From bfa239158da2ee15d3596c864b3089e7d894e89e Mon Sep 17 00:00:00 2001 From: Andreas Fabri Date: Tue, 20 Nov 2012 12:30:55 +0100 Subject: [PATCH] polish --- .../doc/Circular_kernel_3/CGAL/Circle_type.h | 2 +- .../Circular_kernel_3/CGAL/Circular_arc_3.h | 2 +- .../CGAL/Exact_spherical_kernel_3.h | 4 +--- .../CGAL/global_functions_spherical_kernel_3.h | 10 +++++----- .../Circular_kernel_3/Circular_kernel_3.txt | 18 +++++++++--------- .../Concepts/SphericalKernel--CompareTheta_3.h | 4 ++-- .../SphericalKernel--CompareZAtTheta_3.h | 4 ++-- .../SphericalKernel--MakeThetaMonotone_3.h | 4 ++-- 8 files changed, 23 insertions(+), 25 deletions(-) diff --git a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circle_type.h b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circle_type.h index 81697b266e1..7c6b6d4eb95 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circle_type.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circle_type.h @@ -3,7 +3,7 @@ namespace CGAL { \ingroup PkgSphericalKernel3GeometricClasses The enum `Circle_type` is used to classify an object of type `Circle_3`, so as to specify - its type (normal,polar,bipolar or threaded), as defined in section \ref sectionSKobjects. + its type (normal,polar,bipolar or threaded), as defined in Section \ref sectionSKobjects. \sa `CGAL::classify` */ diff --git a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circular_arc_3.h b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circular_arc_3.h index aae00718938..11419524e0e 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circular_arc_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Circular_arc_3.h @@ -43,7 +43,7 @@ Circular_arc_3(const Circle_3 &c, const Circular_arc_point_3& p /// /// In this /// definition, we say that a normal vector \f$ (a,b,c)\f$ is positive -/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e. \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$). +/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e.\ \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$). /// @{ /*! diff --git a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Exact_spherical_kernel_3.h b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Exact_spherical_kernel_3.h index 7f2e8185060..1aca9fe942a 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Exact_spherical_kernel_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/Exact_spherical_kernel_3.h @@ -5,9 +5,7 @@ namespace CGAL { \ingroup PkgSphericalKernel3GeometricClasses A typedef to a spherical kernel that provides -both exact geometric predicates and exact geometric constructions.
- -
+both exact geometric predicates and exact geometric constructions. It defines the same types as `CGAL::Spherical_kernel_3`. diff --git a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/global_functions_spherical_kernel_3.h b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/global_functions_spherical_kernel_3.h index b0ff2f60d11..820fe251037 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/CGAL/global_functions_spherical_kernel_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/CGAL/global_functions_spherical_kernel_3.h @@ -3,7 +3,7 @@ namespace CGAL { /*! \ingroup PkgSphericalKernel3GeometricFunctions -Classify a circle according to `sphere`, as defined in section \ref sectionSKobjects. +Classify a circle according to `sphere`, as defined in Section \ref sectionSKobjects. \pre `c` lies on `sphere`. \sa `CGAL::Circle_type` @@ -42,7 +42,7 @@ const CGAL::Circular_arc_point_3 & q,const CGAL::Sphere_3 &p, const CGAL:: /*! \ingroup PkgSphericalKernel3GeometricFunctions -Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see section \ref sectionSKobjects) +Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see Section \ref sectionSKobjects) in the cylindrical coordinate system relative to `sphere`. \pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. @@ -135,7 +135,7 @@ namespace CGAL { Returns the point on the circle that is extremal in \f$ \theta\f$ using the cylindrical coordinate system relative to `sphere`, and that has the smallest (resp.\ largest) \f$ \theta\f$-coordinate of the two points if `b` is `true` (resp.\ `false`). -See section \ref sectionSKobjects for definitions. +See Section \ref sectionSKobjects for definitions. \pre `c` lies on `sphere` and is a normal circle. */ @@ -154,7 +154,7 @@ Copies in the output iterator the \f$ \theta\f$-extremal points of the circle relatively to `sphere`. `res` iterates on elements of type `Circular_arc_point_3`, lexicographically sorted in the cylindrical coordinate system relative to `sphere`. -See section \ref sectionSKobjects for definitions. +See Section \ref sectionSKobjects for definitions. \pre `c` lies on `sphere` and is a normal circle. */ diff --git a/Circular_kernel_3/doc/Circular_kernel_3/Circular_kernel_3.txt b/Circular_kernel_3/doc/Circular_kernel_3/Circular_kernel_3.txt index 92762dce84a..5d69d07f588 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/Circular_kernel_3.txt +++ b/Circular_kernel_3/doc/Circular_kernel_3/Circular_kernel_3.txt @@ -19,8 +19,7 @@ and functionality in a `FieldNumberType`. All the choices (interface, robustness, representation, and so on) made here are consistent with the choices made in the \cgal kernel, -for which we refer the user to the kernel manual -(Chapter \ref chapterkernel23). +for which we refer the user to the \ref chapterkernel23 "2D and 3D Linear Kernel"). \section sectionSKobjects Spherical Kernel Objects @@ -60,7 +59,7 @@ of these operations requires the following definitions: Coordinate system. Let consider a sphere with center `c` and radius `r`. Using -the Cartesian frame centered at `c`, we define a cylindrical +the %Cartesian frame centered at `c`, we define a cylindrical coordinate system \f$ (\theta,z)\f$ on that sphere, with \f$ \theta \in \left[ 0,2\pi \right)\f$ and \f$ z \in \left[ -r,r \right]\f$. \f$ \theta\f$ is given in radian and measured in the \f$ xy\f$-plane around the \f$ z\f$-axis, starting @@ -134,7 +133,9 @@ arc is defined on a bipolar circle. \section Circular_kernel_3Software Software Design The design of `Spherical_kernel_3` is similar to the design of -`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel). +`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel +"2D Circular Geometry Kernel"). + It has two template parameters:
  • the first parameter must model the \cgal @@ -149,8 +150,8 @@ provides exact computations on algebraic objects.
