mirror of https://github.com/CGAL/cgal
merge next
This commit is contained in:
commit
bdcf26bb20
|
|
@ -34,7 +34,6 @@ AABB_tree/doc_tex/AABB_tree_ref/AABB_tree.tex -text
|
|||
AABB_tree/doc_tex/AABB_tree_ref/introduction.tex -text
|
||||
AABB_tree/doc_tex/AABB_tree_ref/main.tex -text
|
||||
AABB_tree/dont_submit -text
|
||||
AABB_tree/examples/AABB_tree/CMakeLists.txt -text
|
||||
AABB_tree/examples/AABB_tree/cleanup.bat -text
|
||||
AABB_tree/include/CGAL/AABB_intersections.h -text
|
||||
AABB_tree/include/CGAL/AABB_polyhedron_segment_primitive.h -text
|
||||
|
|
@ -1249,6 +1248,7 @@ Circular_kernel_2/examples/Circular_kernel_2/functor_has_on_2.cpp -text
|
|||
Circular_kernel_2/include/CGAL/Circular_kernel_intersections.h -text
|
||||
Circular_kernel_2/include/CGAL/Filtered_bbox_circular_kernel_2/interface_macros.h -text
|
||||
Circular_kernel_2/include/CGAL/global_functions_circular_kernel_2.h -text
|
||||
Circular_kernel_2/test/Circular_kernel_2/CMakeLists.txt -text
|
||||
Circular_kernel_2/test/Circular_kernel_2/test_Circular_kernel_basic.cpp -text
|
||||
Circular_kernel_2/test/Circular_kernel_2/test_Exact_circular_kernel_basic.cpp -text
|
||||
Circular_kernel_3/changes -text
|
||||
|
|
@ -1376,6 +1376,7 @@ Combinatorial_map/doc_tex/Combinatorial_map_ref/Dart_base.tex -text
|
|||
Combinatorial_map/doc_tex/Combinatorial_map_ref/intro.tex -text
|
||||
Combinatorial_map/doc_tex/Combinatorial_map_ref/main.tex -text
|
||||
Combinatorial_map/dont_submit -text
|
||||
Combinatorial_map/examples/Combinatorial_map/map_3_foreach.cpp -text
|
||||
Combinatorial_map/examples/Combinatorial_map/map_3_marks.cpp -text
|
||||
Combinatorial_map/examples/Combinatorial_map/map_3_operations.cpp -text
|
||||
Combinatorial_map/examples/Combinatorial_map/map_3_simple_example.cpp -text
|
||||
|
|
@ -1387,6 +1388,7 @@ Combinatorial_map/include/CGAL/Cell_iterators.h -text
|
|||
Combinatorial_map/include/CGAL/Combinatorial_map.h -text
|
||||
Combinatorial_map/include/CGAL/Combinatorial_map_basic_operations.h -text
|
||||
Combinatorial_map/include/CGAL/Combinatorial_map_constructors.h -text
|
||||
Combinatorial_map/include/CGAL/Combinatorial_map_iterators_base.h -text
|
||||
Combinatorial_map/include/CGAL/Combinatorial_map_min_items.h -text
|
||||
Combinatorial_map/include/CGAL/Combinatorial_map_operations.h -text
|
||||
Combinatorial_map/include/CGAL/Dart.h -text
|
||||
|
|
@ -1394,10 +1396,10 @@ Combinatorial_map/include/CGAL/Dart_const_iterators.h -text
|
|||
Combinatorial_map/include/CGAL/Dart_iterators.h -text
|
||||
Combinatorial_map/include/CGAL/internal/Combinatorial_map_functors.h -text
|
||||
Combinatorial_map/include/CGAL/internal/Combinatorial_map_utility.h -text
|
||||
Combinatorial_map/include/CGAL/internal/Combinatorial_map_utility_novariadic.h -text
|
||||
Combinatorial_map/package_info/Combinatorial_map/description.txt -text
|
||||
Combinatorial_map/package_info/Combinatorial_map/long_description.txt -text
|
||||
Combinatorial_map/package_info/Combinatorial_map/maintainer -text
|
||||
Combinatorial_map/test/Combinatorial_map/CMakeLists.txt -text
|
||||
Combinatorial_map/test/Combinatorial_map/Combinatorial_map_2_test.h -text
|
||||
Combinatorial_map/test/Combinatorial_map/Combinatorial_map_3_test.h -text
|
||||
Combinatorial_map/test/Combinatorial_map/Combinatorial_map_test.cpp -text
|
||||
|
|
@ -1787,7 +1789,6 @@ Installation/test/Installation/link_to_CGAL_Core.cpp -text
|
|||
Installation/test/Installation/link_to_CGAL_ImageIO.cpp -text
|
||||
Installation/test/Installation/link_to_CGAL_Qt3.cpp -text
|
||||
Installation/test/Installation/link_to_CGAL_Qt4.cpp -text
|
||||
Interpolation/demo/Interpolation/CMakeLists.txt -text
|
||||
Interpolation/doc_tex/Interpolation/interpolation.png -text
|
||||
Interpolation/doc_tex/Interpolation/nn_coords.gif -text svneol=unset#image/gif
|
||||
Interpolation/doc_tex/Interpolation/nn_coords.ipe -text svneol=unset#application/postscript
|
||||
|
|
@ -1855,7 +1856,6 @@ Kernel_23/examples/Kernel_23/MyPointC2_iostream.h -text
|
|||
Kernel_23/examples/Kernel_23/cartesian_converter.cpp -text
|
||||
Kernel_23/include/CGAL/functions_on_enums.h -text
|
||||
Kernel_23/include/CGAL/internal/Projection_traits_3.h -text
|
||||
Kernel_23/test/Kernel_23/CMakeLists.txt -text
|
||||
Kernel_23/test/Kernel_23/overload_bug.cpp -text
|
||||
Kernel_d/doc_tex/Kernel_d/hypercube.png -text
|
||||
Kernel_d/doc_tex/Kernel_d_ref/Kernel_Compute_coordinate_d.tex -text
|
||||
|
|
@ -1935,6 +1935,127 @@ Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler-detail.png -text
|
|||
Largest_empty_rect_2/doc_tex/Inscribed_areas_ref/ler.png -text
|
||||
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test eol=lf
|
||||
Largest_empty_rect_2/test/Largest_empty_rect_2/cgal_test_with_cmake eol=lf
|
||||
Linear_cell_complex/demo/Linear_cell_complex/CreateMesh.ui -text
|
||||
Linear_cell_complex/demo/Linear_cell_complex/Linear_cell_complex_3.qrc -text
|
||||
Linear_cell_complex/demo/Linear_cell_complex/Linear_cell_complex_3_subdivision.cpp -text
|
||||
Linear_cell_complex/demo/Linear_cell_complex/MainWindow.ui -text
|
||||
Linear_cell_complex/demo/Linear_cell_complex/about_Linear_cell_complex_3.html svneol=native#text/html
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/Linear_cell_complex.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/PkgDescription.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/4Dobject.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/Diagramme_class.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/basic-example3D.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/creations.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/exemple-carte-with_point_3d-sew2.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-edge.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/insert-vertex.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-object.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc-zoom2.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/intuitif-example-lcc.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/object2d.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/4Dobject.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/Diagramme_class.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/basic-example3D.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/creations.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/exemple-carte-with_point_3d-sew2.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-edge.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/insert-vertex.pdf -text svneol=unset#unset
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-object.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc-zoom2.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/intuitif-example-lcc.pdf -text svneol=unset#unset
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/object2d.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/plane-graph.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/pdf/triangulation.pdf -text svneol=unset#unset
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/plane-graph.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/4Dobject.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/Diagramme_class.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/basic-example3D.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/creations.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/exemple-carte-with_point_3d-sew2.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-edge.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/insert-vertex.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-object.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc-zoom2.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/intuitif-example-lcc.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/object2d.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/plane-graph.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/png/triangulation.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/fig/triangulation.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/logo-lcc-small.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/logo-lcc.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex/main.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/CellAttributeWithPoint.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Cell_attribute_with_point.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexItems.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/LinearCellComplexTraits.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_constructors.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_min_items.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_operations.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/Linear_cell_complex_traits.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/import_graph.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_cuboid.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_hexahedron.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_quadrilateral.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_rectangle.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_segment.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_tetrahedron.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/make_triangle.fig -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/import_graph.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_cuboid.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_hexahedron.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_quadrilateral.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_rectangle.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_segment.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_tetrahedron.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/pdf/make_triangle.pdf -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/import_graph.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_cuboid.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_hexahedron.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_quadrilateral.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_rectangle.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_segment.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_tetrahedron.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/fig/png/make_triangle.png -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/intro.tex -text
