) {
if(!get_version_info(GMP_SONAME_BACKUP, major, minor, patch, build)) {
if (!get_version_info(GMP_SONAME_BACKUP_2, major, minor, patch, build)) {
return 1;
}
}
}
std::cout << "GMP version "
<< major << "."

View File

@ -26,16 +26,12 @@ namespace CGAL {
* to the Minkowski sum boundary.
*/
template <typename Kernel_, typename Container_>
class Hole_filter_2
{
class Hole_filter_2 {
private:
typedef Kernel_ Kernel;
typedef Container_ Container;
typedef CGAL::Polygon_2<Kernel, Container> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel, Container> Polygon_with_holes_2;
typedef typename Polygon_with_holes_2::Hole_iterator Hole_iterator;
typedef std::vector<Hole_iterator> Hole_iterator_vector;
using Kernel = Kernel_;
using Container = Container_;
using Polygon_2 = CGAL::Polygon_2<Kernel, Container>;
using Polygon_with_holes_2 = CGAL::Polygon_with_holes_2<Kernel, Container>;
public:
/*! Filter out holes of a polygon with holes.
@ -45,29 +41,17 @@ public:
*/
void operator()(const Polygon_with_holes_2& pgn1,
const Polygon_2& pgn2,
Polygon_with_holes_2& filtered_pgn1) const
{
filtered_pgn1 = pgn1;
Hole_iterator_vector to_erase;
Polygon_with_holes_2& filtered_pgn1) const {
Bbox_2 boundary_bbox = pgn2.bbox();
Hole_iterator it = filtered_pgn1.holes_begin();
while (it != filtered_pgn1.holes_end()) {
Bbox_2 hole_bbox = (*it).bbox();
if ((hole_bbox.ymax()-hole_bbox.ymin() <
boundary_bbox.ymax()-boundary_bbox.ymin()) ||
(hole_bbox.xmax()-hole_bbox.xmin() <
filtered_pgn1 = Polygon_with_holes_2(pgn1.outer_boundary());
for (const auto& h : pgn1.holes()) {
Bbox_2 hole_bbox = h.bbox();
if ((hole_bbox.ymax()-hole_bbox.ymin() >=
boundary_bbox.ymax()-boundary_bbox.ymin()) &&
(hole_bbox.xmax()-hole_bbox.xmin() >=
boundary_bbox.xmax()-boundary_bbox.xmin()))
{
to_erase.push_back(it);
filtered_pgn1.add_hole(h);
}
++it;
}
typename Hole_iterator_vector::iterator it2 = to_erase.begin();
while (it2 != to_erase.end()) filtered_pgn1.erase_hole(*it2++);
}
/*! Filter out holes of a polygon with holes.

View File

@ -119,6 +119,7 @@ The page \ref bgl_namedparameters "Named Parameters" describes their usage.
- `CGAL::Polygon_mesh_processing::fair()`
- `CGAL::Polygon_mesh_processing::triangulate_face()`
- `CGAL::Polygon_mesh_processing::triangulate_faces()`
- `CGAL::Polygon_mesh_processing::triangulate_polygons()`
- \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::isotropic_remeshing()` \endlink
- \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::surface_Delaunay_remeshing()` \endlink
- \link PMP_meshing_grp `CGAL::Polygon_mesh_processing::split_long_edges()` \endlink
@ -152,6 +153,8 @@ The page \ref bgl_namedparameters "Named Parameters" describes their usage.
\cgalCRPSection{Intersection Functions}
- `CGAL::Polygon_mesh_processing::does_self_intersect()`
- `CGAL::Polygon_mesh_processing::self_intersections()`
- `CGAL::Polygon_mesh_processing::does_triangle_soup_self_intersect()`
- `CGAL::Polygon_mesh_processing::triangle_soup_self_intersections()`
- \link PMP_intersection_grp `CGAL::Polygon_mesh_processing::do_intersect()` \endlink
- `CGAL::Polygon_mesh_processing::intersecting_meshes()`

View File

@ -41,7 +41,7 @@ public:
};
struct Visitor
struct Visitor : public CGAL::Polygon_mesh_processing::Triangulate_faces::Default_visitor<Surface_mesh>
{
typedef std::unordered_map<face_descriptor,face_descriptor> Container;

View File

@ -22,6 +22,7 @@
#endif
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/use.h>
#include <vector>
namespace CGAL {
@ -107,6 +108,11 @@ triangulate_hole_polygon_mesh(PolygonMesh& pmesh,
Visitor& visitor,
const typename Kernel::FT max_squared_distance)
{
#ifdef CGAL_HOLE_FILLING_DO_NOT_USE_CDT2
CGAL_USE(use_cdt);
CGAL_USE(max_squared_distance);
#endif
typedef Halfedge_around_face_circulator<PolygonMesh> Hedge_around_face_circulator;
typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;

View File

@ -15,6 +15,11 @@
#include <CGAL/license/Polygon_mesh_processing/meshing_hole_filling.h>
#ifdef CGAL_TRIANGULATE_FACES_DO_NOT_USE_CDT2
# ifndef CGAL_HOLE_FILLING_DO_NOT_USE_CDT2
# define CGAL_HOLE_FILLING_DO_NOT_USE_CDT2
# endif
#endif
#include <CGAL/value_type_traits.h>
#ifndef CGAL_HOLE_FILLING_DO_NOT_USE_DT3
@ -1442,12 +1447,20 @@ triangulate_hole_polyline_with_cdt(const PointRange& points,
vertices[v->info()] = v;
}
try
{
for (std::size_t i = 0; i < size; ++i) {
const std::size_t ip = (i + 1) % size;
if (vertices[i] != vertices[ip]) {
cdt.insert_constraint(vertices[i], vertices[ip]);
}
}
}
catch(const typename CDT::Intersection_of_constraints_exception&)
{
visitor.end_planar_phase(false);
return false;
}
// Mark external faces.
for (typename CDT::All_faces_iterator fit = cdt.all_faces_begin(),

View File

@ -1125,7 +1125,7 @@ struct Polygon_soup_fixer<PointRange, PolygonRange, std::array<PID, N> >
///
/// \tparam PointRange a model of the concepts `SequenceContainer` and `Swappable`
/// and whose value type is the point type.
/// \tparam PolygonRange a model of the concept `SequenceContainer`.
/// \tparam PolygonRange a model of the concept `SequenceContainer`
/// whose `value_type` is itself a model of the concepts `SequenceContainer`,
/// `Swappable`, and `ReversibleContainer` whose `value_type` is `std::size_t`.
/// \tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"

