mirror of https://github.com/CGAL/cgal
de-math
This commit is contained in:
parent
5e23d6d0a9
commit
bfea719a1f
|
|
@ -63,8 +63,8 @@ std::pair< Data_type, bool> operator()(const Key_type& p);
|
||||||
|
|
||||||
generates the interpolated function value computed by Farin's interpolant.
|
generates the interpolated function value computed by Farin's interpolant.
|
||||||
|
|
||||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range `[first, beyond).
|
||||||
\pre The range \f$ \left[\right.\f$ `first`, `beyond`\f$ \left.\right)\f$ contains either one or more than three element
|
\pre The range `[first, beyond)` contains either one or more than three element
|
||||||
The function `farin_c1_interpolation()` interpolates the function values and the
|
The function `farin_c1_interpolation()` interpolates the function values and the
|
||||||
gradients that are provided by functors using the method described in \cite f-sodt-90.
|
gradients that are provided by functors using the method described in \cite f-sodt-90.
|
||||||
|
|
||||||
|
|
@ -89,7 +89,6 @@ to provide the square root operation.
|
||||||
\sa `PkgInterpolationRegularNeighborCoordinates2`
|
\sa `PkgInterpolationRegularNeighborCoordinates2`
|
||||||
\sa PkgInterpolationSurfaceNeighborCoordinates3
|
\sa PkgInterpolationSurfaceNeighborCoordinates3
|
||||||
|
|
||||||
s.
|
|
||||||
*/
|
*/
|
||||||
template < class RandomAccessIterator, class Functor,
|
template < class RandomAccessIterator, class Functor,
|
||||||
class GradFunctor, class Traits> typename Functor::result_type
|
class GradFunctor, class Traits> typename Functor::result_type
|
||||||
|
|
@ -115,8 +114,8 @@ function value and a Boolean. The Boolean indicates whether the
|
||||||
function value could be retrieved correctly. This function generates
|
function value could be retrieved correctly. This function generates
|
||||||
the interpolated function value as the weighted sum of the values
|
the interpolated function value as the weighted sum of the values
|
||||||
corresponding to each point of the point/coordinate pairs in the
|
corresponding to each point of the point/coordinate pairs in the
|
||||||
range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
range `[first, beyond)`.
|
||||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||||
|
|
||||||
\cgalHeading{Requirements}
|
\cgalHeading{Requirements}
|
||||||
|
|
||||||
|
|
@ -155,20 +154,22 @@ norm, Functor function_values);
|
||||||
/*!
|
/*!
|
||||||
\ingroup PkgInterpolation2Interpolation
|
\ingroup PkgInterpolation2Interpolation
|
||||||
|
|
||||||
The function `quadratic_interpolation` interpolates the function values and first degree
|
The function `quadratic_interpolation()` interpolates the function values and first degree
|
||||||
functions defined from the function gradients. Both, function values and
|
functions defined from the function gradients. Both, function values and
|
||||||
gradients, must be provided by functors.
|
gradients, must be provided by functors.
|
||||||
|
|
||||||
This function generates the
|
This function generates the
|
||||||
interpolated function value as the weighted sum of the values plus a
|
interpolated function value as the weighted sum of the values plus a
|
||||||
linear term in the gradient for each point of the point/coordinate
|
linear term in the gradient for each point of the point/coordinate
|
||||||
pairs in the range \f$ \left[\right.\f$ `first`,
|
pairs in the range `[first, beyond)`. See also
|
||||||
`beyond`\f$ \left.\right)\f$. See also
|
`sibson_c1_interpolation()`.
|
||||||
`sibson_c1_interpolation`. \pre `norm` \f$ \neq0\f$ `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
|
||||||
|
\pre `norm` \f$ \neq0\f$ `function_value(p).second == true` for all
|
||||||
|
points `p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||||
|
|
||||||
\cgalHeading{Parameters}
|
\cgalHeading{Parameters}
|
||||||
|
|
||||||
See `sibson_c1_interpolation`.