|
||||
Linear_cell_complex/doc_tex/Linear_cell_complex_ref/main.tex -text
|
||||
Linear_cell_complex/dont_submit -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/CMakeLCCViewerQt.inc -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/CMakeLCCViewerVtk.inc -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/CMakeLists.txt -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/data/graph.off -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/data/points -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/data/small_points -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3.cpp -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_viewer_qt.h -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_viewer_vtk.h -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_with_colored_vertices.cpp -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_4.cpp -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/plane_graph_to_lcc_2.cpp -text
|
||||
Linear_cell_complex/examples/Linear_cell_complex/voronoi_3.cpp -text
|
||||
Linear_cell_complex/include/CGAL/Cell_attribute_with_point.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_constructors.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_incremental_builder.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_min_items.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_operations.h -text
|
||||
Linear_cell_complex/include/CGAL/Linear_cell_complex_traits.h -text
|
||||
Linear_cell_complex/package_info/Linear_cell_complex/description.txt -text
|
||||
Linear_cell_complex/package_info/Linear_cell_complex/long_description.txt -text
|
||||
Linear_cell_complex/package_info/Linear_cell_complex/maintainer -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/Linear_cell_complex_2_test.h -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/Linear_cell_complex_3_test.h -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/Linear_cell_complex_4_test.h -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/Linear_cell_complex_test.cpp -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/data/armadillo.off -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/data/graph.txt -text
|
||||
Linear_cell_complex/test/Linear_cell_complex/data/points.txt -text
|
||||
MacOSX/auxiliary/cgal_app.icns -text
|
||||
Maintenance/MacOSX_Installer/CGAL-3.2-absolute.pmproj -text
|
||||
Maintenance/MacOSX_Installer/CGAL-3.2.pmproj -text
|
||||
|
|
@ -1959,10 +2080,11 @@ Maintenance/deb/sid/debian/control -text
|
|||
Maintenance/deb/sid/debian/libcgal-demo.install -text
|
||||
Maintenance/deb/sid/debian/libcgal-dev.install -text
|
||||
Maintenance/deb/sid/debian/libcgal-ipelets.install -text
|
||||
Maintenance/deb/sid/debian/libcgal7.install -text
|
||||
Maintenance/deb/sid/debian/libcgal7.shlibs -text
|
||||
Maintenance/deb/sid/debian/libcgal8.install -text
|
||||
Maintenance/deb/sid/debian/libcgal8.shlibs -text
|
||||
Maintenance/deb/sid/debian/patches/00list -text
|
||||
Maintenance/deb/sid/debian/rules -text
|
||||
Maintenance/deb/sid/debian/source/format -text
|
||||
Maintenance/deb/sid/debian/watch -text
|
||||
Maintenance/deb/squeeze/debian/README.Debian -text
|
||||
Maintenance/deb/squeeze/debian/README.source -text
|
||||
|
|
@ -1972,10 +2094,11 @@ Maintenance/deb/squeeze/debian/control -text
|
|||
Maintenance/deb/squeeze/debian/libcgal-demo.install -text
|
||||
Maintenance/deb/squeeze/debian/libcgal-dev.install -text
|
||||
Maintenance/deb/squeeze/debian/libcgal-ipelets.install -text
|
||||
Maintenance/deb/squeeze/debian/libcgal7.install -text
|
||||
Maintenance/deb/squeeze/debian/libcgal7.shlibs -text
|
||||
Maintenance/deb/squeeze/debian/libcgal8.install -text
|
||||
Maintenance/deb/squeeze/debian/libcgal8.shlibs -text
|
||||
Maintenance/deb/squeeze/debian/patches/00list -text
|
||||
Maintenance/deb/squeeze/debian/rules -text
|
||||
Maintenance/deb/squeeze/debian/source/format -text
|
||||
Maintenance/deb/squeeze/debian/watch -text
|
||||
Maintenance/deb/wheezy/debian/README.Debian -text
|
||||
Maintenance/deb/wheezy/debian/README.source -text
|
||||
|
|
@ -1985,10 +2108,11 @@ Maintenance/deb/wheezy/debian/control -text
|
|||
Maintenance/deb/wheezy/debian/libcgal-demo.install -text
|
||||
Maintenance/deb/wheezy/debian/libcgal-dev.install -text
|
||||
Maintenance/deb/wheezy/debian/libcgal-ipelets.install -text
|
||||
Maintenance/deb/wheezy/debian/libcgal7.install -text
|
||||
Maintenance/deb/wheezy/debian/libcgal7.shlibs -text
|
||||
Maintenance/deb/wheezy/debian/libcgal8.install -text
|
||||
Maintenance/deb/wheezy/debian/libcgal8.shlibs -text
|
||||
Maintenance/deb/wheezy/debian/patches/00list -text
|
||||
Maintenance/deb/wheezy/debian/rules -text
|
||||
Maintenance/deb/wheezy/debian/source/format -text
|
||||
Maintenance/deb/wheezy/debian/watch -text
|
||||
Maintenance/infrastructure/cgal.geometryfactory.com/.autocgal_with_cmake_rc -text
|
||||
Maintenance/infrastructure/cgal.geometryfactory.com/.autocgalrc -text
|
||||
|
|
@ -2557,7 +2681,6 @@ Mesh_3/doc_tex/Mesh_3_ref/Polyhedral_mesh_domain_3.tex -text
|
|||
Mesh_3/doc_tex/Mesh_3_ref/WSE/MeshWSETraits_3.tex -text
|
||||
Mesh_3/doc_tex/Mesh_3_ref/WSE/MeshWSEVertexBase_3.tex -text
|
||||
Mesh_3/doc_tex/Mesh_3_ref/WSE/make_mesh_3_with_sharp_edges.tex -text
|
||||
Mesh_3/examples/Mesh_3/cgal_test_with_cmake eol=lf
|
||||
Mesh_3/examples/Mesh_3/data/elephant.off -text svneol=unset#application/octet-stream
|
||||
Mesh_3/examples/Mesh_3/data/fandisk.off -text svneol=unset#application/octet-stream
|
||||
Mesh_3/examples/Mesh_3/data/liver.inr.gz -text svneol=unset#application/gzip
|
||||
|
|
@ -2808,6 +2931,7 @@ Number_types/doc_tex/NumberTypeSupport/illustration.png -text
|
|||
Number_types/doc_tex/NumberTypeSupport_ref/CORE_BigFloat.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/Gmpfi.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/Gmpfr.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/compute_roots_of_2.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/fundamental_types.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/make_sqrt.tex -text
|
||||
Number_types/doc_tex/NumberTypeSupport_ref/open.tex -text
|
||||
|
|
@ -4171,6 +4295,7 @@ Triangulation_2/examples/Triangulation_2/info_insert_with_pair_iterator_2.cpp -t
|
|||
Triangulation_2/examples/Triangulation_2/info_insert_with_pair_iterator_regular_2.cpp -text
|
||||
Triangulation_2/examples/Triangulation_2/info_insert_with_transform_iterator_2.cpp -text
|
||||
Triangulation_2/examples/Triangulation_2/info_insert_with_zip_iterator_2.cpp -text
|
||||
Triangulation_2/examples/Triangulation_2/polygon_triangulation.cpp -text
|
||||
Triangulation_2/test/Triangulation_2/test_delaunay_triangulation_proj.cpp -text
|
||||
Triangulation_3/demo/Triangulation_3/CMakeLists.txt -text
|
||||
Triangulation_3/demo/Triangulation_3/MainWindow.cpp -text
|
||||
|
|
|
|||
|
|
@ -1,10 +1,10 @@
|
|||
\begin{ccPkgDescription}{AABB Tree \label{Pkg:AABB_tree}}
|
||||
\begin{ccPkgDescription}{3D Fast Intersection and Distance Computation (AABB Tree)\label{Pkg:AABB_tree}}
|
||||
\ccPkgSummary{The AABB (axis-aligned bounding box) tree component offers a static data structure and algorithms to perform efficient intersection and distance queries on sets of finite 3D geometric objects.}
|
||||
|
||||
\ccPkgHowToCiteCgal{cgal:atw-aabb-11b}
|
||||
%
|
||||
\ccPkgHowToCiteCgal{cgal:atw-aabb-12}
|
||||
\ccPkgIntroducedInCGAL{3.5}
|
||||
\ccPkgDemo{AABB Tree}{AABB_demo.zip}
|
||||
\ccPkgIllustration{AABB_tree/figs/teaser-thumb.png}{AABB_tree/figs/teaser.png}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
||||
%
|
||||
\end{ccPkgDescription}
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
\ccUserChapter{AABB Tree\label{AABB_tree}}
|
||||
\ccUserChapter{3D Fast Intersection and Distance Computation (AABB Tree)\label{AABB_tree}}