View File

@ -43,6 +43,7 @@
#endif
#include <boost/iterator/function_output_iterator.hpp>
#include <boost/range/irange.hpp>
#include <exception>
#include <sstream>
@ -54,6 +55,127 @@ namespace CGAL {
namespace Polygon_mesh_processing {
namespace internal {
template <class TM>
struct Triangle_mesh_and_triangle_soup_wrapper
{
typedef typename boost::graph_traits<TM>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<TM>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<TM>::halfedge_descriptor halfedge_descriptor; // private
static void get_face_vertices(face_descriptor fd, std::array<vertex_descriptor,3>& vh, const TM& tm)
{
CGAL_assertion(boost::graph_traits<TM>::null_face() != fd);
halfedge_descriptor h = halfedge(fd, tm);
vh[0]=source(h, tm);
vh[1]=target(h, tm);
vh[2]=target(next(h, tm), tm);
}
static bool faces_have_a_shared_edge(face_descriptor f, face_descriptor g, std::array<vertex_descriptor, 4>& vh, const TM& tm)
{
CGAL_assertion(boost::graph_traits<TM>::null_face() != f);
CGAL_assertion(boost::graph_traits<TM>::null_face() != g);
halfedge_descriptor h=halfedge(f, tm);
for(unsigned int i=0; i<3; ++i)
{
halfedge_descriptor opp_h = opposite(h, tm);
if(face(opp_h, tm) == g)
{
vh[0]=source(h, tm);
vh[1]=target(h, tm);
vh[2]=target(next(h, tm), tm);
vh[3]=target(next(opp_h, tm), tm);
return true;
}
h = next(h, tm);
}
return false;
}
static bool is_pure_triangle(const TM& tm)
{
return is_triangle_mesh(tm);
}
};
template <class PointRange, class TriangleRange>
struct Triangle_mesh_and_triangle_soup_wrapper<
std::pair<const PointRange&,
const TriangleRange&>>
{
typedef std::size_t face_descriptor;
typedef std::size_t vertex_descriptor;
typedef std::pair<const PointRange&, const TriangleRange& > Soup;
static void get_face_vertices(face_descriptor fd, std::array<vertex_descriptor,3>& vh, const Soup& soup)
{
const auto& face = soup.second[fd];
vh[0]=face[0];
vh[1]=face[1];
vh[2]=face[2];
}
static bool faces_have_a_shared_edge(face_descriptor fd, face_descriptor gd, std::array<vertex_descriptor, 4>& vh, const Soup& soup)
{
const auto& f = soup.second[fd];
const auto& g = soup.second[gd];
for(unsigned int i=0; i<2; ++i) // no need to check f[2] if neither f[0] nor f[1] are shared
{
for(unsigned int j=0; j<3; ++j)
{
if (f[i]==g[j])
{
vh[0]=f[i];
vh[1]=f[i+1];
vh[2]=f[(i+2)%3];
if (vh[1]==g[(j+1)%3])
{
vh[3]=g[(j+2)%3];
return true;
}
if (vh[1]==g[(j+2)%3])
{
vh[3]=g[(j+1)%3];
return true;
}
if (i==0)
{
vh[1]=f[i];
vh[2]=f[(i+1)%3];
vh[0]=f[(i+2)%3];
if (vh[0]==g[(j+1)%3])
{
vh[3]=g[(j+2)%3];
return true;
}
if (vh[0]==g[(j+2)%3])
{
vh[3]=g[(j+1)%3];
return true;
}
}
return false;
}
}
}
return false;
}
static bool is_pure_triangle(const Soup& soup)
{
for (const typename std::iterator_traits<typename TriangleRange::const_iterator>::value_type& t : soup.second)
if (t.size()!=3)
return false;
return true;
}
};
template<typename Output_iterator>
struct Throw_at_count_reached_functor {
@ -82,47 +204,40 @@ struct Throw_at_count_reached_functor {
// Checks for 'real' intersections, i.e. not simply a shared vertex or edge
template <class GT, class TM, class VPM>
bool do_faces_intersect(typename boost::graph_traits<TM>::halfedge_descriptor h,
typename boost::graph_traits<TM>::halfedge_descriptor g,
bool do_faces_intersect(typename Triangle_mesh_and_triangle_soup_wrapper<TM>::face_descriptor fh,
typename Triangle_mesh_and_triangle_soup_wrapper<TM>::face_descriptor fg,
const TM& tmesh,
const VPM vpmap,
const typename GT::Construct_segment_3& construct_segment,
const typename GT::Construct_triangle_3& construct_triangle,
const typename GT::Do_intersect_3& do_intersect)
{
typedef typename boost::graph_traits<TM>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<TM>::halfedge_descriptor halfedge_descriptor;
typedef Triangle_mesh_and_triangle_soup_wrapper<TM> Wrapper;
typedef typename Wrapper::vertex_descriptor vertex_descriptor;
typedef typename GT::Segment_3 Segment;
typedef typename GT::Triangle_3 Triangle;
CGAL_assertion(!is_border(h, tmesh));
CGAL_assertion(!is_border(g, tmesh));
vertex_descriptor hv[3], gv[3];
hv[0] = target(h, tmesh);
hv[1] = target(next(h, tmesh), tmesh);
hv[2] = source(h, tmesh);
gv[0] = target(g, tmesh);
gv[1] = target(next(g, tmesh), tmesh);
gv[2] = source(g, tmesh);
std::array<vertex_descriptor, 3> hv, gv;
Wrapper::get_face_vertices(fh, hv, tmesh);
Wrapper::get_face_vertices(fg, gv, tmesh);
// check for shared edge
for(unsigned int i=0; i<3; ++i)
{
halfedge_descriptor opp_h = opposite(h, tmesh);
if(face(opp_h, tmesh) == face(g, tmesh))
std::array<vertex_descriptor, 4> verts;
if (Wrapper::faces_have_a_shared_edge(fh, fg, verts, tmesh))
{
if (verts[2]==verts[3]) return false; // only for a soup of triangles
// there is an intersection if the four points are coplanar and the triangles overlap
if(CGAL::coplanar(get(vpmap, hv[i]),
get(vpmap, hv[(i+1)%3]),
get(vpmap, hv[(i+2)%3]),
get(vpmap, target(next(opp_h, tmesh), tmesh))) &&
CGAL::coplanar_orientation(get(vpmap, hv[(i+2)%3]),
get(vpmap, hv[i]),
get(vpmap, hv[(i+1)%3]),
get(vpmap, target(next(opp_h, tmesh), tmesh)))
if(CGAL::coplanar(get(vpmap, verts[0]),
get(vpmap, verts[1]),
get(vpmap, verts[2]),
get(vpmap, verts[3])) &&
CGAL::coplanar_orientation(get(vpmap, verts[0]),
get(vpmap, verts[1]),
get(vpmap, verts[2]),
get(vpmap, verts[3]))
== CGAL::POSITIVE)
{
return true;
@ -134,9 +249,6 @@ bool do_faces_intersect(typename boost::graph_traits<TM>::halfedge_descriptor h,
}
}
h = next(h, tmesh);
}
// check for shared vertex --> maybe intersection, maybe not
int i(0), j(0);
bool shared = false;
@ -188,8 +300,6 @@ template <class Box, class TM, class VPM, class GT,
class OutputIterator>
struct Strict_intersect_faces // "strict" as in "not sharing a subface"
{
typedef typename boost::graph_traits<TM>::halfedge_descriptor halfedge_descriptor;
mutable OutputIterator m_iterator;
const TM& m_tmesh;
const VPM m_vpmap;
@ -209,10 +319,7 @@ struct Strict_intersect_faces // "strict" as in "not sharing a subface"
void operator()(const Box* b, const Box* c) const
{
const halfedge_descriptor h = halfedge(b->info(), m_tmesh);
const halfedge_descriptor g = halfedge(c->info(), m_tmesh);
if(do_faces_intersect<GT>(h, g, m_tmesh, m_vpmap, m_construct_segment, m_construct_triangle, m_do_intersect))
if(do_faces_intersect<GT>(b->info(), c->info(), m_tmesh, m_vpmap, m_construct_segment, m_construct_triangle, m_do_intersect))
*m_iterator++ = std::make_pair(b->info(), c->info());
}
};
@ -229,15 +336,17 @@ self_intersections_impl(const FaceRange& face_range,
const bool throw_on_SI,
const NamedParameters& np)
{
CGAL_precondition(CGAL::is_triangle_mesh(tmesh));
typedef TriangleMesh TM;
typedef Triangle_mesh_and_triangle_soup_wrapper<TM> Wrapper;
CGAL_precondition(Wrapper::is_pure_triangle(tmesh));
using CGAL::parameters::choose_parameter;
using CGAL::parameters::get_parameter;
using CGAL::parameters::is_default_parameter;
typedef TriangleMesh TM;
typedef typename boost::graph_traits<TM>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<TM>::face_descriptor face_descriptor;
typedef typename Wrapper::face_descriptor face_descriptor;
typedef typename Wrapper::vertex_descriptor vertex_descriptor;
typedef CGAL::Box_intersection_d::ID_FROM_BOX_ADDRESS Box_policy;
typedef CGAL::Box_intersection_d::Box_with_info_d<double, 3, face_descriptor, Box_policy> Box;
@ -245,9 +354,9 @@ self_intersections_impl(const FaceRange& face_range,
typedef typename GetGeomTraits<TM, NamedParameters>::type GT;
GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));
typedef typename GetVertexPointMap<TM, NamedParameters>::const_type VPM;
VPM vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_const_property_map(boost::vertex_point, tmesh));
typedef GetVertexPointMap<TM, NamedParameters> VPM_helper;
typedef typename VPM_helper::const_type VPM;
VPM vpmap = VPM_helper::get_const_map(np, tmesh);
const bool do_limit = !(is_default_parameter<NamedParameters, internal_np::maximum_number_t>::value);
const unsigned int maximum_number = choose_parameter(get_parameter(np, internal_np::maximum_number), 0);
@ -268,11 +377,13 @@ self_intersections_impl(const FaceRange& face_range,
// This loop is very cheap, so there is hardly anything to gain from parallelizing it
for(face_descriptor f : face_range)
{
halfedge_descriptor h = halfedge(f, tmesh);
std::array<vertex_descriptor, 3> vh;
Wrapper::get_face_vertices(f, vh, tmesh);
typename boost::property_traits<VPM>::reference
p = get(vpmap, target(h,tmesh)),
q = get(vpmap, target(next(h, tmesh), tmesh)),
r = get(vpmap, target(prev(h, tmesh), tmesh));
p = get(vpmap, vh[0]),
q = get(vpmap, vh[1]),
r = get(vpmap, vh[2]);
// tiny fixme: if f is degenerate, we might still have a real intersection between f
// and another face f', but right now we are not creating a box for f and thus not returning those
@ -408,9 +519,9 @@ self_intersections_impl(const FaceRange& face_range,
*
* collects intersections between a subset of faces of a triangulated surface mesh.
* Two faces are said to intersect if the corresponding triangles intersect
* and the intersection is not an edge nor a vertex incident to both faces.
* and the intersection is neither an edge nor a vertex incident to both faces.
*
* This function depends on the package \ref PkgBoxIntersectionD
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @pre `CGAL::is_triangle_mesh(tmesh)`
*
@ -475,9 +586,9 @@ self_intersections(const FaceRange& face_range,
*
* collects intersections between all the faces of a triangulated surface mesh.
* Two faces are said to intersect if the corresponding triangles intersect
* and the intersection is not an edge nor a vertex incident to both faces.
* and the intersection is neither an edge nor a vertex incident to both faces.
*
* This function depends on the package \ref PkgBoxIntersectionD
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @pre `CGAL::is_triangle_mesh(tmesh)`
*