The 3D spherical kernel uses the extensibility scheme presented in the -kernel manual (see Section \ref sectionextensiblekernel). The types -of `Kernel` are inherited by the 3D spherical kernel and some +kernel manual (see Section \ref sectionextensiblekernel "Extensible Kernel"). +The types of `Kernel` are inherited by the 3D spherical kernel and some types are taken from the `AlgebraicKernelForSpheres` parameter. `Spherical_kernel_3` introduces new geometric objects as mentioned in Section \ref sectionSKobjects. @@ -182,9 +183,8 @@ then compared. \section Circular_kernel_3Design Design and Implementation History -This package follows the 2D circular kernel package (see -Chapter \ref Chapter_2D_Circular_Geometry_Kernel), which induced the basic -choices of design. +This package follows the design of the package +\ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel"). Julien Hazebrouck and Damien Leroy participated in a first prototype. diff --git a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareTheta_3.h b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareTheta_3.h index ac3d0bb6598..339b702b1c7 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareTheta_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareTheta_3.h @@ -31,7 +31,7 @@ Comparison_result operator() const SphericalKernel::Circular_arc_point_3 &q ); /*! -Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`. +Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see Section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`. \pre `p` lies on the context sphere used by the function `SphericalKernel::compare_theta_3_object`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. */ @@ -46,7 +46,7 @@ Comparison_result operator() (const SphericalKernel::Vector_3 &m,const SphericalKernel::Circular_arc_point_3 &p); /*! -Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see section \ref sectionSKobjects) +Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see Section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`. `m1` \f$ \neq(0,0,0)\f$, `m2` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m1` and `m2` is \f$ 0\f$. */ diff --git a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareZAtTheta_3.h b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareZAtTheta_3.h index 040226c2f16..50b81aa9499 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareZAtTheta_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--CompareZAtTheta_3.h @@ -15,8 +15,8 @@ public: /*! -compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see section \ref sectionSKobjects). -\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see section \ref sectionSKobjects). +compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see Section \ref sectionSKobjects). +\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see Section \ref sectionSKobjects). */ Comparison_result operator() ( const SphericalKernel::Circular_arc_3& a0, diff --git a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--MakeThetaMonotone_3.h b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--MakeThetaMonotone_3.h index 13ed549171a..c94044212f3 100644 --- a/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--MakeThetaMonotone_3.h +++ b/Circular_kernel_3/doc/Circular_kernel_3/Concepts/SphericalKernel--MakeThetaMonotone_3.h @@ -19,7 +19,7 @@ public: Copies in the output iterator the results of the split of arc `a` at the \f$ \theta\f$-extremal point(s) of its supporting circle relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object` -(Refer to section \ref sectionSKobjects for the definition of these points.) +(Refer to Section \ref sectionSKobjects for the definition of these points.) The output iterator may contain no arc (if the supporting circle is a bipolar circle), one arc (if `a` is already \f$ \theta\f$-monotone), two arcs (if only one \f$ \theta\f$-extremal point is on `a`), or three arcs (if two \f$ \theta\f$-extremal points are on `a`). @@ -33,7 +33,7 @@ OutputIterator operator() /*! Copies in the output iterator the results of the split of circle `c` at its \f$ \theta\f$-extremal point(s) relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object`. -(Refer to section \ref sectionSKobjects for the definition of these points.) +(Refer to Section \ref sectionSKobjects for the definition of these points.) The output iterator may contain no arc (if the circle is bipolar), one arc (if the circle is polar or threaded), or two arcs (if the circle is normal).