|
||||
\label{user_chapter_AABB_tree}
|
||||
|
||||
\ccChapterAuthor{Pierre Alliez,
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
\ccRefChapter{AABB Tree}
|
||||
\ccRefChapter{3D Fast Intersection and Distance Computation (AABB Tree)}
|
||||
\ccChapterAuthor{Pierre Alliez,
|
||||
St{\'e}phane Tayeb,
|
||||
Camille Wormser}
|
||||
|
|
|
|||
|
|
@ -1,40 +0,0 @@
|
|||
# Created by the script cgal_create_cmake_script
|
||||
# This is the CMake script for compiling a CGAL application.
|
||||
|
||||
project(AABB_examples)
|
||||
|
||||
cmake_minimum_required(VERSION 2.6.2)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" VERSION_GREATER 2.6)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}.${CMAKE_PATCH_VERSION}" VERSION_GREATER 2.8.3)
|
||||
cmake_policy(VERSION 2.8.4)
|
||||
else()
|
||||
cmake_policy(VERSION 2.6)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include_directories(../../include/)
|
||||
|
||||
# Find CGAL
|
||||
find_package(CGAL COMPONENTS)
|
||||
#include( ${CGAL_USE_FILE} )
|
||||
|
||||
if ( CGAL_FOUND )
|
||||
|
||||
include( ${CGAL_USE_FILE} )
|
||||
|
||||
include( CGAL_CreateSingleSourceCGALProgram )
|
||||
|
||||
create_single_source_cgal_program("AABB_segment_3_example.cpp")
|
||||
create_single_source_cgal_program("AABB_triangle_3_example.cpp")
|
||||
create_single_source_cgal_program("AABB_polyhedron_edge_example.cpp")
|
||||
create_single_source_cgal_program("AABB_polyhedron_facet_distance_example.cpp")
|
||||
create_single_source_cgal_program("AABB_polyhedron_facet_intersection_example.cpp")
|
||||
create_single_source_cgal_program("AABB_custom_example.cpp")
|
||||
create_single_source_cgal_program("AABB_insertion_example.cpp")
|
||||
create_single_source_cgal_program("AABB_custom_indexed_triangle_set_example.cpp")
|
||||
create_single_source_cgal_program("AABB_custom_triangle_soup_example.cpp")
|
||||
else()
|
||||
|
||||
message(STATUS "This program requires the CGAL library, and will not be compiled.")
|
||||
|
||||
endif()
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2008-2009 INRIA Sophia-Antipolis (France), ETH Zurich (Switzerland).
|
||||
// Copyright (c) 2008-2009 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2008,2011 INRIA Sophia-Antipolis (France), ETH Zurich (Switzerland).
|
||||
// Copyright (c) 2008,2011 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2008 INRIA Sophia-Antipolis (France), ETH Zurich (Switzerland).
|
||||
// Copyright (c) 2008 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2008 INRIA Sophia-Antipolis (France), ETH Zurich (Switzerland).
|
||||
// Copyright (c) 2008 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2008-2009 INRIA Sophia-Antipolis (France), ETH Zurich (Switzerland).
|
||||
// Copyright (c) 2008-2009 INRIA Sophia-Antipolis (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Algebraic Foundations\label{Pkg:AlgebraicFoundations}}
|
||||
\ccPkgHowToCiteCgal{cgal:h-af-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:h-af-12}
|
||||
\ccPkgSummary{
|
||||
This package defines what algebra means for \cgal, in terms of
|
||||
concepts, classes and functions. The main features are:
|
||||
|
|
@ -7,7 +7,7 @@ concepts, classes and functions. The main features are:
|
|||
(ii) separation between algebraic types (not necessarily embeddable
|
||||
into the reals), and number types (embeddable into the reals).
|
||||
}
|
||||
|
||||
%
|
||||
%\ccPkgDependsOn{}
|
||||
\ccPkgIntroducedInCGAL{3.3}
|
||||
\ccPkgLicense{\ccLicenseLGPL}
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ with remainder.
|
|||
second_argument_type y);}{}
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -106,7 +106,7 @@ The following table illustrates the behavior for integers:
|
|||
|
||||
\ccMethod{template <class NT1, class NT2> result_type
|
||||
operator()(NT1 x, NT2 y, third_argument_type q, fourth_argument_type r);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ Thus, $0$ is divided by every element of the Ring, in particular by itself.
|
|||
{ returns $gcd(x,y)$. }
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ $z$ is uniquely defined if it exists.
|
|||
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@
|
|||
second_argument_type y);}{}
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@
|
|||
|
||||
\ccMethod{template <class NT1, class NT2>
|
||||
result_type operator()(NT1 x, NT2 y);}{
|
||||
This operator is well defined if \ccc{NT1} and \ccc{NT2} are
|
||||
This operator is defined if \ccc{NT1} and \ccc{NT2} are
|
||||
\ccc{ExplicitInteroperable} with coercion type
|
||||
\ccc{RealEmbeddableTraits::Type}. }
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,9 @@
|
|||
|
||||
\ccc{AdaptableUnaryFunction} computes a double approximation of a real
|
||||
embeddable number.
|
||||
|
||||
Remark: In order to control the quality of approximation one has to resort
|
||||
to methods that are specific to NT. There are no general guarantees whatsoever.
|
||||
|
||||
\ccRefines
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The template function \ccRefName\ returns the absolute value of a number.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ the second, i.e. it returns \ccc{CGAL::LARGER} if $x$ is larger then $y$.
|
|||
In case the argument types \ccc{NT1} and \ccc{NT2} differ,
|
||||
\ccRefName\ is performed with the semantic of the type determined via
|
||||
\ccc{Coercion_traits}.
|
||||
The function is guaranteed to be well defined in case this type
|
||||
The function is defined if this type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{UniqueFactorizationDomain} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{IntegralDomain} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the inverse element with respect to multiplication.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{Field} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ determines if a value is negative or not.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ determines if a value is equal to 1 or not.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ determines if a value is positive or not.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ determines if a value is equal to 0 or not.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} or of
|
||||
the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the k-th root of a value.
|
||||
|
||||
The function is guaranteed to be well defined in case the second argument type
|
||||
The function is defined if the second argument type
|
||||
is a model of the \ccc{FieldWithKthRoot} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The function \ccRefName\ computes a real root of a square-free univariate
|
||||
polynomial.
|
||||
|
||||
The function is guaranteed to be well defined in case the value type, \ccc{NT},
|
||||
The function is defined if the value type, \ccc{NT},
|
||||
of the iterator range is a model of the \ccc{FieldWithRootOf} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The template function \ccRefName\ returns the sign of a number.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ may simplify a given object.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the square root of a value.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{FieldWithSqrt} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ returns the square of a number.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,9 +3,11 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ returns an double approximation of a number.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT. There are no general guarantees whatsoever.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
||||
\ccFunction{template <class NT> double to_double(const NT& x);}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The template function \ccRefName\ computes for a given real embeddable
|
||||
number $x$ a double interval containing $x$.
|
||||
This interval is represented by a \ccc{std::pair<double,double>}.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The function \ccRefName\ computes the unit part of a given ring
|
||||
element.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,5 @@
|
|||
Utrecht University (The Netherlands)
|
||||
ETH Zurich (Switzerland)
|
||||
INRIA Sophia-Antipolis (France)
|
||||
Max-Planck-Institute Saarbruecken (Germany)
|
||||
Tel-Aviv University (Israel)
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{Algebraic Kernel \label{Pkg:AlgebraicKerneld}}
|
||||
\ccPkgHowToCiteCgal{cgal:bht-ak-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:bht-ak-12}
|
||||
\ccPkgSummary{
|
||||
Real solving of polynomials is a fundamental problem with a wide application range.
|
||||
This package is targeted to provide black-box implementations of state-of-the-art
|
||||
|
|
@ -8,7 +8,7 @@ and bivariate polynomial systems. Such a black-box is called an {\em Algebraic K
|
|||
So far the package only provides models for the univariate kernel. Nevertheless,
|
||||
it already defines concepts for the bivariate kernel, since this settles the interface
|
||||
for upcoming implementations.}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{Some models depend on \ccThirdPartyRS.}
|
||||
\ccPkgIntroducedInCGAL{3.6}
|
||||
\ccPkgLicense{\ccLicenseLGPL}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France),
|
||||
Max-Planck-Institute Saarbruecken (Germany).
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Alpha Shapes\label{Pkg:AlphaShape2}}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:d-as2-12}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding the whole family of alpha-complexes
|
||||
related to a given 2D Delaunay or regular triangulation. In particular, the data structure
|
||||
allows to retrieve the alpha-complex for any alpha value, the whole spectrum of critical
|
||||
alpha values and a filtration on the triangulation faces (this filtration is based on the first
|
||||
alpha value for which each face is included on the alpha-complex).}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{\ccRef[2D Triangulation]{Pkg:Triangulation2}}
|
||||
\ccPkgIntroducedInCGAL{2.1}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -67,7 +67,6 @@ public:
|
|||
typedef typename Gt::FT FT;
|
||||
typedef typename Gt::Point_2 Point;
|
||||
typedef typename Gt::Segment_2 Segment;
|
||||
typedef typename Gt::Ray_2 Ray;
|
||||
typedef typename Gt::Line_2 Line;
|
||||
|
||||
typedef typename Dt::Face_handle Face_handle;
|
||||
|
|
|
|||
|
|
@ -47,7 +47,6 @@ public:
|
|||
typedef typename Gt::Point Point;
|
||||
|
||||
typedef typename Gt::Distance Distance;
|
||||
typedef typename Gt::Ray Ray;
|
||||
typedef typename Gt::Line Line;
|
||||
|
||||
typedef typename Alpha_shape_2<Rt>::Face_handle Face_handle;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -19,7 +19,6 @@ typedef CGAL::Filtered_kernel<SC> K;
|
|||
|
||||
typedef K::Point_2 Point;
|
||||
typedef K::Segment_2 Segment;
|
||||
typedef K::Ray_2 Ray;
|
||||
typedef K::Line_2 Line;
|
||||
typedef K::Triangle_2 Triangle;
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,6 @@ typedef CGAL::Filtered_kernel<SC> K;
|
|||
typedef K::Point_2 Point_base;
|
||||
typedef CGAL::Weighted_point<Point_base,coord_type> Point;
|
||||
typedef K::Segment_2 Segment;
|
||||
typedef K::Ray_2 Ray;
|
||||
typedef K::Line_2 Line;
|
||||
typedef K::Triangle_2 Triangle;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{3D Alpha Shapes\label{Pkg:AlphaShapes3}}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:dy-as3-12}
|
||||
\ccPkgSummary{
|
||||
This package offers a data structure encoding
|
||||
either one alpha-complex or
|
||||
|
|
@ -13,7 +13,7 @@ allows to retrieve the alpha-complex for any alpha value, the whole spectrum o
|
|||
alpha values and a filtration on the triangulation faces (this filtration is based on the first
|
||||
alpha value for which each face is included on the alpha-complex).