@ -490,9 +601,9 @@ self_intersections(const FaceRange& face_range,
*
* @param tmesh the triangulated surface mesh to be checked
* @param out output iterator to be filled with all pairs of non-adjacent faces that intersect.
In case `tmesh` contains some degenerate faces, for each degenerate face `f` a pair `(f,f)`
will be put in `out` before any other self intersection between non-degenerate faces.
These are the only pairs where degenerate faces will be reported.
* In case `tmesh` contains some degenerate faces, for each degenerate face `f` a pair `(f,f)`
* will be put in `out` before any other self intersection between non-degenerate faces. <br>
* Note that these are the only pairs where degenerate faces will be reported.
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
@ -541,7 +652,7 @@ self_intersections(const TriangleMesh& tmesh,
*
* \brief tests if a set of faces of a triangulated surface mesh self-intersects.
*
* This function depends on the package \ref PkgBoxIntersectionD
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @pre `CGAL::is_triangle_mesh(tmesh)`
*
@ -584,8 +695,6 @@ bool does_self_intersect(const FaceRange& face_range,
const TriangleMesh& tmesh,
const NamedParameters& np = parameters::default_values())
{
CGAL_precondition(CGAL::is_triangle_mesh(tmesh));
try
{
CGAL::Emptyset_iterator unused_out;
@ -614,7 +723,7 @@ bool does_self_intersect(const FaceRange& face_range,
*
* \brief tests if a triangulated surface mesh self-intersects.
*
* This function depends on the package \ref PkgBoxIntersectionD
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @pre `CGAL::is_triangle_mesh(tmesh)`
*
@ -656,6 +765,219 @@ bool does_self_intersect(const TriangleMesh& tmesh,
return does_self_intersect<ConcurrencyTag>(faces(tmesh), tmesh, np);
}
#ifndef DOXYGEN_RUNNING
template <class PointRange, class VPM>
struct Property_map_for_soup
{
typedef std::size_t key_type;
typedef typename boost::property_traits<VPM>::value_type value_type;
//typedef typename boost::property_traits<VPM>::category category;
typedef boost::readable_property_map_tag category;
typedef typename boost::property_traits<VPM>::reference reference;
const PointRange& points;
VPM vpm;
Property_map_for_soup(const PointRange& points, VPM vpm)
: points(points)
, vpm(vpm)
{}
inline friend
reference get(const Property_map_for_soup<PointRange, VPM>& map, key_type k)
{
return get(map.vpm, map.points[k]);
}
};
#endif
/**
* \ingroup PMP_intersection_grp
*
* collects intersections between all the triangles in a triangle soup.
*
* Two triangles of the soup are said to intersect if the corresponding geometric triangles intersect
* and the intersection is neither an edge nor a vertex of both triangles
* (with the same point ids, ignoring the orientation for an edge).
*
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @tparam ConcurrencyTag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag`, `Parallel_tag`, and `Parallel_if_available_tag`.
* @tparam PointRange a model of the concept `RandomAccessContainer`
* whose value type is the point type
* @tparam TriangleRange a model of the concept `RandomAccessContainer` whose
* value type is a model of the concept `RandomAccessContainer` whose value type is `std::size_t`
* @tparam TriangleIdPairOutputIterator a model of `OutputIterator` holding objects of type
* `std::pair<std::size_t,std::size_t>`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points points of the soup of triangles
* @param triangles each element in the range describes a triangle using the indices of the points in `points`
* @param out output iterator to be filled with all pairs of ids of triangles intersecting (the id of a triangle is its position in `triangles`).
* In case the triangle soup contains some degenerate triangles, for each degenerate triangle `t` with id `i` a pair `(i,i)`
* will be put in `out` before any other self intersection between non-degenerate triangles.<br>
* Note that these are the only pairs where degenerate triangles will be reported.
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{maximum_number}
* \cgalParamDescription{the maximum number of self intersections that will be detected and returned by the function.}
* \cgalParamType{unsigned int}
* \cgalParamDefault{No limit.}
* \cgalParamExtra{In parallel mode, the number of returned self-intersections is at least `maximum_number`
* (and not exactly that number) as no strong synchronization is put on threads for performance reasons.}
* \cgalParamNEnd
*
* \cgalParamNBegin{point_map}
* \cgalParamDescription{a property map associating points to the elements of the range `points`}
* \cgalParamType{a model of `ReadablePropertyMap` whose value type is a point type from a \cgal `Kernel`.}
* \cgalParamDefault{`CGAL::Identity_property_map`}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPSelfIntersectionTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the point type of the point map.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @return `out`
*
* @sa `does_triangle_soup_self_intersect()`
* @sa `self_intersections()`
* @sa `does_self_intersect()`
*/
template <class ConcurrencyTag = Sequential_tag,
class PointRange,
class TriangleRange,
class TriangleIdPairOutputIterator,
class CGAL_NP_TEMPLATE_PARAMETERS>
TriangleIdPairOutputIterator
triangle_soup_self_intersections(const PointRange& points,
const TriangleRange& triangles,
TriangleIdPairOutputIterator out,
const CGAL_NP_CLASS& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
using parameters::is_default_parameter;
typedef typename CGAL::GetPointMap<PointRange, CGAL_NP_CLASS>::const_type Point_map_base;
Point_map_base pm_base = choose_parameter<Point_map_base>(get_parameter(np, internal_np::point_map));
typedef Property_map_for_soup<PointRange, Point_map_base> Point_map;
typedef typename GetPolygonSoupGeomTraits<PointRange, CGAL_NP_CLASS>::type GT;
GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));
const bool do_limit = !(is_default_parameter<CGAL_NP_CLASS, internal_np::maximum_number_t>::value);
if (do_limit)
{
return self_intersections<ConcurrencyTag>(boost::irange<std::size_t>(0, triangles.size()),
std::make_pair(std::cref(points), std::cref(triangles)),
out,
parameters::vertex_point_map(Point_map(points,pm_base)).
geom_traits(gt).
maximum_number(choose_parameter(get_parameter(np, internal_np::maximum_number), 0)));
}
return self_intersections<ConcurrencyTag>(boost::irange<std::size_t>(0, triangles.size()),
std::make_pair(std::cref(points), std::cref(triangles)),
out,
parameters::vertex_point_map(Point_map(points,pm_base)).
geom_traits(gt));
}
/**
* \ingroup PMP_intersection_grp
*
* \brief tests if a triangle soup self-intersects.
*
* A triangle soup self-intersects if at least two triangles of the soup intersect.
* Two triangles of the soup are said to intersect if the corresponding geometric triangles intersect
* and the intersection is neither an edge nor a vertex of both triangles
* (with the same point ids, ignoring the orientation for an edge).
*
* This function depends on the package \ref PkgBoxIntersectionD.
*
* @tparam ConcurrencyTag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag`, `Parallel_tag`, and `Parallel_if_available_tag`.
* @tparam PointRange a model of the concept `RandomAccessContainer`
* whose value type is the point type
* @tparam TriangleRange a model of the concept `RandomAccessContainer` whose
* value type is a model of the concept `RandomAccessContainer` whose value type is `std::size_t`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points points of the soup of triangles
* @param triangles each element in the range describes a triangle using the indices of the points in `points`
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{point_map}
* \cgalParamDescription{a property map associating points to the elements of the range `points`}
* \cgalParamType{a model of `ReadablePropertyMap` whose value type is a point type from a \cgal `Kernel`.}
* \cgalParamDefault{`CGAL::Identity_property_map`}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPSelfIntersectionTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the point type of the point map.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @return `true` if the triangle soup self-intersects, and `false` otherwise.
*
* @sa `triangle_soup_self_intersections()`
* @sa `self_intersections()`
* @sa `does_self_intersect()`
*/
template <class ConcurrencyTag = Sequential_tag,
class PointRange,
class TriangleRange,
class CGAL_NP_TEMPLATE_PARAMETERS>
bool does_triangle_soup_self_intersect(const PointRange& points,
const TriangleRange& triangles,
const CGAL_NP_CLASS& np = parameters::default_values())
{
try
{
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL::Emptyset_iterator unused_out;
typedef typename CGAL::GetPointMap<PointRange, CGAL_NP_CLASS>::const_type Point_map_base;
Point_map_base pm_base = choose_parameter<Point_map_base>(get_parameter(np, internal_np::point_map));
typedef Property_map_for_soup<PointRange, Point_map_base> Point_map;
typedef typename GetPolygonSoupGeomTraits<PointRange, CGAL_NP_CLASS>::type GT;
GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));
internal::self_intersections_impl<ConcurrencyTag>(boost::irange<std::size_t>(0, triangles.size()),
std::make_pair(std::cref(points), std::cref(triangles)),
unused_out, true /*throw*/,
parameters::vertex_point_map(Point_map(points,pm_base))
.geom_traits(gt));
}
catch (const CGAL::internal::Throw_at_output_exception&)
{
return true;
}
#if defined(CGAL_LINKED_WITH_TBB) && TBB_USE_CAPTURED_EXCEPTION
catch (const tbb::captured_exception& e)
{
const char* ti1 = e.name();
const char* ti2 = typeid(const CGAL::internal::Throw_at_output_exception&).name();
const std::string tn1(ti1);
const std::string tn2(ti2);
if (tn1 == tn2) return true;
else throw;
}
#endif
return false;
}
}// namespace Polygon_mesh_processing
}// namespace CGAL

