mirror of https://github.com/CGAL/cgal
de-math
This commit is contained in:
parent
5e23d6d0a9
commit
bfea719a1f
|
|
@ -63,8 +63,8 @@ std::pair< Data_type, bool> operator()(const Key_type& p);
|
|||
|
||||
generates the interpolated function value computed by Farin's interpolant.
|
||||
|
||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
\pre The range \f$ \left[\right.\f$ `first`, `beyond`\f$ \left.\right)\f$ contains either one or more than three element
|
||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range `[first, beyond).
|
||||
\pre The range `[first, beyond)` contains either one or more than three element
|
||||
The function `farin_c1_interpolation()` interpolates the function values and the
|
||||
gradients that are provided by functors using the method described in \cite f-sodt-90.
|
||||
|
||||
|
|
@ -89,7 +89,6 @@ to provide the square root operation.
|
|||
\sa `PkgInterpolationRegularNeighborCoordinates2`
|
||||
\sa PkgInterpolationSurfaceNeighborCoordinates3
|
||||
|
||||
s.
|
||||
*/
|
||||
template < class RandomAccessIterator, class Functor,
|
||||
class GradFunctor, class Traits> typename Functor::result_type
|
||||
|
|
@ -115,8 +114,8 @@ function value and a Boolean. The Boolean indicates whether the
|
|||
function value could be retrieved correctly. This function generates
|
||||
the interpolated function value as the weighted sum of the values
|
||||
corresponding to each point of the point/coordinate pairs in the
|
||||
range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
range `[first, beyond)`.
|
||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||
|
||||
\cgalHeading{Requirements}
|
||||
|
||||
|
|
@ -155,20 +154,22 @@ norm, Functor function_values);
|
|||
/*!
|
||||
\ingroup PkgInterpolation2Interpolation
|
||||
|
||||
The function `quadratic_interpolation` interpolates the function values and first degree
|
||||
The function `quadratic_interpolation()` interpolates the function values and first degree
|
||||
functions defined from the function gradients. Both, function values and
|
||||
gradients, must be provided by functors.
|
||||
|
||||
This function generates the
|
||||
interpolated function value as the weighted sum of the values plus a
|
||||
linear term in the gradient for each point of the point/coordinate
|
||||
pairs in the range \f$ \left[\right.\f$ `first`,
|
||||
`beyond`\f$ \left.\right)\f$. See also
|
||||
`sibson_c1_interpolation`. \pre `norm` \f$ \neq0\f$ `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
pairs in the range `[first, beyond)`. See also
|
||||
`sibson_c1_interpolation()`.
|
||||
|
||||
\pre `norm` \f$ \neq0\f$ `function_value(p).second == true` for all
|
||||
points `p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||
|
||||
\cgalHeading{Parameters}
|
||||
|
||||
See `sibson_c1_interpolation`.
|
||||
See `sibson_c1_interpolation()`.
|
||||
|
||||
\cgalHeading{Requirements}
|
||||
|
||||
|
|
@ -200,7 +201,7 @@ function_gradient,const Traits& traits);
|
|||
/*!
|
||||
\ingroup PkgInterpolation2Interpolation
|
||||
|
||||
The function `sibson_c1_interpolation` interpolates the function values and the
|
||||
The function `sibson_c1_interpolation()` interpolates the function values and the
|
||||
gradients that are provided by functors
|
||||
following the method described in \cite s-bdnni-81.
|
||||
|
||||
|
|
@ -210,9 +211,10 @@ This function generates the interpolated function value at the point
|
|||
If the functor `function_gradient` cannot supply the gradient of a
|
||||
point, the function returns a pair where the Boolean is set to
|
||||
`false`. If the interpolation was successful, the pair contains the
|
||||
interpolated function value as first and `true` as second value. \pre
|
||||
`norm` \f$ \neq0\f$. `function_value(p).second == true` for all points
|
||||
`p` of the point/coordinate pairs in the range \f$\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
interpolated function value as first and `true` as second value.
|
||||
|
||||
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points
|
||||
`p` of the point/coordinate pairs in the range `[first, beyond)`.