|
||||
}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{\ccRef[2D Triangulation]{Pkg:Triangulation3}}
|
||||
\ccPkgIntroducedInCGAL{2.3}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Apollonius Graphs (Delaunay Graphs of Disks)\label{Pkg:ApolloniusGraph2}}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:ky-ag2-12}
|
||||
\ccPkgSummary{
|
||||
Algorithms for computing the Apollonius
|
||||
graph in two dimensions. The Apollonius graph is the dual of the
|
||||
|
|
@ -9,7 +9,7 @@
|
|||
of disks under the Euclidean metric, and it is a generalization of the
|
||||
standard Voronoi diagram for points. The algorithms provided are
|
||||
dynamic.}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{\ccRef[2D Triangulation Data Structure]{Pkg:TDS2}}
|
||||
\ccPkgIntroducedInCGAL{3.0}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -0,0 +1 @@
|
|||
ETH Zurich (Switzerland).
|
||||
|
|
@ -32,37 +32,40 @@
|
|||
#define CGAL_ARITHMETIC_KERNEL_H
|
||||
|
||||
#include <CGAL/basic.h>
|
||||
#include <CGAL/CORE_arithmetic_kernel.h>
|
||||
#include <CGAL/LEDA_arithmetic_kernel.h>
|
||||
#include <CGAL/GMP_arithmetic_kernel.h>
|
||||
|
||||
|
||||
// Define a default Arithmetic_kernel GMP, CORE, LEDA
|
||||
|
||||
namespace CGAL{
|
||||
|
||||
#ifndef CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
#include <CGAL/LEDA_arithmetic_kernel.h>
|
||||
#if defined(CGAL_HAS_LEDA_ARITHMETIC_KERNEL)
|
||||
namespace CGAL{
|
||||
typedef LEDA_arithmetic_kernel Arithmetic_kernel;
|
||||
}// namespace CGAL
|
||||
#define CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL 1
|
||||
#endif // CGAL_USE_LEDA
|
||||
#endif // CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
|
||||
#ifndef CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
#if defined(CGAL_HAS_GMP_ARITHMETIC_KERNEL)
|
||||
typedef GMP_arithmetic_kernel Arithmetic_kernel;
|
||||
#define CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL 1
|
||||
#endif // CGAL_USE_GMP
|
||||
#endif // CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
|
||||
#ifndef CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
#include <CGAL/CORE_arithmetic_kernel.h>
|
||||
#if defined(CGAL_HAS_CORE_ARITHMETIC_KERNEL)
|
||||
namespace CGAL{
|
||||
typedef CORE_arithmetic_kernel Arithmetic_kernel;
|
||||
}// namespace CGAL
|
||||
#define CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL 1
|
||||
#endif // CGAL_USE_CORE
|
||||
#endif // CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
|
||||
} // namespace CGAL
|
||||
#ifndef CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
#include <CGAL/GMP_arithmetic_kernel.h>
|
||||
#if defined(CGAL_HAS_GMP_ARITHMETIC_KERNEL)
|
||||
namespace CGAL{
|
||||
typedef GMP_arithmetic_kernel Arithmetic_kernel;
|
||||
}// namespace CGAL
|
||||
#define CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL 1
|
||||
#endif // CGAL_USE_GMP
|
||||
#endif // CGAL_HAS_DEFAULT_ARITHMETIC_KERNEL
|
||||
|
||||
|
||||
// Macro to snap typedefs in Arithmetic_kernel
|
||||
|
|
|
|||
|
|
@ -1,4 +1,3 @@
|
|||
|
||||
// Copyright (c) 2009 Max-Planck-Institute Saarbruecken (Germany).
|
||||
// All rights reserved.
|
||||
//
|
||||
|
|
|
|||
|
|
@ -22,10 +22,6 @@
|
|||
// \brief provide class Arithmetic_kernel, a collection of number types.
|
||||
//
|
||||
|
||||
/*! \file CGAL/Arithmetic_kernel.h
|
||||
* \brief Declarations pertaining to CGAL::Arithmetic_kernel
|
||||
*/
|
||||
|
||||
#ifndef CGAL_GMP_ARITHMETIC_KERNEL_H
|
||||
#define CGAL_GMP_ARITHMETIC_KERNEL_H
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (c) 2010 GeometryFactory (France).
|
||||
// Copyright (c) 2010 Max-Planck-Institute Saarbruecken (Germany).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||||
|
|
@ -22,10 +22,6 @@
|
|||
// \brief provide class Arithmetic_kernel, a collection of number types.
|
||||
//
|
||||
|
||||
/*! \file CGAL/Arithmetic_kernel.h
|
||||
* \brief Declarations pertaining to CGAL::Arithmetic_kernel
|
||||
*/
|
||||
|
||||
#ifndef CGAL_MP_FLOAT_ARITHMETIC_KERNEL_H
|
||||
#define CGAL_MP_FLOAT_ARITHMETIC_KERNEL_H
|
||||
|
||||
|
|
@ -36,6 +32,7 @@
|
|||
#define CGAL_HAS_MP_FLOAT_ARITHMETIC_KERNEL
|
||||
|
||||
#include <CGAL/MP_Float.h>
|
||||
#include <CGAL/Quotient.h>
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
|
|
@ -54,6 +51,10 @@ template <>
|
|||
struct Get_arithmetic_kernel<MP_Float> {
|
||||
typedef MP_Float_arithmetic_kernel Arithmetic_kernel;
|
||||
};
|
||||
template <>
|
||||
struct Get_arithmetic_kernel<Quotient<MP_Float> > {
|
||||
typedef MP_Float_arithmetic_kernel Arithmetic_kernel;
|
||||
};
|
||||
|
||||
} //namespace CGAL
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
Max-Planck-Institute Saarbruecken (Germany).
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
\begin{ccPkgDescription}{2D Arrangement\label{Pkg:Arrangement2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:wfzh-a2-12}
|
||||
\ccPkgSummary{
|
||||
This package can be used to construct, maintain, alter, and display
|
||||
arrangements in the plane. Once an arrangement is constructed, the
|
||||
|
|
@ -16,7 +16,7 @@ Arrangements and arrangement components can also be extended to store
|
|||
additional data. An important extension stores the construction
|
||||
history of the arrangement, such that it is possible to obtain the
|
||||
originating curve of an arrangement subcurve.}
|
||||
|
||||
%
|
||||
\ccPkgIntroducedInCGAL{2.1}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
\ccPkgIllustration{Arrangement_on_surface_2/fig/Arrangement_2.png}{Arrangement_on_surface_2/fig/Arrangement_2.png}
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
\label{chapterArrangement_on_surface_2}
|
||||
\ccChapterRelease{\ArrangementOnSurfaceRev. \ \ArrangementOnSurfaceDate}
|
||||
\ccChapterAuthor{Ron Wein, Efi Fogel, Baruch Zukerman, Dan Halperin, Eric Berberich, and Oren Zalzman}
|
||||
\ccChapterAuthor{Ron Wein \and Eric Berberich \and Efi Fogel \and Dan Halperin \and Michael Hemmer \and Oren Salzman \and Baruch Zukerman}
|
||||
|
||||
\input{Arrangement_on_surface_2/PkgDescription.tex}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,12 +1,12 @@
|
|||
\begin{ccPkgDescription}{2D Intersection of Curves\label{Pkg:IntersectionOfCurves2}}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:wfz-ic2-12}
|
||||
\ccPkgSummary{This package provides three free functions implemented
|
||||
based on the sweep-line paradigm: given a collection of input curves,
|
||||
compute all intersection points, compute the set of subcurves that are
|
||||
pairwise interior-disjoint induced by them, and check whether there
|
||||
is at least one pair of curves among them that intersect in their
|
||||
interior.}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{\ccRef[2D Arrangements]{Pkg:Arrangement2}}
|
||||
\ccPkgIntroducedInCGAL{2.4}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -1391,9 +1391,9 @@ private:
|
|||
}
|
||||
else
|
||||
{
|
||||
// phi = PI.
|
||||
sin_phi = _zero;
|
||||
cos_phi = -_one;
|
||||
// phi = PI/2.