View File

@ -15,38 +15,27 @@
#include <CGAL/license/Polygon_mesh_processing/meshing_hole_filling.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/array.h>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/boost/graph/Euler_operations.h>
#ifndef CGAL_TRIANGULATE_FACES_DO_NOT_USE_CDT2
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Projection_traits_3.h>
#else
#include <CGAL/use.h>
#endif
#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/Named_function_parameters.h>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <algorithm>
#include <iterator>
#include <map>
#include <queue>
#include <vector>
#include <utility>
#include <CGAL/array.h>
#include <vector>
namespace CGAL {
namespace Polygon_mesh_processing {
namespace Triangulate_faces {
namespace Triangulate_faces
{
/** \ingroup PMP_meshing_grp
* %Default new face visitor model of `PMPTriangulateFaceVisitor`.
* All its functions have an empty body. This class can be used as a
@ -54,7 +43,9 @@ namespace Triangulate_faces
* overridden.
*/
template<class PolygonMesh>
struct Default_visitor {
struct Default_visitor
: public Hole_filling::Default_visitor
{
typedef boost::graph_traits<PolygonMesh> GT;
typedef typename GT::face_descriptor face_descriptor;
@ -63,245 +54,31 @@ struct Default_visitor {
void after_subface_created(face_descriptor /*f_new*/) {}
};
} //end namespace Triangulate_faces
} // namespace Triangulate_faces
namespace internal {
template <class PM
, typename VertexPointMap
, typename Kernel
, typename Visitor>
class Triangulate_modifier
template <typename PolygonMesh>
class Triangulate_polygon_mesh_modifier
{
typedef Kernel Traits;
using vertex_descriptor = typename boost::graph_traits<PolygonMesh>::vertex_descriptor;
using halfedge_descriptor = typename boost::graph_traits<PolygonMesh>::halfedge_descriptor;
using face_descriptor = typename boost::graph_traits<PolygonMesh>::face_descriptor;
typedef typename boost::graph_traits<PM>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<PM>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<PM>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<PM>::edge_descriptor edge_descriptor;
typedef typename Kernel::Point_3 Point;
struct Face_info {
typename boost::graph_traits<PM>::halfedge_descriptor e[3];
bool is_external;
};
typedef typename boost::property_traits<VertexPointMap>::reference Point_ref;
VertexPointMap _vpmap;
Traits _traits;
public:
Triangulate_modifier(VertexPointMap vpmap, const Traits& traits = Traits())
: _vpmap(vpmap), _traits(traits)
{
}
template <class Face_handle>
bool is_external(Face_handle fh) const {
return fh->info().is_external;
}
bool triangulate_face(face_descriptor f, PM& pmesh, bool use_cdt, Visitor visitor)
{
typedef typename Traits::FT FT;
typename Traits::Vector_3 normal =
Polygon_mesh_processing::compute_face_normal(
f, pmesh, CGAL::parameters::geom_traits(_traits)
.vertex_point_map(_vpmap));
if(normal == typename Traits::Vector_3(0,0,0))
return false;
std::size_t original_size = CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh).size();
if(original_size == 4)
{
halfedge_descriptor v0, v1, v2, v3;
v0 = halfedge(f, pmesh);
Point_ref p0 = get(_vpmap, target(v0, pmesh));
v1 = next(v0, pmesh);
Point_ref p1 = get(_vpmap, target(v1, pmesh));
v2 = next(v1, pmesh);
Point_ref p2 = get(_vpmap, target(v2, pmesh));
v3 = next(v2, pmesh);
Point_ref p3 = get(_vpmap, target(v3, pmesh));
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of of the un-normalized normals of the two triangles.
* The lengths of the un-normalized normals (computed using cross-products of two vectors)
* are proportional to the area of the triangles.
* Maximize the scalar product of the two normals will avoid skinny triangles,
* and will also taken into account the cosine of the angle between the two normals.
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
FT p1p3 = CGAL::cross_product(p2-p1,p3-p2) * CGAL::cross_product(p0-p3,p1-p0);
FT p0p2 = CGAL::cross_product(p1-p0,p1-p2) * CGAL::cross_product(p3-p2,p3-p0);
visitor.before_subface_creations(f);
halfedge_descriptor res = (p0p2>p1p3)
? CGAL::Euler::split_face(v0, v2, pmesh)
: CGAL::Euler::split_face(v1, v3, pmesh);
visitor.after_subface_created(face(res,pmesh));
visitor.after_subface_created(face(opposite(res,pmesh),pmesh));
visitor.after_subface_creations();
}
else
{
#ifndef CGAL_TRIANGULATE_FACES_DO_NOT_USE_CDT2
if (use_cdt)
{
typedef CGAL::Projection_traits_3<Traits> P_traits;
typedef CGAL::Triangulation_vertex_base_with_info_2<halfedge_descriptor,
P_traits> Vb;
typedef CGAL::Triangulation_face_base_with_info_2<Face_info,
P_traits> Fb1;
typedef CGAL::Constrained_triangulation_face_base_2<P_traits, Fb1> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Exact_intersections_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<P_traits,
TDS,
Itag> CDT;
P_traits cdt_traits(normal);
CDT cdt(cdt_traits);
return triangulate_face_with_CDT(f, pmesh, cdt, visitor);
}
#else
CGAL_USE(use_cdt);
#endif
return triangulate_face_with_hole_filling(f, pmesh, visitor);
}
return true;
}
template<class CDT>
bool triangulate_face_with_CDT(face_descriptor f, PM& pmesh, CDT& cdt, Visitor visitor)
{
std::size_t original_size = CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh).size();
// Halfedge_around_facet_circulator
typedef typename CDT::Vertex_handle Tr_Vertex_handle;
halfedge_descriptor start = halfedge(f, pmesh);
halfedge_descriptor h = start;
Tr_Vertex_handle previous, first;
do
{
Tr_Vertex_handle vh = cdt.insert(get(_vpmap, target(h, pmesh)));
if (first == Tr_Vertex_handle()) {
first = vh;
}
vh->info() = h;
if(previous != Tr_Vertex_handle() && previous != vh) {
cdt.insert_constraint(previous, vh);
}
previous = vh;
h = next(h, pmesh);
} while( h != start );
cdt.insert_constraint(previous, first);
// sets mark is_external
for(typename CDT::All_faces_iterator fit = cdt.all_faces_begin(),
end = cdt.all_faces_end();
fit != end; ++fit)
{
fit->info().is_external = false;
}
std::queue<typename CDT::Face_handle> face_queue;
face_queue.push(cdt.infinite_vertex()->face());
while(! face_queue.empty() )
{
typename CDT::Face_handle fh = face_queue.front();
face_queue.pop();
if(fh->info().is_external)
continue;
fh->info().is_external = true;
for(int i = 0; i <3; ++i)
{
if(!cdt.is_constrained(typename CDT::Edge(fh, i)))
{
face_queue.push(fh->neighbor(i));
}
}
}
if(cdt.dimension() != 2 ||
cdt.number_of_vertices() != original_size)
return false;
// then modify the polyhedron
visitor.before_subface_creations(f);
// make_hole. (see comment in function body)
this->make_hole(halfedge(f, pmesh), pmesh);
for(typename CDT::Finite_edges_iterator eit = cdt.finite_edges_begin(),
end = cdt.finite_edges_end();
eit != end; ++eit)
{
typename CDT::Face_handle fh = eit->first;
const int index = eit->second;
typename CDT::Face_handle opposite_fh = fh->neighbor(eit->second);
const int opposite_index = opposite_fh->index(fh);
const Tr_Vertex_handle va = fh->vertex(cdt. cw(index));
const Tr_Vertex_handle vb = fh->vertex(cdt.ccw(index));
if( ! (is_external(fh) && is_external(opposite_fh))//not both fh are external
&& ! cdt.is_constrained(*eit) ) //and edge is not constrained
{
// strictly internal edge
halfedge_descriptor hnew = halfedge(add_edge(pmesh), pmesh),
hnewopp = opposite(hnew, pmesh);
fh->info().e[index] = hnew;
opposite_fh->info().e[opposite_index] = hnewopp;
set_target(hnew, target(va->info(), pmesh), pmesh);
set_target(hnewopp, target(vb->info(), pmesh), pmesh);
}
if( cdt.is_constrained(*eit) ) //edge is constrained
{
if(!is_external(fh)) {
fh->info().e[index] = va->info();
}
if(!is_external(opposite_fh)) {
opposite_fh->info().e[opposite_index] = vb->info();
}
}
}
for(typename CDT::Finite_faces_iterator fit = cdt.finite_faces_begin(),
end = cdt.finite_faces_end();
fit != end; ++fit)
{
if(!is_external(fit))
{
halfedge_descriptor h0 = fit->info().e[0];
halfedge_descriptor h1 = fit->info().e[1];
halfedge_descriptor h2 = fit->info().e[2];
CGAL_assertion(h0 != halfedge_descriptor());
CGAL_assertion(h1 != halfedge_descriptor());
CGAL_assertion(h2 != halfedge_descriptor());
set_next(h0, h1, pmesh);
set_next(h1, h2, pmesh);
set_next(h2, h0, pmesh);
Euler::fill_hole(h0, pmesh);
visitor.after_subface_created(face(h0, pmesh));
}
}
visitor.after_subface_creations();
return true;
}
bool triangulate_face_with_hole_filling(face_descriptor f, PM& pmesh, Visitor visitor)
private:
template <typename VPM,
typename Visitor,
typename NamedParameters>
bool triangulate_face_with_hole_filling(face_descriptor f,
PolygonMesh& pmesh,
const VPM vpm,
Visitor visitor,
const NamedParameters& np)
{
namespace PMP = CGAL::Polygon_mesh_processing;
using Point = typename boost::property_traits<VPM>::value_type;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<vertex_descriptor> border_vertices;
@ -309,60 +86,60 @@ public:
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
vertex_descriptor v = source(h, pmesh);
hole_points.push_back( get(_vpmap, v) );
hole_points.push_back(get(vpm, v));
border_vertices.push_back(v);
}
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch),
parameters::geom_traits(_traits));
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch), np);
if(patch.empty())
return false;
// triangulate the hole
std::map< std::pair<int, int> , halfedge_descriptor > halfedge_map;
int i=0;
std::map<std::pair<int, int>, halfedge_descriptor > halfedge_map;
int i = 0;
for(halfedge_descriptor h : CGAL::halfedges_around_face(halfedge(f, pmesh), pmesh))
{
int j = std::size_t(i+1) == hole_points.size() ? 0 : i+1;
halfedge_map[ std::make_pair(i, j) ] = h;
halfedge_map[std::make_pair(i, j)] = h;
++i;
}
visitor.before_subface_creations(f);
bool first = true;
std::vector<halfedge_descriptor> hedges;
hedges.reserve(4);
for(const Face_indices& triangle : patch)
{
if (first)
first=false;
if(first)
first = false;
else
f=add_face(pmesh);
f = add_face(pmesh);
visitor.after_subface_created(f);
std::array<int, 4> indices =
make_array( triangle.first,
std::array<int, 4> indices = make_array(triangle.first,
triangle.second,
triangle.third,
triangle.first );
triangle.first);
for (int i=0; i<3; ++i)
{
typename std::map< std::pair<int, int> , halfedge_descriptor >::iterator insert_res =
halfedge_map.insert(
std::make_pair( std::make_pair(indices[i], indices[i+1]),
boost::graph_traits<PM>::null_halfedge() ) ).first;
if (insert_res->second == boost::graph_traits<PM>::null_halfedge())
halfedge_map.emplace(std::make_pair(indices[i], indices[i+1]),
boost::graph_traits<PolygonMesh>::null_halfedge()).first;
if(insert_res->second == boost::graph_traits<PolygonMesh>::null_halfedge())
{
halfedge_descriptor nh = halfedge(add_edge(pmesh), pmesh);
insert_res->second=nh;
halfedge_map[std::make_pair(indices[i+1], indices[i])]=opposite(nh, pmesh);
insert_res->second = nh;
halfedge_map[std::make_pair(indices[i+1], indices[i])] = opposite(nh, pmesh);
}
hedges.push_back(insert_res->second);
}
hedges.push_back(hedges.front());
for(int i=0; i<3;++i)
{
@ -370,59 +147,93 @@ public:
set_face(hedges[i], f, pmesh);
set_target(hedges[i], border_vertices[indices[i+1]], pmesh);
}
set_halfedge(f, hedges[0], pmesh);
hedges.clear();
}
visitor.after_subface_creations();
return true;
}
template<typename FaceRange>
bool operator()(FaceRange face_range, PM& pmesh, bool use_cdt, Visitor visitor)
public:
template <typename NamedParameters>
bool operator()(face_descriptor f,
PolygonMesh& pmesh,
const NamedParameters& np)
{
bool result = true;
// One need to store facet handles into a vector, because the list of
// facets of the polyhedron will be modified during the loop, and
// that invalidates the range [facets_begin(), facets_end()[.
std::vector<face_descriptor> facets;
facets.reserve(std::distance(boost::begin(face_range), boost::end(face_range)));
using Traits = typename GetGeomTraits<PolygonMesh, NamedParameters>::type;
using VPM = typename GetVertexPointMap<PolygonMesh, NamedParameters>::type;
//only consider non-triangular faces
for(face_descriptor fit : face_range)
if ( next( next( halfedge(fit, pmesh), pmesh), pmesh)
!= prev( halfedge(fit, pmesh), pmesh) )
facets.push_back(fit);
using FT = typename Traits::FT;
using Point_ref = typename boost::property_traits<VPM>::reference;
// Iterates on the vector of face descriptors
for(face_descriptor f : facets)
using Visitor = typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh> // default
>::type;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(is_valid_face_descriptor(f, pmesh));
Traits traits = choose_parameter<Traits>(get_parameter(np, internal_np::geom_traits));
VPM vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
Visitor visitor = choose_parameter<Visitor>(get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
typename Traits::Construct_cross_product_vector_3 cross_product =
traits.construct_cross_product_vector_3_object();
typename boost::graph_traits<PolygonMesh>::degree_size_type original_size = degree(f, pmesh);
if(original_size <= 3)
return true;
if(original_size == 4)
{
if(!this->triangulate_face(f, pmesh, use_cdt, visitor))
result = false;
}
return result;
halfedge_descriptor v0, v1, v2, v3;
v0 = halfedge(f, pmesh);
Point_ref p0 = get(vpm, target(v0, pmesh));
v1 = next(v0, pmesh);
Point_ref p1 = get(vpm, target(v1, pmesh));
v2 = next(v1, pmesh);
Point_ref p2 = get(vpm, target(v2, pmesh));
v3 = next(v2, pmesh);
Point_ref p3 = get(vpm, target(v3, pmesh));
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of the un-normalized normals of the two triangles.
* The lengths of the un-normalized normals (computed using cross-products of two vectors)
* are proportional to the area of the triangles.
* Maximize the scalar product of the two normals will avoid skinny triangles,
* and will also taken into account the cosine of the angle between the two normals.
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
visitor.before_subface_creations(f);
const FT p1p3 = cross_product(p2-p1, p3-p2) * cross_product(p0-p3, p1-p0);
const FT p0p2 = cross_product(p1-p0, p1-p2) * cross_product(p3-p2, p3-p0);
halfedge_descriptor res = (p0p2>p1p3) ? CGAL::Euler::split_face(v0, v2, pmesh)
: CGAL::Euler::split_face(v1, v3, pmesh);
visitor.after_subface_created(face(res, pmesh));