|
See `sibson_c1_interpolation()`.
|
||||||
|
|
||||||
\cgalHeading{Requirements}
|
\cgalHeading{Requirements}
|
||||||
|
|
||||||
|
|
@ -200,7 +201,7 @@ function_gradient,const Traits& traits);
|
||||||
/*!
|
/*!
|
||||||
\ingroup PkgInterpolation2Interpolation
|
\ingroup PkgInterpolation2Interpolation
|
||||||
|
|
||||||
The function `sibson_c1_interpolation` interpolates the function values and the
|
The function `sibson_c1_interpolation()` interpolates the function values and the
|
||||||
gradients that are provided by functors
|
gradients that are provided by functors
|
||||||
following the method described in \cite s-bdnni-81.
|
following the method described in \cite s-bdnni-81.
|
||||||
|
|
||||||
|
|
@ -210,9 +211,10 @@ This function generates the interpolated function value at the point
|
||||||
If the functor `function_gradient` cannot supply the gradient of a
|
If the functor `function_gradient` cannot supply the gradient of a
|
||||||
point, the function returns a pair where the Boolean is set to
|
point, the function returns a pair where the Boolean is set to
|
||||||
`false`. If the interpolation was successful, the pair contains the
|
`false`. If the interpolation was successful, the pair contains the
|
||||||
interpolated function value as first and `true` as second value. \pre
|
interpolated function value as first and `true` as second value.
|
||||||
`norm` \f$ \neq0\f$. `function_value(p).second == true` for all points
|
|
||||||
`p` of the point/coordinate pairs in the range \f$\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points
|
||||||
|
`p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||||
|
|
||||||
|
|
||||||
\cgalHeading{Parameters}
|
\cgalHeading{Parameters}
|
||||||
|
|
@ -221,8 +223,7 @@ The template parameter `Traits` is to be
|
||||||
instantiated with a model of `InterpolationTraits`.
|
instantiated with a model of `InterpolationTraits`.
|
||||||
The value type of `ForwardIterator` is a pair associating a point to a
|
The value type of `ForwardIterator` is a pair associating a point to a
|
||||||
(non-normalized) barycentric coordinate. `norm` is the
|
(non-normalized) barycentric coordinate. `norm` is the
|
||||||
normalization factor. The range \f$ \left[\right.\f$
|
normalization factor. The range `[first, beyond)` contains the barycentric
|
||||||
`first`,`beyond`\f$ \left.\right)\f$ contains the barycentric
|
|
||||||
coordinates for the query point `p`. The functor
|
coordinates for the query point `p`. The functor
|
||||||
`function_value` allows to access the value of the interpolated
|
`function_value` allows to access the value of the interpolated
|
||||||
function given a point. `function_gradient` allows to access the
|
function given a point. `function_gradient` allows to access the
|
||||||
|
|
|
||||||
|
|
@ -50,8 +50,7 @@ estimation method based on natural neighbor coordinates
|
||||||
/*!
|
/*!
|
||||||
estimates the
|
estimates the
|
||||||
gradient of a function at the point `p` given natural neighbor
|
gradient of a function at the point `p` given natural neighbor
|
||||||
coordinates of `p` in the range \f$ \left[\right.\f$ `first`,
|
coordinates of `p` in the range `[first, beyond)` and the function values of the neighbors
|
||||||
`beyond`\f$ \left.\right)\f$ and the function values of the neighbors
|
|
||||||
provided by the functor `f`. `norm` is the normalization
|
provided by the functor `f`. `norm` is the normalization
|
||||||
factor of the barycentric coordinates.
|
factor of the barycentric coordinates.