|
||||
sin_phi = _one;
|
||||
cos_phi = _zero;
|
||||
}
|
||||
}
|
||||
else if (sign_t == POSITIVE)
|
||||
|
|
@ -1629,7 +1629,7 @@ protected:
|
|||
_two*_t*_v - _four*_s*_u,
|
||||
_v*_v - _four*_s*_w,
|
||||
xs);
|
||||
n_xs = xs_end - xs;
|
||||
n_xs = static_cast<int>(xs_end - xs);
|
||||
|
||||
// Find the y-coordinates of the vertical tangency points.
|
||||
Algebraic ys[2];
|
||||
|
|
@ -1649,7 +1649,7 @@ protected:
|
|||
_four*_r*_s*_v - _two*_s*_t*_u,
|
||||
_r*_v*_v - _t*_u*_v + _t*_t*_w,
|
||||
ys);
|
||||
n_ys = ys_end - ys;
|
||||
n_ys = static_cast<int>(ys_end - ys);
|
||||
}
|
||||
|
||||
// Pair the x and y coordinates and obtain the vertical tangency points.
|
||||
|
|
@ -1714,7 +1714,7 @@ protected:
|
|||
_two*_t*_u - _four*_r*_v,
|
||||
_u*_u - _four*_r*_w,
|
||||
ys);
|
||||
n = ys_end - ys;
|
||||
n = static_cast<int>(ys_end - ys);
|
||||
|
||||
// Compute the x coordinates and construct the horizontal tangency points.
|
||||
Algebraic x;
|
||||
|
|
@ -1722,7 +1722,7 @@ protected:
|
|||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
// Having computed y, x is the simgle solution to the quadratic equation
|
||||
// Having computed y, x is the single solution to the quadratic equation
|
||||
// above, and since its discriminant is 0, x is simply given by:
|
||||
x = -(nt_traits.convert(_t)*ys[i] + nt_traits.convert(_u)) /
|
||||
nt_traits.convert(_two*_r);
|
||||
|
|
|
|||
|
|
@ -38,22 +38,23 @@ namespace CGAL {
|
|||
* \return The number of distinct roots found.
|
||||
*/
|
||||
template <class Nt_traits>
|
||||
int _compute_resultant_roots (Nt_traits& nt_traits,
|
||||
const typename Nt_traits::Integer& r1,
|
||||
const typename Nt_traits::Integer& s1,
|
||||
const typename Nt_traits::Integer& t1,
|
||||
const typename Nt_traits::Integer& u1,
|
||||
const typename Nt_traits::Integer& v1,
|
||||
const typename Nt_traits::Integer& w1,
|
||||
const int& deg1,
|
||||
const typename Nt_traits::Integer& r2,
|
||||
const typename Nt_traits::Integer& s2,
|
||||
const typename Nt_traits::Integer& t2,
|
||||
const typename Nt_traits::Integer& u2,
|
||||
const typename Nt_traits::Integer& v2,
|
||||
const typename Nt_traits::Integer& w2,
|
||||
const int& deg2,
|
||||
typename Nt_traits::Algebraic *xs)
|
||||
int
|
||||
_compute_resultant_roots (Nt_traits& nt_traits,
|
||||
const typename Nt_traits::Integer& r1,
|
||||
const typename Nt_traits::Integer& s1,
|
||||
const typename Nt_traits::Integer& t1,
|
||||
const typename Nt_traits::Integer& u1,
|
||||
const typename Nt_traits::Integer& v1,
|
||||
const typename Nt_traits::Integer& w1,
|
||||
const int& deg1,
|
||||
const typename Nt_traits::Integer& r2,
|
||||
const typename Nt_traits::Integer& s2,
|
||||
const typename Nt_traits::Integer& t2,
|
||||
const typename Nt_traits::Integer& u2,
|
||||
const typename Nt_traits::Integer& v2,
|
||||
const typename Nt_traits::Integer& w2,
|
||||
const int& deg2,
|
||||
typename Nt_traits::Algebraic *xs)
|
||||
{
|
||||
if (deg1 == 2 && deg2 == 1)
|
||||
{
|
||||
|
|
@ -107,7 +108,7 @@ int _compute_resultant_roots (Nt_traits& nt_traits,
|
|||
|
||||
xs_end = nt_traits.solve_quadratic_equation (c[2], c[1], c[0],
|
||||
xs);
|
||||
return (xs_end - xs);
|
||||
return static_cast<int>(xs_end - xs);
|
||||
}
|
||||
|
||||
// At this stage, both curves have degree 2. We obtain a qaurtic polynomial
|
||||
|
|
@ -165,7 +166,7 @@ int _compute_resultant_roots (Nt_traits& nt_traits,
|
|||
|
||||
xs_end = nt_traits.compute_polynomial_roots (poly,
|
||||
xs);
|
||||
return (xs_end - xs);
|
||||
return static_cast<int>(xs_end - xs);
|
||||
}
|
||||
|
||||
/*!
|
||||
|
|
@ -179,8 +180,9 @@ int _compute_resultant_roots (Nt_traits& nt_traits,
|
|||
* \return The number of distinct roots found.
|
||||
*/
|
||||
template <class Nt_traits>
|
||||
int _compute_resultant_roots (Nt_traits& nt_traits,
|
||||
const typename Nt_traits::Algebraic& r,
|
||||
int
|
||||
_compute_resultant_roots (Nt_traits& nt_traits,
|
||||
const typename Nt_traits::Algebraic& r,
|
||||
const typename Nt_traits::Algebraic& s,
|
||||
const typename Nt_traits::Algebraic& t,
|
||||
const typename Nt_traits::Algebraic& u,
|
||||
|
|
@ -226,7 +228,7 @@ int _compute_resultant_roots (Nt_traits& nt_traits,
|
|||
|
||||
xs_end = nt_traits.solve_quadratic_equation (c[2], c[1], c[0],
|
||||
xs);
|
||||
return (xs_end - xs);
|
||||
return static_cast<int>(xs_end - xs);
|
||||
}
|
||||
|
||||
} //namespace CGAL
|
||||
|
|
|
|||
|
|
@ -1932,7 +1932,7 @@ private:
|
|||
// x and y-coordinates are sorted in ascending order, we output the
|
||||
// intersection points in lexicographically ascending order.
|
||||
unsigned int mult;
|
||||
int i, j;
|
||||
int i, j;
|
||||
|
||||
if (arc._is_special_segment())
|
||||
{
|
||||
|
|
|
|||
|
|
@ -290,7 +290,7 @@ public:
|
|||
*/
|
||||
inline unsigned int size() const
|
||||
{
|
||||
return segments.size();
|
||||
return static_cast<unsigned int>(segments.size());
|
||||
}
|
||||
|
||||
/*!
|
||||
|
|
|
|||
|
|
@ -1498,10 +1498,11 @@ insert_at_vertices(const X_monotone_curve_2& cv,
|
|||
// To do this, we use the topology traits to determine whether prev1 lies
|
||||
// inside the new face we are about to create (or alternatively, whether
|
||||
// prev2 does not lie inside this new face).
|
||||
const unsigned int dist1 = _halfedge_distance (p_prev1, p_prev2);
|
||||
const unsigned int dist2 = _halfedge_distance (p_prev2, p_prev1);
|
||||
|
||||
prev1_before_prev2 = (dist1 > dist2) ?
|
||||
Comparison_result path_res =
|
||||
_compare_induced_path_length(p_prev1, p_prev2);
|
||||
|
||||
prev1_before_prev2 = (path_res == LARGER) ?
|
||||
(_is_inside_new_face (p_prev1, p_prev2, cv)) :
|
||||
(! _is_inside_new_face (p_prev2, p_prev1, cv));
|
||||
}
|
||||
|
|
@ -2100,6 +2101,63 @@ _halfedge_distance(const DHalfedge *e1, const DHalfedge *e2) const
|
|||
return (dist);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
//Compare the length of the induced paths from e1 to e2 and from e2 to e1.
|
||||
// return SMALLER if e1 to e2 is shorter, EQUAL if paths lengths are equal,
|
||||
// o/w LARGER
|
||||
//
|
||||
template<class GeomTraits, class TopTraits>
|
||||
Comparison_result
|
||||
Arrangement_on_surface_2<GeomTraits, TopTraits>::
|
||||
_compare_induced_path_length(const DHalfedge *e1, const DHalfedge *e2) const
|
||||
{
|
||||
CGAL_precondition (e1 != e2);
|
||||
if (e1 == e2)
|
||||
return EQUAL;
|
||||
|
||||
// Traverse the halfedge chain from e1 until reaching e2.
|
||||
const DHalfedge *curr1 = e1->next();
|
||||
// Traverse the halfedge chain from e2 until reaching e1.
|
||||
const DHalfedge *curr2 = e2->next();
|
||||
|
||||
while (curr1 != e2 && curr2 != e1)
|
||||
{
|
||||
// If we have returned to e1, e2 is not reachable from e1.
|
||||
if (curr1 == e1)
|
||||
{
|
||||
CGAL_error();
|
||||
return EQUAL;
|
||||
}
|
||||
|
||||
// If we have returned to e2, e1 is not reachable from e2.