visitor.after_subface_created(face(opposite(res, pmesh), pmesh));
visitor.after_subface_creations();
return true;
}
void make_hole(halfedge_descriptor h, PM& pmesh)
{
//we are not using Euler::make_hole because it has a precondition
//that the hole is not made on the boundary of the mesh
//here we allow making a hole on the boundary, and the pair(s) of
//halfedges that become border-border are fixed by the connectivity
//setting made in operator()
CGAL_assertion(!is_border(h, pmesh));
face_descriptor fd = face(h, pmesh);
for(halfedge_descriptor hd : halfedges_around_face(h, pmesh))
{
CGAL::internal::set_border(hd, pmesh);
}
remove_face(fd, pmesh);
return triangulate_face_with_hole_filling(f, pmesh, vpm, visitor, np);
}
}; // class Triangulate_polygon_mesh_modifier
}; // end class Triangulate_modifier
}//end namespace internal
} // namespace internal
/**
* \ingroup PMP_meshing_grp
@ -455,50 +266,30 @@ public:
*
* \cgalParamNBegin{visitor}
* \cgalParamDescription{a visitor that enables to track how faces are triangulated into subfaces}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor`}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor` and `PMPHolefillingVisitor`}
* \cgalParamDefault{`Triangulate_faces::Default_visitor<PolygonMesh>`}
* \cgalParamExtra{Note that the visitor will be copied, so
* it must not have any data member that does not have a reference-like type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()`.
* Refer to its documentation for its named parameters.
*
* @pre The face `f` is not degenerate.
*
* @return `true` if the face has been triangulated.
*
* @see `triangulate_faces()`
*/
template<typename PolygonMesh, typename NamedParameters = parameters::Default_named_parameters>
template <typename PolygonMesh,
typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_face(typename boost::graph_traits<PolygonMesh>::face_descriptor f,
PolygonMesh& pmesh,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(is_valid_face_descriptor(f, pmesh));
//VertexPointMap
typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::type VPMap;
VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
//Kernel
typedef typename GetGeomTraits<PolygonMesh, NamedParameters>::type Kernel;
Kernel traits = choose_parameter<Kernel>(get_parameter(np, internal_np::geom_traits));
//Option
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_delaunay_triangulation), true);
typedef typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh>//default
>::type Visitor;
Visitor visitor = choose_parameter<Visitor>(
get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
internal::Triangulate_modifier<PolygonMesh, VPMap, Kernel, Visitor> modifier(vpmap, traits);
return modifier.triangulate_face(f, pmesh, use_cdt, visitor);
internal::Triangulate_polygon_mesh_modifier<PolygonMesh> modifier;
return modifier(f, pmesh, np);
}
/**
@ -534,48 +325,47 @@ bool triangulate_face(typename boost::graph_traits<PolygonMesh>::face_descriptor
*
* \cgalParamNBegin{visitor}
* \cgalParamDescription{a visitor that enables to track how faces are triangulated into subfaces}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor`}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor` and `PMPHolefillingVisitor`}
* \cgalParamDefault{`Triangulate_faces::Default_visitor<PolygonMesh>`}
* \cgalParamExtra{Note that the visitor will be copied, so
* it must not have any data member that does not have a reference-like type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` for each face.
* Refer to its documentation for its named parameters.
*
* @pre No face within `face_range` is degenerate.
*
* @return `true` if all the faces have been triangulated.
*
* @see `triangulate_face()`
* @see `triangulate_polygons()`
*/
template <typename FaceRange, typename PolygonMesh, typename NamedParameters = parameters::Default_named_parameters>
template <typename FaceRange,
typename PolygonMesh,
typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_faces(FaceRange face_range,
PolygonMesh& pmesh,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
using face_descriptor = typename boost::graph_traits<PolygonMesh>::face_descriptor;
//VertexPointMap
typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::type VPMap;
VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_property_map(vertex_point, pmesh));
bool result = true;
//Kernel
typedef typename GetGeomTraits<PolygonMesh, NamedParameters>::type Kernel;
Kernel traits = choose_parameter<Kernel>(get_parameter(np, internal_np::geom_traits));
// One needs to store the facets into a vector, because the list of
// facets of the polyhedron will be modified during the loop, and
// that invalidates the range [facets_begin(), facets_end()[.
std::vector<face_descriptor> facets(std::begin(face_range), std::end(face_range));
//Option
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_delaunay_triangulation), true);
internal::Triangulate_polygon_mesh_modifier<PolygonMesh> modifier;
for(face_descriptor f : facets)
{
if(!modifier(f, pmesh, np))
result = false;
}
typedef typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_faces::Default_visitor<PolygonMesh>//default
>::type Visitor;
Visitor visitor = choose_parameter<Visitor>(
get_parameter(np, internal_np::visitor),
Triangulate_faces::Default_visitor<PolygonMesh>());
internal::Triangulate_modifier<PolygonMesh, VPMap, Kernel, Visitor> modifier(vpmap, traits);
return modifier(face_range, pmesh, use_cdt, visitor);
return result;
}
/**
@ -608,16 +398,22 @@ bool triangulate_faces(FaceRange face_range,
*
* \cgalParamNBegin{visitor}
* \cgalParamDescription{a visitor that enables to track how faces are triangulated into subfaces}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor`}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor` and `PMPHolefillingVisitor`}
* \cgalParamDefault{`Triangulate_faces::Default_visitor<PolygonMesh>`}
* \cgalParamExtra{Note that the visitor will be copied, so
* it must not have any data member that does not have a reference-like type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` on all the faces of the polygon mesh.
* Refer to its documentation for its named parameters.
*
* @pre No face of `pmesh` is degenerate.
*
* @return `true` if all the faces have been triangulated.
*
* @see `triangulate_face()`
* @see `triangulate_polygons()`
*/
template <typename PolygonMesh, typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_faces(PolygonMesh& pmesh,
@ -626,10 +422,255 @@ bool triangulate_faces(PolygonMesh& pmesh,
return triangulate_faces(faces(pmesh), pmesh, np);
}
} // end namespace Polygon_mesh_processing
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
// Polygon Soup
} // end namespace CGAL
namespace Triangulate_polygons {
#include <CGAL/enable_warnings.h>
/** \ingroup PMP_meshing_grp
* %Default new polygon visitor model of `PMPTriangulateFaceVisitor`.
* All its functions have an empty body. This class can be used as a
* base class if only some of the functions of the concept require to be
* overridden.
*/
struct Default_visitor
: public Hole_filling::Default_visitor
{
template <typename Polygon>
void before_subface_creations(const Polygon& /*f_old*/) {}
template <typename Polygon>
void after_subface_created(const Polygon& /*f_new*/) {}
void after_subface_creations() {}
};
} // namespace Triangulate_polygons
namespace internal {
class Triangulate_polygon_soup_modifier
{
private:
template<typename Polygon,
typename PointRange,
typename PolygonRange,
typename PMap,
typename Visitor,
typename NamedParameters>
bool triangulate_polygon_with_hole_filling(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons, // output
PMap pm,
Visitor visitor,
const NamedParameters& np)
{
namespace PMP = CGAL::Polygon_mesh_processing;
using Point = typename boost::property_traits<PMap>::value_type;
// gather halfedges around the face
std::vector<Point> hole_points;
std::vector<std::size_t> hole_points_indices;
for(std::size_t i : polygon)
{
hole_points.push_back(get(pm, points[i]));
hole_points_indices.push_back(i);
}
// use hole filling
typedef CGAL::Triple<int, int, int> Face_indices;
std::vector<Face_indices> patch;
PMP::triangulate_hole_polyline(hole_points, std::back_inserter(patch), np);
if(patch.empty())
return false;
visitor.before_subface_creations(polygon);
for(const Face_indices& triangle : patch)
{
triangulated_polygons.push_back({hole_points_indices[triangle.first],
hole_points_indices[triangle.second],
hole_points_indices[triangle.third]});
visitor.after_subface_created(triangulated_polygons.back());
}
visitor.after_subface_creations();
return true;
}
public:
template <typename Polygon,
typename PointRange,
typename PolygonRange,
typename NamedParameters>
bool operator()(const Polygon& polygon,
const PointRange& points,
PolygonRange& triangulated_polygons,
const NamedParameters& np)
{
// PointMap
using PMap = typename GetPointMap<PointRange, NamedParameters>::const_type;
using Point_ref = typename boost::property_traits<PMap>::reference;
// Kernel
using Point = typename boost::property_traits<PMap>::value_type;
using Def_Kernel = typename CGAL::Kernel_traits<Point>::Kernel;
using Traits = typename internal_np::Lookup_named_param_def<
internal_np::geom_traits_t,
NamedParameters,
Def_Kernel>::type;
using FT = typename Traits::FT;
// Visitor
using Visitor = typename internal_np::Lookup_named_param_def<
internal_np::visitor_t,
NamedParameters,
Triangulate_polygons::Default_visitor // default
>::type;
using parameters::choose_parameter;
using parameters::get_parameter;
PMap pm = choose_parameter<PMap>(get_parameter(np, internal_np::point_map));
Traits traits = choose_parameter<Traits>(get_parameter(np, internal_np::geom_traits));
Visitor visitor = choose_parameter<Visitor>(get_parameter(np, internal_np::visitor),
Triangulate_polygons::Default_visitor());
typename Traits::Construct_cross_product_vector_3 cross_product =
traits.construct_cross_product_vector_3_object();
const std::size_t original_size = polygon.size();
if(original_size == 4)
{
Point_ref p0 = get(pm, points[polygon[0]]);
Point_ref p1 = get(pm, points[polygon[1]]);
Point_ref p2 = get(pm, points[polygon[2]]);
Point_ref p3 = get(pm, points[polygon[3]]);
/* Chooses the diagonal that will split the quad in two triangles that maximize
* the scalar product of the un-normalized normals of the two triangles.
* The lengths of the un-normalized normals (computed using cross-products of two vectors)
* are proportional to the area of the triangles.
* Maximize the scalar product of the two normals will avoid skinny triangles,
* and will also taken into account the cosine of the angle between the two normals.
* In particular, if the two triangles are oriented in different directions,
* the scalar product will be negative.
*/
visitor.before_subface_creations(polygon);
const FT p1p3 = cross_product(p2-p1, p3-p2) * cross_product(p0-p3, p1-p0);
const FT p0p2 = cross_product(p1-p0, p1-p2) * cross_product(p3-p2, p3-p0);
if(p0p2 > p1p3)
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[2]});
triangulated_polygons.push_back({polygon[0], polygon[2], polygon[3]});
}
else
{
triangulated_polygons.push_back({polygon[0], polygon[1], polygon[3]});
triangulated_polygons.push_back({polygon[1], polygon[2], polygon[3]});
}
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-2]);
visitor.after_subface_created(triangulated_polygons[triangulated_polygons.size()-1]);
visitor.after_subface_creations();
return true;
}
return triangulate_polygon_with_hole_filling(polygon, points, triangulated_polygons, pm, visitor, np);
}
}; // class Triangulate_polygon_soup_modifier
} // namespace internal
/**
* \ingroup PMP_meshing_grp
*
* triangulates all polygons of a polygon soup. This function depends on the package \ref PkgTriangulation2.
*
* @tparam PointRange a model of `ConstRange`. The value type of its iterator is the point type.
* @tparam PolygonRange a model of the concepts `SequenceContainer` and `Swappable`,
* whose `value_type` is itself a model of the concept `SequenceContainer`
* whose `value_type` is `std::size_t`.
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points the point geometry of the soup to be triangulated
* @param polygons the polygons to be triangulated
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{point_map}
* \cgalParamDescription{a property map associating points to the elements of the point set `points`}
* \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
* of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
* \cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `Kernel`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
*
* \cgalParamNBegin{visitor}
* \cgalParamDescription{a visitor that enables to track how polygons are divided into triangles}
* \cgalParamType{a class model of `PMPTriangulateFaceVisitor` and `PMPHolefillingVisitor`}
* \cgalParamDefault{`Triangulate_polygons::Default_visitor`}
* \cgalParamExtra{Note that the visitor will be copied, so
* it must not have any data member that does not have a reference-like type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* This function calls `CGAL::Polygon_mesh_processing::triangulate_hole_polyline()` for each polygon.
* Refer to its documentation for its named parameters.
*
* @pre No polygon within `polygons` is degenerate.
*
* @return `true` if all the polygons have been triangulated.
*
* @see `triangulate_faces()`
*/
template <typename PointRange,
typename PolygonRange,
typename NamedParameters = parameters::Default_named_parameters>
bool triangulate_polygons(const PointRange& points,
PolygonRange& polygons,
const NamedParameters& np = parameters::default_values())
{
using Polygon = typename boost::range_value<PolygonRange>::type;
PolygonRange triangulated_polygons;
triangulated_polygons.reserve(polygons.size());
bool success = true;
internal::Triangulate_polygon_soup_modifier modifier;
for(const Polygon& polygon : polygons)
{
if(polygon.size() <= 3)
{
triangulated_polygons.push_back(polygon);
continue;
}
if(!modifier(polygon, points, triangulated_polygons, np))
success = false;
}
std::swap(polygons, triangulated_polygons);
return success;
}
} // namespace Polygon_mesh_processing
} // namespace CGAL
#endif // CGAL_POLYGON_MESH_PROCESSING_TRIANGULATE_FACES_H