|
||||||
*/
|
*/
|
||||||
|
|
|
||||||
|
|
@ -19,9 +19,8 @@ The functions \c surface_neighbors_certified_3 also return, in
|
||||||
addition, a Boolean value that certifies whether or not, the Voronoi
|
addition, a Boolean value that certifies whether or not, the Voronoi
|
||||||
cell of `p` can be affected by points that lie outside the input
|
cell of `p` can be affected by points that lie outside the input
|
||||||
range, i.e. outside the ball centered on `p` passing through the
|
range, i.e. outside the ball centered on `p` passing through the
|
||||||
furthest sample point from `p` in the range \f$
|
furthest sample point from `p` in the range `[first, beyond)`. If the sample
|
||||||
\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$. If the sample
|
points are collected by a k-nearest neighbor or a range search
|
||||||
points are collected by a \f$ k\f$-nearest neighbor or a range search
|
|
||||||
query, this permits to verify that a large enough neighborhood has
|
query, this permits to verify that a large enough neighborhood has
|
||||||
been considered.
|
been considered.
|
||||||
|
|
||||||
|
|
@ -51,7 +50,7 @@ of the cell of `p` in this diagram.
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
The sample points \f$ \mathcal{P}\f$ are provided in the range
|
The sample points \f$ \mathcal{P}\f$ are provided in the range
|
||||||
\f$\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
`[first, beyond)`.
|
||||||
`InputIterator::value_type` is the point type `Kernel::Point_3`. The
|
`InputIterator::value_type` is the point type `Kernel::Point_3`. The
|
||||||
tangent plane is defined by the point `p` and the vector `normal`. The
|
tangent plane is defined by the point `p` and the vector `normal`. The
|
||||||
parameter `K` determines the kernel type that will instantiate the
|
parameter `K` determines the kernel type that will instantiate the
|
||||||
|
|
@ -59,7 +58,7 @@ template parameter of `Voronoi_intersection_2_traits_3<K>`.
|
||||||
|
|
||||||
The surface neighbors of `p` are computed which are the
|
The surface neighbors of `p` are computed which are the
|
||||||
neighbors of `p` in the regular triangulation that is dual to
|
neighbors of `p` in the regular triangulation that is dual to
|
||||||
the intersection of the \f$ 3D\f$ Voronoi diagram of \f$ \mathcal{P}\f$ with
|
the intersection of the 3D Voronoi diagram of \f$ \mathcal{P}\f$ with
|
||||||
the tangent plane. The point sequence that is computed by the
|
the tangent plane. The point sequence that is computed by the
|
||||||
function is placed starting at `out`. The function returns an
|
function is placed starting at `out`. The function returns an
|
||||||
iterator that is placed past-the-end of the resulting point
|
iterator that is placed past-the-end of the resulting point
|
||||||
|
|
@ -85,7 +84,7 @@ const ITraits& traits);
|
||||||
/*!
|
/*!
|
||||||
Similar to the first function. The additional third return
|
Similar to the first function. The additional third return
|
||||||
value is `true` if the furthest point in the range
|
value is `true` if the furthest point in the range
|
||||||
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ is further
|
`[first, beyond)` is further
|
||||||
away from `p` than twice the distance from `p` to the
|
away from `p` than twice the distance from `p` to the
|
||||||
furthest vertex of the intersection of the Voronoi cell of `p`
|
furthest vertex of the intersection of the Voronoi cell of `p`
|
||||||
with the tangent plane defined be `(p,normal)`. It is
|
with the tangent plane defined be `(p,normal)`. It is
|
||||||
|
|
@ -101,8 +100,7 @@ K);
|
||||||
/*!
|
/*!
|
||||||
The same as above except that this function
|
The same as above except that this function
|
||||||
takes the maximal distance from `p` to the points in the range
|
takes the maximal distance from `p` to the points in the range
|
||||||
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ as additional
|
`[first, beyond)` as additional parameter.
|
||||||
parameter.
|
|
||||||
*/
|
*/
|
||||||
template <class OutputIterator, class InputIterator, class
|
template <class OutputIterator, class InputIterator, class
|
||||||
Kernel> std::pair< OutputIterator, bool >
|
Kernel> std::pair< OutputIterator, bool >
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue