spell checked. Right before CGAL 1.0.

This commit is contained in:
Lutz Kettner 1998-04-09 13:15:30 +00:00
parent 3233af3bd2
commit bd7ab1c8e7
2 changed files with 18 additions and 16 deletions

View File

@ -33,7 +33,8 @@ third section documents generators for two-dimensional point sets, the
fourth section for three-dimensional point sets. The fifth section
presents examples using functions from
Section~\ref{sectionGenericFunctions} to generate composed objects
like segments. The sixth section describes ramdom conves sets.
like segments.
%% The sixth section describes random convex sets.
Note that the \stl\ algorithm \ccc{random_shuffle} is
useful in this context to achieve random permutations for otherwise
regular generators (e.g.~points on a grid or segment).
@ -107,7 +108,7 @@ template argument \ccc{Creator} which defaults to the class
template arguments must be provided when using these generators.}.
The \ccc{Creator} must be a function object accepting two \ccc{double}
values $x$ and $y$ and returning an initialized point \ccc{(x,y)} of type
\ccc{P}. Predifined implementations for these creators like the
\ccc{P}. Predefined implementations for these creators like the
default can be found in Section~\ref{sectionCreatorFunctionObjects}.
They simply assume an appropriate constructor for type \ccc{P}.
@ -250,7 +251,7 @@ Grid points are generated by functions writing to an output iterator.
the $n$ points.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The
\ccc{OutputIterator} must accept values of type \ccc{P}. If the
@ -285,7 +286,7 @@ exact predicates to compute the sign of expressions slightly off from zero.
Two random numbers are needed from \ccc{rnd} for each point.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The \ccc{value_type} of the
\ccc{ForwardIterator} must be assignable to \ccc{P}.
@ -321,7 +322,7 @@ a point set.
Returns the value of \ccc{first2} after inserting the $n$ points.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The \ccc{value_type} of the
\ccc{RandomAccessIterator} must be assignable to \ccc{P}.
@ -437,7 +438,7 @@ template argument \ccc{Creator} which defaults to
template arguments must be provided when using these generators.}.
The \ccc{Creator} must be a function object accepting three
\ccc{double} values $x$, $y$ and $z$ and returning an initialized
point \ccc{(x,y,z)} of type \ccc{P}. Predifined implementations for
point \ccc{(x,y,z)} of type \ccc{P}. Predefined implementations for
these creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. They simply assume an
appropriate constructor for type \ccc{P}.
@ -567,7 +568,7 @@ used, in this example copied to a windowstream.
<TABLE><TR><TD ALIGN=LEFT VALIGN=TOP WIDTH=60%>
<A HREF="./Segment_generator_prog2.gif">Figure:</A>
Output of example program for the generic segment generator using
precomputed point locations.
pre-computed point locations.
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=5% NOWRAP>
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=35% NOWRAP>
<A HREF="./Segment_generator_prog2.gif">

View File

@ -33,7 +33,8 @@ third section documents generators for two-dimensional point sets, the
fourth section for three-dimensional point sets. The fifth section
presents examples using functions from
Section~\ref{sectionGenericFunctions} to generate composed objects
like segments. The sixth section describes ramdom conves sets.
like segments.
%% The sixth section describes random convex sets.
Note that the \stl\ algorithm \ccc{random_shuffle} is
useful in this context to achieve random permutations for otherwise
regular generators (e.g.~points on a grid or segment).
@ -107,7 +108,7 @@ template argument \ccc{Creator} which defaults to the class
template arguments must be provided when using these generators.}.
The \ccc{Creator} must be a function object accepting two \ccc{double}
values $x$ and $y$ and returning an initialized point \ccc{(x,y)} of type
\ccc{P}. Predifined implementations for these creators like the
\ccc{P}. Predefined implementations for these creators like the
default can be found in Section~\ref{sectionCreatorFunctionObjects}.
They simply assume an appropriate constructor for type \ccc{P}.
@ -250,7 +251,7 @@ Grid points are generated by functions writing to an output iterator.
the $n$ points.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The
\ccc{OutputIterator} must accept values of type \ccc{P}. If the
@ -285,7 +286,7 @@ exact predicates to compute the sign of expressions slightly off from zero.
Two random numbers are needed from \ccc{rnd} for each point.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The \ccc{value_type} of the
\ccc{ForwardIterator} must be assignable to \ccc{P}.
@ -321,7 +322,7 @@ a point set.
Returns the value of \ccc{first2} after inserting the $n$ points.
\ccPrecond \ccc{Creator} must be a function object accepting two
\ccc{double} values $x$ and $y$ and returning an initialized point
\ccc{(x,y)} of type \ccc{P}. Predifined implementations for these
\ccc{(x,y)} of type \ccc{P}. Predefined implementations for these
creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. The \ccc{value_type} of the
\ccc{RandomAccessIterator} must be assignable to \ccc{P}.
@ -437,7 +438,7 @@ template argument \ccc{Creator} which defaults to
template arguments must be provided when using these generators.}.
The \ccc{Creator} must be a function object accepting three
\ccc{double} values $x$, $y$ and $z$ and returning an initialized
point \ccc{(x,y,z)} of type \ccc{P}. Predifined implementations for
point \ccc{(x,y,z)} of type \ccc{P}. Predefined implementations for
these creators like the default can be found in
Section~\ref{sectionCreatorFunctionObjects}. They simply assume an
appropriate constructor for type \ccc{P}.
@ -567,7 +568,7 @@ used, in this example copied to a windowstream.
<TABLE><TR><TD ALIGN=LEFT VALIGN=TOP WIDTH=60%>
<A HREF="./Segment_generator_prog2.gif">Figure:</A>
Output of example program for the generic segment generator using
precomputed point locations.
pre-computed point locations.
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=5% NOWRAP>
</TD><TD ALIGN=LEFT VALIGN=TOP WIDTH=35% NOWRAP>
<A HREF="./Segment_generator_prog2.gif">