View File

@ -729,11 +729,8 @@ namespace Polygon_mesh_processing {
using parameters::get_parameter;
using parameters::get_parameter_reference;
bool use_cdt =
#ifdef CGAL_HOLE_FILLING_DO_NOT_USE_CDT2
false;
#else
choose_parameter(get_parameter(np, internal_np::use_2d_constrained_delaunay_triangulation), false);
#ifndef CGAL_HOLE_FILLING_DO_NOT_USE_CDT2
bool use_cdt = choose_parameter(get_parameter(np, internal_np::use_2d_constrained_delaunay_triangulation), false);
#endif
bool use_dt3 =
#ifdef CGAL_HOLE_FILLING_DO_NOT_USE_DT3

View File

@ -21,6 +21,7 @@ create_single_source_cgal_program("point_inside_surface_mesh_test.cpp")
create_single_source_cgal_program("polygon_mesh_slicer_test.cpp")
create_single_source_cgal_program("self_intersection_polyhedron_test.cpp")
create_single_source_cgal_program("self_intersection_surface_mesh_test.cpp")
create_single_source_cgal_program("self_intersection_triangle_soup_test.cpp")
create_single_source_cgal_program("pmp_do_intersect_test.cpp")
create_single_source_cgal_program("test_is_polygon_soup_a_polygon_mesh.cpp")
create_single_source_cgal_program("test_stitching.cpp")