|
||||
if (curr2 == e2)
|
||||
{
|
||||
CGAL_error();
|
||||
return EQUAL;
|
||||
}
|
||||
|
||||
curr1 = curr1->next();
|
||||
curr2 = curr2->next();
|
||||
}
|
||||
|
||||
Comparison_result res;
|
||||
|
||||
// Return SMALLER if e1 to e2 is shorter than e2 to e1,
|
||||
// EQUAL if their lengths are equal, or LARGER if e2 to e1 is longer.
|
||||
if (curr1 == e2)
|
||||
res = (curr2 != e1) ? SMALLER : EQUAL;
|
||||
else
|
||||
res = LARGER;
|
||||
|
||||
CGAL_postcondition_code (int dist1 = _halfedge_distance(e1,e2));
|
||||
CGAL_postcondition_code (int dist2 = _halfedge_distance(e2,e1));
|
||||
CGAL_postcondition (((dist1 < dist2) && (res == SMALLER)) ||
|
||||
((dist1 == dist2) && (res == EQUAL)) ||
|
||||
((dist1 > dist2) && (res == LARGER)));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Move a given outer CCB from one face to another.
|
||||
//
|
||||
|
|
@ -3536,8 +3594,7 @@ _find_leftmost_vertex_on_open_loop (const DHalfedge *he_before,
|
|||
{
|
||||
if (he->direction() == ARR_RIGHT_TO_LEFT)
|
||||
{
|
||||
ps_x = parameter_space_in_x (he->curve(), ARR_MIN_END);
|
||||
ps_y = parameter_space_in_y (he->curve(), ARR_MIN_END);
|
||||
ps_x = parameter_space_in_x (he->curve(), ARR_MIN_END); ps_y = parameter_space_in_y (he->curve(), ARR_MIN_END);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
|
|||
|
|
@ -539,7 +539,7 @@ private:
|
|||
}
|
||||
|
||||
/*! Find the given object in the given bucket. */
|
||||
Bucket_iterator _find_in_bucket (int index,
|
||||
Bucket_iterator _find_in_bucket (std::size_t index,
|
||||
const value_type& val) const
|
||||
{
|
||||
Bucket& my_bucket = const_cast<Bucket&>(buckets[index]);
|
||||
|
|
|
|||
|
|
@ -1844,6 +1844,15 @@ protected:
|
|||
unsigned int _halfedge_distance (const DHalfedge *e1,
|
||||
const DHalfedge *e2) const;
|
||||
|
||||
/*!
|
||||
* Compare the length of the induced paths from e1 to e2 and
|
||||
* from e2 to e1.
|
||||
* \pre e1 and e2 belong to the same connected component
|
||||
* \return The comparison result
|
||||
*/
|
||||
Comparison_result _compare_induced_path_length (const DHalfedge *e1,
|
||||
const DHalfedge *e2) const;
|
||||
|
||||
/*!
|
||||
* Compare two vertices lexicographically, while taking care of boundary
|
||||
* conditions (for the special usage of _find_leftmost_vertex() alone!).
|
||||
|
|
|
|||
|
|
@ -416,7 +416,8 @@ protected:
|
|||
void _init_sweep (CurveInputIterator curves_begin,
|
||||
CurveInputIterator curves_end)
|
||||
{
|
||||
m_num_of_subCurves = std::distance (curves_begin, curves_end);
|
||||
// m_num_of_subCurves should be a size_t for "huge" data sets
|
||||
m_num_of_subCurves = static_cast<int>(std::distance (curves_begin, curves_end));
|
||||
|
||||
_init_structures();
|
||||
|
||||
|
|
|
|||
|
|
@ -363,6 +363,7 @@ public:
|
|||
const Point_2& pt)
|
||||
{
|
||||
os << pt.base();
|
||||
//os << ", red? " << pt.is_red_object_empty() << ", blue? " << pt.is_blue_object_empty();
|
||||
return (os);
|
||||
}
|
||||
|
||||
|
|
@ -512,9 +513,10 @@ public:
|
|||
red_he = xcv2.red_halfedge_handle();
|
||||
blue_he = xcv1.blue_halfedge_handle();
|
||||
}
|
||||
|
||||
*oi = CGAL::make_object (X_monotone_curve_2 (*overlap_xcv,
|
||||
|
||||
*oi = CGAL::make_object (X_monotone_curve_2 (*overlap_xcv,
|
||||
red_he, blue_he));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -601,30 +603,27 @@ public:
|
|||
const Base_point_2& base_p = m_base_min_v (xcv.base());
|
||||
Object obj_red, obj_blue;
|
||||
|
||||
if (xcv.color() == RED)
|
||||
if (xcv.color() == RED || xcv.color() == RB_OVERLAP)
|
||||
{
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle()->target());
|
||||
}
|
||||
else if (xcv.color() == BLUE)
|
||||
{
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle()->target());
|
||||
}
|
||||
else
|
||||
{
|
||||
CGAL_assertion (xcv.color() == RB_OVERLAP);
|
||||
|
||||
if (! xcv.red_halfedge_handle()->target()->is_at_open_boundary() &&
|
||||
m_base_equal (base_p,
|
||||
xcv.red_halfedge_handle()->target()->point()))
|
||||
{
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle()->target());
|
||||
} else {
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle());
|
||||
}
|
||||
}
|
||||
|
||||
if (xcv.color() == BLUE || xcv.color() == RB_OVERLAP)
|
||||
{
|
||||
if (! xcv.blue_halfedge_handle()->target()->is_at_open_boundary() &&
|
||||
m_base_equal (base_p,
|
||||
xcv.blue_halfedge_handle()->target()->point()))
|
||||
{
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle()->target());
|
||||
} else {
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -672,30 +671,27 @@ public:
|
|||
const Base_point_2& base_p = m_base_max_v (xcv.base());
|
||||
Object obj_red, obj_blue;
|
||||
|
||||
if(xcv.color() == RED)
|
||||
if(xcv.color() == RED || xcv.color() == RB_OVERLAP)
|
||||
{
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle()->source());
|
||||
}
|
||||
else if(xcv.color() == BLUE)
|
||||
{
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle()->source());
|
||||
}
|
||||
else
|
||||
{
|
||||
CGAL_assertion(xcv.color() == RB_OVERLAP);
|
||||
|
||||
if (! xcv.red_halfedge_handle()->source()->is_at_open_boundary() &&
|
||||
m_base_equal (base_p,
|
||||
xcv.red_halfedge_handle()->source()->point()))
|
||||
{
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle()->source());
|
||||
} else {
|
||||
obj_red = CGAL::make_object (xcv.red_halfedge_handle());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(xcv.color() == BLUE || xcv.color() == RB_OVERLAP)
|
||||
{
|
||||
if (! xcv.blue_halfedge_handle()->source()->is_at_open_boundary() &&
|
||||
m_base_equal (base_p,
|
||||
xcv.blue_halfedge_handle()->source()->point()))
|
||||
{
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle()->source());
|
||||
} else {
|
||||
obj_blue = CGAL::make_object (xcv.blue_halfedge_handle());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -703,7 +699,7 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
/*! Obtain a Construct_min_vertex_2 functor object. */
|
||||
/*! Obtain a Construct_max_vertex_2 functor object. */
|
||||
Construct_max_vertex_2 construct_max_vertex_2_object () const
|
||||
{
|
||||
return
|
||||
|
|
|
|||
|
|
@ -431,7 +431,8 @@ _intersect (Subcurve *c1, Subcurve *c2)
|
|||
this->m_traits->parameter_space_in_y_2_object()(c2->last_curve(),
|
||||
ARR_MIN_END);
|
||||
|
||||
if ((ps_x1 == ps_x2) && (ps_y1 == ps_y2) &&
|
||||
if (ps_x1 != CGAL::ARR_INTERIOR && ps_y1 != CGAL::ARR_INTERIOR &&
|
||||
(ps_x1 == ps_x2) && (ps_y1 == ps_y2) &&
|
||||
this->m_traits->is_closed_2_object()(c1->last_curve(), ARR_MIN_END) &&
|
||||
this->m_traits->is_closed_2_object()(c2->last_curve(), ARR_MIN_END))
|
||||
{
|
||||
|
|
@ -535,7 +536,9 @@ _intersect (Subcurve *c1, Subcurve *c2)
|
|||
{
|
||||
icv = object_cast<X_monotone_curve_2> (&(*vi));
|
||||
CGAL_assertion (icv != NULL);
|
||||
CGAL_PRINT("found an overlap: " << *icv << "\n";);
|
||||
|
||||
// TODO EBEB: This code does not work with overlaps that reach the boundary
|
||||
Point_2 left_xp = this->m_traits->construct_min_vertex_2_object()(*icv);
|
||||
xp = this->m_traits->construct_max_vertex_2_object()(*icv);
|
||||
|
||||
|
|
@ -564,13 +567,14 @@ _create_intersection_point (const Point_2& xp,
|
|||
Event *e = pair_res.first;
|
||||
if(pair_res.second)
|
||||
{
|
||||
CGAL_PRINT("A new event is created .. (" << xp <<")\n";);
|
||||
// a new event is creatd , which inidicates
|
||||
// that the intersection point cannot be one
|
||||
//of the end-points of two curves
|
||||
|
||||
e->set_intersection();
|
||||
|
||||
this->m_visitor ->update_event(e, c1, c2, true);
|
||||
this->m_visitor ->update_event(e, c1, c2, true);
|
||||
e->push_back_curve_to_left(c1);
|
||||
e->push_back_curve_to_left(c2);
|
||||
|
||||
|
|
@ -606,13 +610,13 @@ _create_intersection_point (const Point_2& xp,
|
|||
}
|
||||
else // the event already exists, so we need to update it accordingly
|
||||
{
|
||||
CGAL_PRINT("event already exists,updating.. (" << xp <<")\n";);
|
||||
CGAL_PRINT("Event already exists, updating.. (" << xp <<")\n";);
|
||||
if (e == this->m_currentEvent)
|
||||
{
|
||||
// This can happen when c1 starts at the interior of c2 (or vice versa).