|
||||
|
||||
|
||||
\cgalHeading{Parameters}
|
||||
|
|
@ -221,8 +223,7 @@ The template parameter `Traits` is to be
|
|||
instantiated with a model of `InterpolationTraits`.
|
||||
The value type of `ForwardIterator` is a pair associating a point to a
|
||||
(non-normalized) barycentric coordinate. `norm` is the
|
||||
normalization factor. The range \f$ \left[\right.\f$
|
||||
`first`,`beyond`\f$ \left.\right)\f$ contains the barycentric
|
||||
normalization factor. The range `[first, beyond)` contains the barycentric
|
||||
coordinates for the query point `p`. The functor
|
||||
`function_value` allows to access the value of the interpolated
|
||||
function given a point. `function_gradient` allows to access the
|
||||
|
|
|
|||
|
|
@ -50,8 +50,7 @@ estimation method based on natural neighbor coordinates
|
|||
/*!
|
||||
estimates the
|
||||
gradient of a function at the point `p` given natural neighbor
|
||||
coordinates of `p` in the range \f$ \left[\right.\f$ `first`,
|
||||
`beyond`\f$ \left.\right)\f$ and the function values of the neighbors
|
||||
coordinates of `p` in the range `[first, beyond)` and the function values of the neighbors
|
||||
provided by the functor `f`. `norm` is the normalization
|
||||
factor of the barycentric coordinates.
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -19,9 +19,8 @@ The functions \c surface_neighbors_certified_3 also return, in
|
|||
addition, a Boolean value that certifies whether or not, the Voronoi
|
||||
cell of `p` can be affected by points that lie outside the input
|
||||
range, i.e. outside the ball centered on `p` passing through the
|
||||
furthest sample point from `p` in the range \f$
|
||||
\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$. If the sample
|
||||
points are collected by a \f$ k\f$-nearest neighbor or a range search
|
||||
furthest sample point from `p` in the range `[first, beyond)`. If the sample
|
||||
points are collected by a k-nearest neighbor or a range search
|
||||
query, this permits to verify that a large enough neighborhood has
|
||||
been considered.
|
||||
|
||||
|
|
@ -51,7 +50,7 @@ of the cell of `p` in this diagram.
|
|||
|
||||
/*!
|
||||
The sample points \f$ \mathcal{P}\f$ are provided in the range
|
||||
\f$\left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
|
||||
`[first, beyond)`.
|
||||
`InputIterator::value_type` is the point type `Kernel::Point_3`. The
|
||||
tangent plane is defined by the point `p` and the vector `normal`. The
|
||||
parameter `K` determines the kernel type that will instantiate the
|
||||
|
|
@ -59,7 +58,7 @@ template parameter of `Voronoi_intersection_2_traits_3<K>`.
|
|||
|
||||
The surface neighbors of `p` are computed which are the
|
||||
neighbors of `p` in the regular triangulation that is dual to
|
||||
the intersection of the \f$ 3D\f$ Voronoi diagram of \f$ \mathcal{P}\f$ with
|
||||
the intersection of the 3D Voronoi diagram of \f$ \mathcal{P}\f$ with
|
||||
the tangent plane. The point sequence that is computed by the
|
||||
function is placed starting at `out`. The function returns an
|
||||
iterator that is placed past-the-end of the resulting point
|
||||
|
|
@ -85,7 +84,7 @@ const ITraits& traits);
|
|||
/*!
|
||||
Similar to the first function. The additional third return
|
||||
value is `true` if the furthest point in the range
|
||||
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ is further
|
||||
`[first, beyond)` is further
|
||||
away from `p` than twice the distance from `p` to the
|
||||
furthest vertex of the intersection of the Voronoi cell of `p`
|
||||
with the tangent plane defined be `(p,normal)`. It is
|
||||
|
|
@ -101,8 +100,7 @@ K);
|
|||
/*!
|
||||
The same as above except that this function
|
||||
takes the maximal distance from `p` to the points in the range
|
||||
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ as additional
|
||||
parameter.
|
||||
`[first, beyond)` as additional parameter.
|
||||
*/
|
||||
template <class OutputIterator, class InputIterator, class
|
||||
Kernel> std::pair< OutputIterator, bool >
|
||||
|
|
|
|||
Loading…
Reference in New Issue