View File

@ -0,0 +1,234 @@
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Polygon_mesh_processing/self_intersections.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <CGAL/tags.h>
#include <CGAL/Timer.h>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <sstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel EPICK;
typedef CGAL::Exact_predicates_exact_constructions_kernel EPECK;
namespace PMP = ::CGAL::Polygon_mesh_processing;
namespace CP = ::CGAL::parameters;
template <typename K>
int test_self_intersections(const std::string filename,
const bool expected)
{
std::vector<typename K::Point_3> points;
std::vector< std::array<std::size_t, 3> > triangles;
bool read_ok = CGAL::IO::read_polygon_soup(filename, points, triangles);
if ( !read_ok ) {
std::cerr << "Error: cannot read file: " << filename << std::endl;
return 1;
}
std::cout << "Reading file: " << filename << std::endl;
CGAL::Timer timer;
timer.start();
std::vector<std::pair<std::size_t, std::size_t> > intersected_tris;
PMP::triangle_soup_self_intersections<CGAL::Parallel_if_available_tag>(points, triangles, std::back_inserter(intersected_tris));
bool intersecting_1 = !intersected_tris.empty();
std::cout << "self_intersections test took " << timer.time() << " sec." << std::endl;
std::cout << intersected_tris.size() << " pairs of triangles are intersecting." << std::endl;
timer.reset();
bool intersecting_2 =
PMP::does_triangle_soup_self_intersect<CGAL::Parallel_if_available_tag>(points, triangles);
std::cout << "does_self_intersect test took " << timer.time() << " sec." << std::endl;
std::cout << (intersecting_2 ? "There is a self-intersection." :
"There are no self-intersections.") << std::endl;
assert(intersecting_1 == intersecting_2);
assert(intersecting_1 == expected);
std::cout << filename << " passed the tests." << std::endl << std::endl;
return 0;
}
template <typename K>
int test_limited_self_intersections(const std::string& filename)
{
std::vector<typename K::Point_3> points;
std::vector< std::array<std::size_t, 3> > triangles;
bool read_ok = CGAL::IO::read_polygon_soup(filename, points, triangles);
if ( !read_ok ) {
std::cerr << "Error: cannot read file: " << filename << std::endl;
return 1;
}
CGAL::Timer timer;
timer.start();
std::vector<std::pair<std::size_t, std::size_t> > intersected_tris;
#ifdef CGAL_LINKED_WITH_TBB
PMP::triangle_soup_self_intersections()<CGAL::Parallel_if_available_tag>(
points, triangles,
std::back_inserter(intersected_tris), CGAL::parameters::maximum_number(40));
std::cout << "self_intersections test for 40 SI took " << timer.time() << " sec." << std::endl;
std::cout << "Found " << intersected_tris.size() << " SIs." << std::endl;
if(intersected_tris.size() < 40)
{
std::cerr<<"Not enough intersections found in parallel."<<std::endl;
return 1;
}
intersected_tris.clear();
timer.reset();
#endif
PMP::triangle_soup_self_intersections<CGAL::Sequential_tag>(
points, triangles,
std::back_inserter(intersected_tris), CGAL::parameters::maximum_number(40));
std::cout << "self_intersections test for 40 SI took " << timer.time() << " sec." << std::endl;
timer.reset();
if(intersected_tris.size() != 40)
{
std::cerr<<"Too many intersections found in sequential"<<std::endl;
return 1;
}
return 0;
}
int main(int argc, char** argv)
{
// If file(s) are provided, the associated expected result must also be provided.
// Note that this expected value is a Boolean that is passed in command line
// with either 'true' or 'false' (and not integers), that is for example:
// > self_intersection_surface_mesh_test data/U.off false
// First test ----------------------------------------------------------------
bool expected = false;
std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/elephant.off");
if(argc > 1) {
assert(argc > 2);
std::stringstream ss(argv[2]);
ss >> std::boolalpha >> expected;
assert(!ss.fail()); // make sure that argv[2] is either 'true' or 'false'
}
std::cout << "First test (EPICK):" << std::endl;
int r = test_self_intersections<EPICK>(filename, expected);
std::cout << "First test (EPECK):" << std::endl;
r += test_self_intersections<EPECK>(filename, expected);
// Second test ---------------------------------------------------------------
expected = true;
filename = (argc > 3) ? argv[3] : CGAL::data_file_path("meshes/mannequin-devil.off");
if(argc > 3) {
assert(argc > 4);
std::stringstream ss(argv[4]);
ss >> std::boolalpha >> expected;
assert(!ss.fail());
}
std::cout << "Second test (EPICK):" << std::endl;
r += test_self_intersections<EPICK>(filename, expected);
std::cout << "Second test (EPECK):" << std::endl;
r += test_self_intersections<EPECK>(filename, expected);
// Third test ----------------------------------------------------------------
expected = true;
filename = (argc > 5) ? argv[5] : "data/overlapping_triangles.off";
if(argc > 5) {
assert(argc > 6);
std::stringstream ss(argv[6]);
ss >> std::boolalpha >> expected;
assert(!ss.fail());
}
std::cout << "Third test (EPICK):" << std::endl;
r += test_self_intersections<EPICK>(filename, expected);
std::cout << "Third test (EPECK):" << std::endl;
r += test_self_intersections<EPECK>(filename, expected);
// Fourth test ----------------------------------------------------------------
expected = true;
filename = (argc > 7) ? argv[7] : "data_degeneracies/degtri_single.off";
if(argc > 7) {
assert(argc > 8);
std::stringstream ss(argv[8]);
ss >> std::boolalpha >> expected;
assert(!ss.fail());
}
std::cout << "Fourth test (EPICK):" << std::endl;
r += test_self_intersections<EPICK>(filename, expected);
std::cout << "Fourth test (EPECK):" << std::endl;
r += test_self_intersections<EPECK>(filename, expected);
filename = (argc > 9) ? argv[9] : CGAL::data_file_path("meshes/mannequin-devil.off");
std::cout << "Test with maximum_number (EPICK):" << std::endl;
r += test_limited_self_intersections<EPICK>(filename);
std::cout << "Test with maximum_number (EPECK):" << std::endl;
r += test_limited_self_intersections<EPECK>(filename);
// extra hand written tests
{
// shared edge with same point: no self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0), Point_3(0,-1,0)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2}, {0,1,3}};
assert(!PMP::does_triangle_soup_self_intersect(points, triangles));
}
{
// shared edge with duplicated points: self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0),Point_3(0,0,0), Point_3(1,0,0), Point_3(0,-1,0)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2}, {3,4,5}};
assert(PMP::does_triangle_soup_self_intersect(points, triangles));
}
{
// shared vertex with same point: no self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0), Point_3(0,2,0), Point_3(1,2,0)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2}, {3,4,2}};
assert(!PMP::does_triangle_soup_self_intersect(points, triangles));
}
{
// shared vertex with duplicated points: self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0), Point_3(0,2,0), Point_3(1,2,0), Point_3(0,1,0)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2}, {3,4,5}};
assert(PMP::does_triangle_soup_self_intersect(points, triangles));
}
{
// 4 triangles around a shared edge: no self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0), Point_3(0,-1,0), Point_3(0,0,1), Point_3(0,0,-1)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2},{0,1,3},{0,1,4},{0,1,5}};
assert(!PMP::does_triangle_soup_self_intersect(points, triangles));
}
{
// 4 triangles around a shared edge but two triangles intersecting: self-intersection
typedef EPICK::Point_3 Point_3;
std::vector<EPICK::Point_3> points = {Point_3(0,0,0), Point_3(1,0,0), Point_3(0,1,0), Point_3(0,0.5,0), Point_3(0,0,1), Point_3(0,0,-1)};
std::vector< std::array<std::size_t, 3> > triangles={{0,1,2},{0,1,3},{0,1,4},{0,1,5}};
assert(PMP::does_triangle_soup_self_intersect(points, triangles));
}
return r;
}

View File

@ -1,13 +1,14 @@
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
#include <CGAL/boost/graph/copy_face_graph.h>
#include <CGAL/boost/graph/Dual.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/centroid.h>
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
#include <CGAL/Polygon_mesh_processing/polygon_mesh_to_polygon_soup.h>
#include <boost/graph/filtered_graph.hpp>
@ -20,6 +21,8 @@ template <typename K>
bool
test_triangulate_faces()
{
std::cout << "\n--- test_triangulate_faces(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
@ -42,6 +45,8 @@ template <typename K>
bool
test_triangulate_faces_with_named_parameters()
{
std::cout << "\n--- test_triangulate_faces_with_named_parameters(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Epic::Point_3> Surface_mesh;
@ -77,13 +82,15 @@ test_triangulate_faces_with_named_parameters()
template <typename K>
bool
test_triangulate_face_range()
test_triangulate_face_range(const std::string& filename)
{
std::cout << "\n--- test_triangulate_face_range(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
Surface_mesh mesh;
std::ifstream input(CGAL::data_file_path("meshes/cube_quad.off"));
std::ifstream input(filename);
if (!input || !(input >> mesh) || mesh.is_empty())
{
@ -92,6 +99,18 @@ test_triangulate_face_range()
}
bool success = CGAL::Polygon_mesh_processing::triangulate_faces(faces(mesh), mesh);
for(auto f : faces(mesh))
{
if(!is_triangle(halfedge(f, mesh), mesh))
{
std::cout << "non triangular face:" << std::endl;
for(auto h : halfedges_around_face(halfedge(f, mesh), mesh))
std::cout << " " << mesh.point(target(h, mesh)) << std::endl;
assert(false);
}
}
assert(CGAL::is_triangle_mesh(mesh));
// For compilation
@ -105,6 +124,8 @@ template <typename K>
bool
test_triangulate_face()
{
std::cout << "\n--- test_triangulate_face(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
@ -117,21 +138,17 @@ test_triangulate_face()
return false;
}
unsigned int nb = 0;
for(typename boost::graph_traits<Surface_mesh>::face_descriptor fit : faces(mesh))
{
if (nb > 4)
break;
else if (next(next(halfedge(fit, mesh), mesh), mesh)
!= prev(halfedge(fit, mesh), mesh))
if (next(next(halfedge(fit, mesh), mesh), mesh) != prev(halfedge(fit, mesh), mesh))
{
if(CGAL::Polygon_mesh_processing::triangulate_face(fit, mesh))
++nb;
else
if(!CGAL::Polygon_mesh_processing::triangulate_face(fit, mesh))
assert(false);
}
}
assert(CGAL::is_triangle_mesh(mesh));
return true;
}
@ -139,6 +156,8 @@ template <typename K>
bool
test_triangulate_triangle_face()
{
std::cout << "\n--- test_triangulate_triangle_face(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
@ -156,6 +175,9 @@ test_triangulate_triangle_face()
if(!CGAL::Polygon_mesh_processing::triangulate_face(fit, mesh, CGAL::parameters::geom_traits(K())))
assert(false);
}
assert(CGAL::is_triangle_mesh(mesh));
return true;
}
@ -211,6 +233,8 @@ template <typename K>
bool
test_dual_with_various_faces()
{
std::cout << "\n--- test_dual_with_various_faces(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
@ -235,27 +259,85 @@ test_dual_with_various_faces()
for(typename boost::graph_traits<Surface_mesh>::face_descriptor fit : faces(sm_dual))
{
if(!CGAL::Polygon_mesh_processing::triangulate_face(fit, sm_dual))
if(!CGAL::Polygon_mesh_processing::triangulate_face(fit, sm_dual,
CGAL::parameters::use_2d_constrained_delaunay_triangulation(true)))
assert(false);
}
assert(CGAL::is_triangle_mesh(sm_dual));
return true;
}
int main()
template <typename K>
bool
test_triangulate_soup()
{
std::cout << "\n--- test_triangulate_soup(" << typeid(K).name() << ") ---" << std::endl;
typedef typename K::Point_3 Point;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
Surface_mesh mesh;
std::ifstream input(CGAL::data_file_path("meshes/elephant.off"));
if (!input || !(input >> mesh) || mesh.is_empty())
{
std::cerr << "Not a valid off file." << std::endl;
return false;
}
typedef typename boost::property_map<Surface_mesh, boost::vertex_point_t>::type Pmap;
Pmap vpmap = get_property_map(boost::vertex_point, mesh);
CGAL::Dual<Surface_mesh> dual(mesh);
// copy dual to a sm
Surface_mesh sm_dual;
CGAL::copy_face_graph(dual, sm_dual,
CGAL::parameters::vertex_point_map(
Dual_vpm<Surface_mesh, Point, Pmap>(mesh, vpmap)));
std::vector<Point> points;
std::vector<std::vector<std::size_t> > polygons;
CGAL::Polygon_mesh_processing::polygon_mesh_to_polygon_soup(sm_dual, points, polygons);
bool success = CGAL::Polygon_mesh_processing::triangulate_polygons(points, polygons,
CGAL::parameters::geom_traits(K())
.use_2d_constrained_delaunay_triangulation(false));
for(std::size_t i = 0; i < polygons.size(); ++i)
{
assert(polygons[i].size() == 3);
}
// For compilation
success = CGAL::Polygon_mesh_processing::triangulate_polygons(points, polygons);
return success;
}
int main(int argc, char** argv)
{
if(argc > 1)
{
assert(test_triangulate_face_range<Epic>(argv[1]));
}
assert(test_triangulate_faces<Epic>());
assert(test_triangulate_faces_with_named_parameters<Epic>());
assert(test_triangulate_face_range<Epic>());
assert(test_triangulate_face_range<Epic>(CGAL::data_file_path("meshes/cube_quad.off")));
assert(test_triangulate_face<Epic>());
assert(test_triangulate_triangle_face<Epic>());
assert(test_dual_with_various_faces<Epic>());
assert(test_triangulate_soup<Epic>());
assert(test_triangulate_faces<Epec>());
assert(test_triangulate_faces_with_named_parameters<Epec>());
assert(test_triangulate_face_range<Epec>());
assert(test_triangulate_face_range<Epec>(CGAL::data_file_path("meshes/cube_quad.off")));
assert(test_triangulate_face<Epec>());
assert(test_triangulate_triangle_face<Epec>());
assert(test_dual_with_various_faces<Epec>());
assert(test_triangulate_soup<Epec>());
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -105,7 +105,7 @@ add_custom_target(self_intersection_plugin)
add_dependencies(self_intersection_plugin selection_plugin)
polyhedron_demo_plugin(triangulate_facets_plugin Triangulate_facets_plugin KEYWORDS PMP)
target_link_libraries(triangulate_facets_plugin PUBLIC scene_surface_mesh_item scene_selection_item)
target_link_libraries(triangulate_facets_plugin PUBLIC scene_surface_mesh_item scene_selection_item scene_polygon_soup_item)
polyhedron_demo_plugin(corefinement_plugin Corefinement_plugin KEYWORDS PMP)
target_link_libraries(corefinement_plugin PUBLIC scene_surface_mesh_item)

View File

@ -178,12 +178,13 @@ class Polyhedron_demo_isotropic_remeshing_plugin :
typedef std::unordered_set<edge_descriptor> Edge_set;
typedef Scene_polyhedron_selection_item::Is_constrained_map<Edge_set> Edge_constrained_pmap;
struct Visitor
struct Selection_updater_visitor
: public CGAL::Polygon_mesh_processing::Hole_filling::Default_visitor
{
typedef typename Scene_polyhedron_selection_item::Selection_set_facet Container;
Container& faces;
Visitor(Container& container)
Selection_updater_visitor(Container& container)
: faces(container)
{}
@ -493,7 +494,7 @@ public Q_SLOTS:
(QMessageBox::Ok | QMessageBox::Cancel),
QMessageBox::Ok))
{
Visitor visitor(selection_item->selected_facets);
Selection_updater_visitor visitor(selection_item->selected_facets);
CGAL::Polygon_mesh_processing::triangulate_faces(selection_item->selected_facets,
pmesh,
CGAL::parameters::visitor(visitor));

View File

@ -4,10 +4,13 @@
#include "Messages_interface.h"
#include <CGAL/Three/Polyhedron_demo_plugin_helper.h>
#include <CGAL/Three/Three.h>
#include "Scene_surface_mesh_item.h"
#include "Scene_polyhedron_selection_item.h"
#include "Scene_polygon_soup_item.h"
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
using namespace CGAL::Three;
class Polyhedron_demo_triangulate_facets_plugin :
public QObject,
@ -20,12 +23,13 @@ class Polyhedron_demo_triangulate_facets_plugin :
typedef Scene_surface_mesh_item::Face_graph FaceGraph;
typedef boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
struct Visitor
struct Selection_updater_visitor
: public CGAL::Polygon_mesh_processing::Hole_filling::Default_visitor
{
typedef typename Scene_polyhedron_selection_item::Selection_set_facet Container;
Container& faces;
Visitor(Container& container)
Selection_updater_visitor(Container& container)
: faces(container)
{}
void before_subface_creations(face_descriptor fd)
@ -66,6 +70,8 @@ public:
return true;
if ( qobject_cast<Scene_polyhedron_selection_item*>(scene->item(index)))
return true;
if(qobject_cast<Scene_polygon_soup_item*>(scene->item(index)))
return true;
}
return false;
}
@ -82,24 +88,38 @@ public Q_SLOTS:
Scene_polyhedron_selection_item* selection_item =
qobject_cast<Scene_polyhedron_selection_item*>(scene->item(index));
SMesh* pMesh = (sm_item != nullptr)
? sm_item->polyhedron()
Scene_polygon_soup_item* soup_item =
qobject_cast<Scene_polygon_soup_item*>(scene->item(index));
if (soup_item)
{
soup_item->triangulate();
}
else
{
SMesh* pMesh = (sm_item != nullptr) ? sm_item->polyhedron()
: selection_item->polyhedron();
if(!pMesh) continue;
if(is_triangle_mesh(*pMesh)) {
if(!pMesh)
continue;
if(is_triangle_mesh(*pMesh))
{
CGAL::Three::Three::warning(tr("The polyhedron \"%1\" is already triangulated.")
.arg(sm_item->name()) );
continue;
}
if (sm_item)
{
if (!CGAL::Polygon_mesh_processing::triangulate_faces(*pMesh))
CGAL::Three::Three::warning(tr("Some facets could not be triangulated."));
sm_item->invalidateOpenGLBuffers();
}
else if (selection_item)
{
Visitor visitor(selection_item->selected_facets);
Selection_updater_visitor visitor(selection_item->selected_facets);
if (!CGAL::Polygon_mesh_processing::triangulate_faces(
selection_item->selected_facets,
*pMesh,
@ -113,8 +133,9 @@ public Q_SLOTS:
selection_item->itemChanged();
}
sm_item->resetColors();
sm_item->invalidateOpenGLBuffers();
sm_item->resetColors(); // @todo should have a visitor to give the color of the parent face
}
scene->itemChanged(sm_item);
} // end of the loop on the selected items

View File

@ -22,6 +22,7 @@
#include <CGAL/Polygon_mesh_processing/orientation.h>
#include <CGAL/Polygon_mesh_processing/repair.h>
#include <CGAL/Polygon_mesh_processing/repair_polygon_soup.h>
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/version.h>
@ -419,6 +420,32 @@ void Scene_polygon_soup_item::inside_out()
invalidateOpenGLBuffers();
}
void Scene_polygon_soup_item::repair(bool erase_dup, bool req_same_orientation)
{
QApplication::setOverrideCursor(Qt::BusyCursor);
CGAL::Polygon_mesh_processing::repair_polygon_soup(
d->soup->points,
d->soup->polygons,
CGAL::parameters::erase_all_duplicates(erase_dup)
.require_same_orientation(req_same_orientation));
QApplication::restoreOverrideCursor();
invalidateOpenGLBuffers();
}
bool Scene_polygon_soup_item::triangulate()
{
QApplication::setOverrideCursor(Qt::BusyCursor);
bool success = true;
CGAL::Polygon_mesh_processing::triangulate_polygons(d->soup->points, d->soup->polygons);
QApplication::restoreOverrideCursor();
invalidateOpenGLBuffers();
return success;
}
bool
Scene_polygon_soup_item::orient(std::vector<std::size_t>& non_manifold_vertices)
{
@ -894,20 +921,6 @@ void Scene_polygon_soup_item::computeElements() const
QApplication::restoreOverrideCursor();
}
void Scene_polygon_soup_item::repair(bool erase_dup, bool req_same_orientation)
{
QApplication::setOverrideCursor(Qt::BusyCursor);
CGAL::Polygon_mesh_processing::repair_polygon_soup(
d->soup->points,
d->soup->polygons,
CGAL::parameters::
erase_all_duplicates(erase_dup)
.require_same_orientation(req_same_orientation));
QApplication::restoreOverrideCursor();
// CGAL::Three::Three::information(
}
CGAL::Three::Scene_item::Header_data Scene_polygon_soup_item::header() const
{
CGAL::Three::Scene_item::Header_data data;

View File

@ -187,6 +187,7 @@ public Q_SLOTS:
bool exportAsSurfaceMesh(SMesh*);
void inside_out();
void repair(bool erase_dup, bool req_same_orientation);
bool triangulate();
void setDisplayNonManifoldEdges(const bool);
bool displayNonManifoldEdges() const;

View File

@ -391,7 +391,7 @@ assemble_covariance_matrix_3(InputIterator first,
0.0, radius, 0.0,
0.0, 0.0, radius};
Matrix transformation = init_matrix<FT>(3,delta);
FT volume = (FT)(4.0/3.0) * radius * t.squared_radius();
FT volume = radius * t.squared_radius();
// skip zero measure primitives
if(volume == (FT)0.0)
@ -400,8 +400,9 @@ assemble_covariance_matrix_3(InputIterator first,
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (3.0/4.0) * volume * transformation * moment * LA::transpose(transformation);
transformation = volume * transformation * moment * LA::transpose(transformation);
volume *= FT(4.0/3.0);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();
@ -476,7 +477,7 @@ assemble_covariance_matrix_3(InputIterator first,
0.0, radius, 0.0,
0.0, 0.0, radius};
Matrix transformation = init_matrix<FT>(3,delta);
FT area = (FT)4.0 * t.squared_radius();
FT area = t.squared_radius();
// skip zero measure primitives
if(area == (FT)0.0)
@ -485,8 +486,9 @@ assemble_covariance_matrix_3(InputIterator first,
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (1.0/4.0) * area * transformation * moment * LA::transpose(transformation);
transformation = area * transformation * moment * LA::transpose(transformation);
area *= FT(4.0);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();

View File

@ -368,7 +368,7 @@ assemble_covariance_matrix_3(InputIterator first,
transformation << radius, 0.0, 0.0,
0.0, radius, 0.0,
0.0, 0.0, radius;
FT volume = (FT)(4.0/3.0) * radius * t.squared_radius();
FT volume = radius * t.squared_radius();
// skip zero measure primitives
if(volume == (FT)0.0)
@ -377,8 +377,9 @@ assemble_covariance_matrix_3(InputIterator first,
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (3.0/4.0) * volume * transformation * moment * transformation.transpose();
transformation = volume * transformation * moment * transformation.transpose();
volume *= FT(4.0 / 3.0);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();
@ -453,7 +454,7 @@ assemble_covariance_matrix_3(InputIterator first,
transformation << radius, 0.0, 0.0,
0.0, radius, 0.0,
0.0, 0.0, radius;
FT area = (FT)4.0 * t.squared_radius();
FT area = t.squared_radius();
// skip zero measure primitives
if(area == (FT)0.0)
@ -462,8 +463,9 @@ assemble_covariance_matrix_3(InputIterator first,
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (1.0/4.0) * area * transformation * moment * transformation.transpose();
transformation = area * transformation * moment * transformation.transpose();
area *= FT(4.0);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();