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
e->add_curve_to_left(c1);
|
||||
e->add_curve_to_left(c2);
|
||||
|
||||
|
|
@ -647,8 +651,10 @@ _create_intersection_point (const Point_2& xp,
|
|||
std::swap(c1, c2);
|
||||
}
|
||||
|
||||
CGAL_SL_DEBUG(e->Print();)
|
||||
}
|
||||
|
||||
CGAL_SL_DEBUG(e->Print();)
|
||||
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ void make_x_monotone (CurveInputIter begin, CurveInputIter end,
|
|||
const Traits * tr)
|
||||
{
|
||||
// Split the input curves into x-monotone objects.
|
||||
unsigned int num_of_curves = std::distance(begin, end);
|
||||
std::size_t num_of_curves = std::distance(begin, end);
|
||||
std::vector<Object> object_vec;
|
||||
CurveInputIter iter;
|
||||
|
||||
|
|
|
|||
|
|
@ -145,22 +145,34 @@ public:
|
|||
// Look for the subcurve.
|
||||
Subcurve_iterator iter;
|
||||
|
||||
//std::cout << "add_curve_to_left, curve: ";
|
||||
//curve->Print();
|
||||
|
||||
for (iter = m_leftCurves.begin(); iter != m_leftCurves.end(); ++iter)
|
||||
{
|
||||
//std::cout << "add_curve_to_left, iter: ";
|
||||
//(*iter)->Print();
|
||||
|
||||
// Do nothing if the curve exists.
|
||||
if ((curve == *iter) || (*iter)->is_inner_node(curve))
|
||||
if ((curve == *iter) || (*iter)->is_inner_node(curve)) {
|
||||
//std::cout << "add_curve_to_left, curve exists" << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// Replace the existing curve in case of overlap.
|
||||
if (curve->is_inner_node(*iter))
|
||||
{
|
||||
// EBEB 2011-10-27: Fixed to detect overlaps correctly
|
||||
if (curve != *iter && curve->has_common_leaf(*iter)) {
|
||||
//std::cout << "add_curve_to_left, curve overlaps" << std::endl;
|
||||
*iter = curve;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The curve does not exist - insert it to the container.
|
||||
m_leftCurves.push_back (curve);
|
||||
// std::cout << "add_curve_to_left, pushed back" << std::endl;
|
||||
|
||||
//this->Print();
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -340,7 +340,9 @@ public:
|
|||
void Sweep_line_subcurve<Traits>::Print() const
|
||||
{
|
||||
std::cout << "Curve " << this
|
||||
<< " (" << m_lastCurve << ") " << std::endl;
|
||||
<< " (" << m_lastCurve << ") "
|
||||
<< " [sc1: " << m_orig_subcurve1 << ", sc2: " << m_orig_subcurve2 << "]"
|
||||
<< std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
Tel-Aviv University (Israel).
|
||||
|
|
@ -607,9 +607,9 @@ bool Traits_test<T_Traits>::intersect_wrapper(std::istringstream& str_stream)
|
|||
std::back_inserter(object_vec));
|
||||
std::cout << "Test: intersect( " << this->m_xcurves[id1] << ","
|
||||
<< this->m_xcurves[id2] << " ) ? ";
|
||||
std::size_t num;
|
||||
unsigned int num;
|
||||
str_stream >> num;
|
||||
if (!this->compare(num, object_vec.size(), "size")) return false;
|
||||
if (!this->compare(num, static_cast<unsigned int>(object_vec.size()), "size")) return false;
|
||||
|
||||
for (unsigned int i = 0; i < num; ++i) {
|
||||
unsigned int type; // 0 - point, 1 - x-monotone curve
|
||||
|
|
|
|||
|
|
@ -186,8 +186,8 @@ run_trapped_test()
|
|||
else
|
||||
run_test $1 $2 $3 $4 $5 $6 &
|
||||
WPID=$!
|
||||
trap "kill -9 $WPID" INT
|
||||
(sleep 1200; kill -9 $WPID) > /dev/null 2>&1 &
|
||||
trap "kill -HUP $WPID" INT
|
||||
(sleep 1200; kill -HUP $WPID) > /dev/null 2>&1 &
|
||||
SPID=$!
|
||||
wait $WPID > /dev/null 2>&1
|
||||
# RES=$?
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
\begin{ccPkgDescription}{CGAL and the Boost Graph Library\label{Pkg:BGL}}
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-11b}
|
||||
|
||||
\ccPkgHowToCiteCgal{cgal:cfw-cbgl-12}
|
||||
%
|
||||
\ccPkgSummary{This package provides a framework for interfacing \cgal\
|
||||
data structures with the algorithms of the {\sc BGL}. It allows to run
|
||||
graph algorithms directly on \cgal\ data structures which are
|
||||
|
|
@ -10,7 +10,7 @@ minimum spanning tree.
|
|||
Furthermore, it introduces a
|
||||
new graph concept, the \ccc{HalfedgeEdgeGraph}. This concept describes
|
||||
graphs which are embedded on surfaces.}
|
||||
|
||||
%
|
||||
\ccPkgIntroducedInCGAL{3.3}
|
||||
\ccPkgLicense{\ccLicenseLGPL}
|
||||
\ccPkgIllustration{BGL/fig/emst-detail.png}{BGL/fig/emst.jpg}
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
GeometryFactory (France)
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
|
||||
\begin{ccPkgDescription}{2D Regularized Boolean Set-Operations\label{Pkg:BooleanSetOperations2}}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:fwzh-rbso2-12}
|
||||
\ccPkgSummary{
|
||||
This package consists of the implementation of Boolean set-operations
|
||||
on point sets bounded by weakly x-monotone curves in 2-dimensional
|
||||
Euclidean space. In
|
||||
particular, it contains the implementation of regularized Boolean
|
||||
set-operations, intersection predicates, and point containment predicates.}
|
||||
|
||||
%
|
||||
\ccPkgDependsOn{\ccRef[2D Arrangements]{Pkg:Arrangement2}}
|
||||
\ccPkgIntroducedInCGAL{3.2}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
Tel-Aviv University (Israel).
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
\begin{ccPkgDescription}{Intersecting Sequences of dD Iso-oriented Boxes\label{Pkg:BoxIntersectionD}}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:kmz-isiobd-12}
|
||||
\ccPkgSummary{
|
||||
An efficient algorithm for finding all intersecting pairs for large
|
||||
numbers of iso-oriented boxes, in order to apply a user defined callback
|
||||
|
|
@ -8,7 +8,7 @@ on them. Typically these boxes will be bounding
|
|||
boxes of more complicated geometries. The algorithm is useful for (self-) intersection
|
||||
tests of surfaces etc.
|
||||
}
|
||||
|
||||
%
|
||||
%\ccPkgDependsOn{}
|
||||
\ccPkgIntroducedInCGAL{3.1}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
Max-Planck-Institute Saarbruecken (Germany).
|
||||
|
||||
|
|
@ -1,10 +1,10 @@
|
|||
|
||||
\begin{ccPkgDescription}{CGAL Ipelets \label{Pkg:CGALIpelets}}
|
||||
\ccPkgHowToCiteCgal{cgal:lp-gi-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:lp-gi-12}
|
||||
\ccPkgSummary{This package provides
|
||||
a generic framework to easily write ipelets (plug-in's) using \cgal{} for the
|
||||
the Ipe extensible drawing editor.}
|
||||
|
||||
%
|
||||
\ccPkgIntroducedInCGAL{3.5}
|
||||
\ccPkgLicense{\ccLicenseLGPL}
|
||||
\ccPkgIllustration{CGAL_ipelets/fig/ipeico.jpg}{CGAL_ipelets/fig/ipelarge.jpg}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -30,17 +30,18 @@ endforeach()
|
|||
find_package(CGAL REQUIRED ImageIO)
|
||||
include( ${CGAL_USE_FILE} )
|
||||
find_package(VTK QUIET)
|
||||
find_package(Qt3-patched QUIET)
|
||||
find_package(Qt4 QUIET)
|
||||
|
||||
if(QT3_FOUND AND VTK_FOUND)
|
||||
if(QT_FOUND AND VTK_FOUND)
|
||||
add_definitions(-DCGAL_USE_VTK)
|
||||
include(${VTK_USE_FILE})
|
||||
include(${QT_USE_FILE})
|
||||
|
||||
add_definitions(${QT3_DEFINITIONS})
|
||||
add_definitions(${QT_DEFINITIONS})
|
||||
|
||||
if(VTK_USE_QVTK)
|
||||
include_directories( ${VTK_QT_INCLUDE_DIR} )
|
||||
include_directories( ${QT3_INCLUDE_DIR} )
|
||||
include_directories( ${QT_INCLUDE_DIR} )
|
||||
add_executable( image_to_vtk_viewer image_to_vtk_viewer.cpp )
|
||||
add_to_cached_list( CGAL_EXECUTABLE_TARGETS image_to_vtk_viewer )
|
||||
|
||||
|
|
@ -52,7 +53,7 @@ if(QT3_FOUND AND VTK_FOUND)
|
|||
vtkCommon
|
||||
${CGAL_LIBRARIES} ${CGAL_3RD_PARTY_LIBRARIES}
|
||||
${VTK_QT_QT_LIBRARY}
|
||||
${QT3_LIBRARIES}
|
||||
${QT_LIBRARIES}
|
||||
)
|
||||
else(VTK_USE_QVTK)
|
||||
message(STATUS "NOTICE: This demo needs QVTK, and will not be compiled.")
|
||||
|
|
@ -61,7 +62,7 @@ else()
|
|||
if(NOT VTK_FOUND)
|
||||
message(STATUS "NOTICE: This demo needs VTK, and will not be compiled.")
|
||||
endif()
|
||||
if(NOT QT3_FOUND)
|
||||
message(STATUS "NOTICE: This demo needs Qt3, and will not be compiled.")
|
||||
if(NOT QT_FOUND)
|
||||
message(STATUS "NOTICE: This demo needs Qt4, and will not be compiled.")
|
||||
endif()
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
#ifdef CGAL_USE_VTK
|
||||
|
||||
#include <qapplication.h>
|
||||
#include <QApplication>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <sstream>
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@
|
|||
#define ANALYZE_H
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning ( disable : 4068 4786 4081 )
|
||||
#pragma warning ( disable : 4068 4786 4081 4267 )
|
||||
#endif
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,9 +1,12 @@
|
|||
# Top level CMakeLists.txt for CGAL-branchbuild
|
||||
project(CGAL CXX)
|
||||
|
||||
cmake_minimum_required(VERSION 2.6.2)
|
||||
|
||||
# option for branch build
|
||||
|
||||
option( CGAL_BRANCH_BUILD "Create CGAL from branch" ON)
|
||||
mark_as_advanced( CGAL_BRANCH_BUILD )
|
||||
|
||||
# search for some SCM
|
||||
|
||||
|
|
@ -22,11 +25,30 @@ if ( ${CGAL_SCM_NAME} STREQUAL "svn" )
|
|||
|
||||
find_program(SVN_EXECUTABLE svn DOC "subversion command line client")
|
||||
|
||||
function(Subversion_GET_URL dir variable)
|
||||
function(Subversion_GET_INFO dir variable)
|
||||
# use svnversion
|
||||
execute_process(COMMAND "${SVN_EXECUTABLE}" info --xml "${dir}"
|
||||
execute_process(COMMAND "${SVN_EXECUTABLE}" info --xml
|
||||
WORKING_DIRECTORY "${dir}"
|
||||
OUTPUT_VARIABLE ${variable}
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
RESULT_VARIABLE svn_error)
|
||||
if(svn_error)
|
||||
message("Warning: `svn info --xml \"${dir}\"` returned an error!")
|
||||
endif()
|
||||
set(${variable} ${${variable}} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(Subversion_GET_REVISION dir variable)
|
||||
Subversion_GET_INFO("${dir}" ${variable})
|
||||
string(REGEX REPLACE "^(.*\n)? revision=\"([^\n]+)\".*url.*" "\\2" ${variable} "${${variable}}")
|
||||
if(NOT variable)
|
||||
message("Warning: can not get the Subversion revision of directory ${dir}")
|
||||
endif()
|
||||
set(${variable} ${${variable}} PARENT_SCOPE)
|
||||
endfunction(Subversion_GET_REVISION)
|
||||
|
||||
function(Subversion_GET_URL dir variable)
|
||||
Subversion_GET_INFO("${dir}" ${variable})
|
||||
string(REGEX REPLACE ".*<url>([^<]+)</url>.*" "\\1" ${variable} "${${variable}}")
|
||||
if(NOT variable)
|
||||
message("Warning: can not get the Subversion URL of directory ${dir}")
|
||||
|
|
@ -34,9 +56,7 @@ if ( ${CGAL_SCM_NAME} STREQUAL "svn" )
|
|||
set(${variable} ${${variable}} PARENT_SCOPE)
|
||||
endfunction(Subversion_GET_URL)
|
||||
|
||||
Subversion_GET_URL("${CGAL_INSTALLATION_PACKAGE_DIR}" CGAL_INSTALLATION_SVN_URL)
|
||||
# Remove the "/Installation" suffix.
|
||||
string(REGEX REPLACE "(.*)/Installation" "\\1" CGAL_TMP_SVN_BRANCH_NAME "${CGAL_INSTALLATION_SVN_URL}")
|
||||
Subversion_GET_URL("${CMAKE_CURRENT_SOURCE_DIR}" CGAL_TMP_SVN_BRANCH_NAME)
|
||||
# Remove the prefix of the URL "https://scm.gforge.inria.fr/".
|
||||
string(REGEX REPLACE "[a-z+]+://[a-z0-9.]+" "" CGAL_TMP_SVN_BRANCH_NAME "${CGAL_TMP_SVN_BRANCH_NAME}")
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,5 @@
|
|||
Utrecht University (The Netherlands),
|
||||
ETH Zurich (Switzerland),
|
||||
INRIA Sophia-Antipolis (France),
|
||||
Max-Planck-Institute Saarbruecken (Germany),
|
||||
Tel-Aviv University (Israel).
|
||||
|
|
@ -104,5 +104,5 @@ Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473
|
|||
Computational Geometry for Curves and Surfaces) and by the IST
|
||||
Programme of the 6th Framework Programme of the EU as a STREP (FET
|
||||
Open Scheme) Project under Contract No IST-006413
|
||||
(\ccAnchor{http://acs.cs.rug.nl/}{ACS} - Algorithms for Complex
|
||||
(ACS - Algorithms for Complex
|
||||
Shapes).
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
\begin{ccPkgDescription}{2D Circular Geometry Kernel \label{Pkg:CircularKernel2}}
|
||||
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cpt-cgk2-12}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ kernel. It offers
|
||||
functionalities on circles, circular arcs and line segments in the
|
||||
plane.
|
||||
}
|
||||
|
||||
%
|
||||
\ccPkgIntroducedInCGAL{3.2}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
\ccPkgDemo{Arrangement of Circular Arcs}{circular_kernel.zip}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
INRIA Sophia-Antipolis (France)
|
||||
|
||||
|
|
@ -4,13 +4,12 @@
|
|||
|
||||
project( Circular_kernel_2_test )
|
||||
|
||||
cmake_minimum_required(VERSION 2.6.2)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" VERSION_GREATER 2.6)
|
||||
if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}.${CMAKE_PATCH_VERSION}" VERSION_GREATER 2.8.3)
|
||||
cmake_policy(VERSION 2.8.4)
|
||||
else()
|
||||
cmake_policy(VERSION 2.6)
|
||||
endif()
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.5)
|
||||
|
||||
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS true)
|
||||
|
||||
if ( COMMAND cmake_policy )
|
||||
cmake_policy( SET CMP0003 NEW )
|
||||
endif()
|
||||
|
||||
find_package(CGAL QUIET COMPONENTS Core )
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#include <QGLViewer/qglviewer.h>
|
||||
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
||||
#include <CGAL/glu.h>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel EPIC;
|
||||
|
||||
|
|
|
|||
|
|
@ -252,5 +252,5 @@ Sylvain Pion is acknowledged for helpful discussions.
|
|||
|
||||
This work was partially supported by the IST Programme of the 6th
|
||||
Framework Programme of the EU as a STREP (FET Open Scheme) Project
|
||||
under Contract No IST-006413 (\ccAnchor{http://acs.cs.rug.nl/}{ACS} -
|
||||
under Contract No IST-006413 (ACS -
|
||||
Algorithms for Complex Shapes).
|
||||
|
|
|
|||
|
|
@ -1,10 +1,10 @@
|
|||
\begin{ccPkgDescription}{3D Spherical Geometry Kernel \label{Pkg:SphericalKernel3}}
|
||||
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-11b}
|
||||
\ccPkgHowToCiteCgal{cgal:cclt-sgk3-12}
|
||||
\ccPkgSummary{
|
||||
This package is an extension of the linear \cgal\ Kernel. It offers
|
||||
functionalities on spheres, circles, circular arcs and line segments,
|
||||
in the 3D space or restricted on a reference sphere. }
|
||||
|
||||
%
|
||||
\ccPkgIntroducedInCGAL{3.4}
|
||||
\ccPkgLicense{\ccLicenseQPL}
|
||||
\ccPkgIllustration{Circular_kernel_3/segment_sphere_intersection_detail.png}{Circular_kernel_3/segment_sphere_intersection.png}
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue