replace \sa by \cgalHasModel and \cgalModels

This commit is contained in:
Sébastien Loriot 2016-10-03 08:50:41 +02:00
parent b580ac783c
commit c0bed6e759
22 changed files with 68 additions and 42 deletions

View File

@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
splits \f$ \E^2\f$ into a bounded and an unbounded side. Note that the splits \f$ \E^2\f$ into a bounded and an unbounded side. Note that the
circle can be degenerated, i.e.\ the squared radius may be zero. circle can be degenerated, i.e.\ the squared radius may be zero.
\sa `Kernel::Circle_2` \cgalModels `Kernel::Circle_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `c` of type `Circle_3` is a circle in the
three-dimensional Euclidean space \f$ \E^3\f$. Note that the three-dimensional Euclidean space \f$ \E^3\f$. Note that the
circle can be degenerate, i.e.\ the squared radius may be zero. circle can be degenerate, i.e.\ the squared radius may be zero.
\sa `Kernel::Circle_3` \cgalModels `Kernel::Circle_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -14,7 +14,7 @@ orthogonal to an oriented plane, or the direction of an oriented line.
Further, they can be used to indicate angles. The slope of a direction Further, they can be used to indicate angles. The slope of a direction
is `dy()`/`dx()`. is `dy()`/`dx()`.
\sa `Kernel::Direction_2` \cgalModels `Kernel::Direction_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -13,7 +13,7 @@ or the direction normal to parallel planes that have the same orientation.
For example, you can ask for the direction For example, you can ask for the direction
orthogonal to an oriented plane, or the direction of an oriented line. orthogonal to an oriented plane, or the direction of an oriented line.
\sa `Kernel::Direction_3` \cgalModels `Kernel::Direction_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -16,7 +16,7 @@ difference however is that bounding boxes have always double coordinates,
whereas the coordinate type of an iso-oriented cuboid is chosen by whereas the coordinate type of an iso-oriented cuboid is chosen by
the user. the user.
\sa `Kernel::IsoCuboid_3` \cgalModels `Kernel::IsoCuboid_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -17,7 +17,7 @@ difference however is that bounding boxes have always double coordinates,
whereas the coordinate type of an iso-oriented rectangle is chosen by whereas the coordinate type of an iso-oriented rectangle is chosen by
the user. the user.
\sa `Kernel::IsoRectangle_2` \cgalModels `Kernel::IsoRectangle_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -34,7 +34,7 @@ To define a line `l` we write:
Line_2< Cartesian<double> > l(p,q); Line_2< Cartesian<double> > l(p,q);
\endcode \endcode
\sa `Kernel::Line_2` \cgalModels `Kernel::Line_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -6,7 +6,7 @@ namespace CGAL {
An object `l` of the data type `Line_3` is a directed An object `l` of the data type `Line_3` is a directed
straight line in the three-dimensional Euclidean space \f$ \E^3\f$. straight line in the three-dimensional Euclidean space \f$ \E^3\f$.
\sa `Kernel::Line_3` \cgalModels `Kernel::Line_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -14,7 +14,7 @@ A point `p` with %Cartesian coordinates \f$ (px, py, pz)\f$ is on the
positive side of `h`, iff \f$ a\, px +b\, py +c\, pz + d > 0\f$. positive side of `h`, iff \f$ a\, px +b\, py +c\, pz + d > 0\f$.
It is on the negative side, iff \f$ a\, px +b\, py\, +c\, pz + d < 0\f$. It is on the negative side, iff \f$ a\, px +b\, py\, +c\, pz + d < 0\f$.
\sa `Kernel::Plane_3` \cgalModels `Kernel::Plane_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -35,7 +35,7 @@ p = q;
std::cout << p.x() << " " << p.y() << std::endl; std::cout << p.x() << " " << p.y() << std::endl;
\endcode \endcode
\sa `Kernel::Point_2` \cgalModels `Kernel::Point_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -17,7 +17,7 @@ to `T`, and `Kernel::FT` is equal to
The following operations can be applied on points: The following operations can be applied on points:
\sa `Kernel::Point_3` \cgalModels `Kernel::Point_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `r` of the data type `Ray_2` is a directed
straight ray in the two-dimensional Euclidean plane \f$ \E^2\f$. It starts straight ray in the two-dimensional Euclidean plane \f$ \E^2\f$. It starts
in a point called the <I>source</I> of `r` and goes to infinity. in a point called the <I>source</I> of `r` and goes to infinity.
\sa `Kernel::Ray_2` \cgalModels `Kernel::Ray_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `r` of the data type `Ray_3` is a directed
straight ray in the three-dimensional Euclidean space \f$ \E^3\f$. It starts straight ray in the three-dimensional Euclidean space \f$ \E^3\f$. It starts
in a point called the <I>source</I> of `r` and it goes to infinity. in a point called the <I>source</I> of `r` and it goes to infinity.
\sa `Kernel::Ray_3` \cgalModels `Kernel::Ray_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact. number types, which is expensive, and may not be exact.
\sa `Kernel::Segment_2` \cgalModels `Kernel::Segment_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact. number types, which is expensive, and may not be exact.
\sa `Kernel::Segment_3` \cgalModels `Kernel::Segment_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
splits \f$ \E^3\f$ into a bounded and an unbounded side. Note that the splits \f$ \E^3\f$ into a bounded and an unbounded side. Note that the
sphere can be degenerated, i.e.\ the squared radius may be zero. sphere can be degenerated, i.e.\ the squared radius may be zero.
\sa `Kernel::Sphere_3` \cgalModels `Kernel::Sphere_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -17,7 +17,7 @@ a <I>negative</I> side.
The boundary of a tetrahedron splits the space in two open regions, a The boundary of a tetrahedron splits the space in two open regions, a
bounded one and an unbounded one. bounded one and an unbounded one.
\sa `Kernel::Tetrahedron_3` \cgalModels `Kernel::Tetrahedron_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -13,7 +13,7 @@ boundary the negative side.
The boundary of a triangle splits the plane in The boundary of a triangle splits the plane in
two open regions, a bounded one and an unbounded one. two open regions, a bounded one and an unbounded one.
\sa `Kernel::Triangle_2` \cgalModels `Kernel::Triangle_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -8,7 +8,7 @@ the three-dimensional Euclidean space \f$ \E^3\f$. As the triangle is not
a full-dimensional object there is only a test whether a point lies on a full-dimensional object there is only a test whether a point lies on
the triangle or not. the triangle or not.
\sa `Kernel::Triangle_3` \cgalModels `Kernel::Triangle_3`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -12,7 +12,7 @@ from \f$ p_1\f$ to \f$ p_2\f$.
will explicitly state where you can pass this constant as an argument will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros. instead of a vector initialized with zeros.
\sa `Kernel::Vector_2` \cgalModels `Kernel::Vector_2`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -12,7 +12,8 @@ from \f$ p_1\f$ to \f$ p_2\f$.
will explicitly state where you can pass this constant as an argument will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros. instead of a vector initialized with zeros.
\sa `Kernel::Vector_3` \cgalModels `Kernel::Vector_3`
\sa `cross_product_grp` \sa `cross_product_grp`
\sa `determinant_grp` \sa `determinant_grp`

View File

@ -10,7 +10,8 @@ namespace Kernel {
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Circle_2<Kernel>` \cgalHasModel `CGAL::Circle_2<Kernel>`
\sa `Kernel::BoundedSide_2` \sa `Kernel::BoundedSide_2`
\sa `Kernel::ComputeSquaredRadius_2` \sa `Kernel::ComputeSquaredRadius_2`
\sa `Kernel::ConstructCenter_2` \sa `Kernel::ConstructCenter_2`
@ -41,7 +42,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Circle_3<Kernel>` \cgalHasModel `CGAL::Circle_3<Kernel>`
\sa `Kernel::ComputeApproximateArea_3` \sa `Kernel::ComputeApproximateArea_3`
\sa `Kernel::ComputeApproximateSquaredLength_3` \sa `Kernel::ComputeApproximateSquaredLength_3`
\sa `Kernel::ComputeAreaDividedByPi_3` \sa `Kernel::ComputeAreaDividedByPi_3`
@ -71,7 +73,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Direction_2<Kernel>` \cgalHasModel `CGAL::Direction_2<Kernel>`
\sa `Kernel::CompareAngleWithXAxis_2` \sa `Kernel::CompareAngleWithXAxis_2`
\sa `Kernel::ComputeDx_2` \sa `Kernel::ComputeDx_2`
\sa `Kernel::ComputeDy_2` \sa `Kernel::ComputeDy_2`
@ -96,7 +99,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Direction_3<Kernel>` \cgalHasModel `CGAL::Direction_3<Kernel>`
\sa `Kernel::ConstructDirection_3` \sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructOppositeDirection_3` \sa `Kernel::ConstructOppositeDirection_3`
\sa `Kernel::Equal_2` \sa `Kernel::Equal_2`
@ -117,7 +121,8 @@ A type representing isocuboids in three dimensions.
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Iso_cuboid_3<Kernel>` \cgalHasModel `CGAL::Iso_cuboid_3<Kernel>`
\sa `Kernel::BoundedSide_3` \sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeVolume_3` \sa `Kernel::ComputeVolume_3`
\sa `Kernel::ConstructIsoCuboid_3` \sa `Kernel::ConstructIsoCuboid_3`
@ -143,7 +148,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Iso_rectangle_2<Kernel>` \cgalHasModel `CGAL::Iso_rectangle_2<Kernel>`
\sa `Kernel::ConstructIsoRectangle_2` \sa `Kernel::ConstructIsoRectangle_2`
\sa `Kernel::ComputeXmin_2` \sa `Kernel::ComputeXmin_2`
\sa `Kernel::ComputeXmax_2` \sa `Kernel::ComputeXmax_2`
@ -176,7 +182,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Line_2<Kernel>` \cgalHasModel `CGAL::Line_2<Kernel>`
\sa `Kernel::CompareXAtY_2` \sa `Kernel::CompareXAtY_2`
\sa `Kernel::ComputeSquaredDistance_2` \sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::CompareYAtX_2` \sa `Kernel::CompareYAtX_2`
@ -213,7 +220,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Line_3<Kernel>` \cgalHasModel `CGAL::Line_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3` \sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructDirection_3` \sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructLine_3` \sa `Kernel::ConstructLine_3`
@ -245,7 +253,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Object` \cgalHasModel `CGAL::Object`
\sa `Kernel::Assign_2` \sa `Kernel::Assign_2`
\sa `Kernel::ConstructObject_2` \sa `Kernel::ConstructObject_2`
\sa `Kernel::Intersect_2` \sa `Kernel::Intersect_2`
@ -267,7 +276,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Object` \cgalHasModel `CGAL::Object`
\sa `Kernel::Assign_3` \sa `Kernel::Assign_3`
\sa `Kernel::ConstructObject_3` \sa `Kernel::ConstructObject_3`
\sa `Kernel::Intersect_3` \sa `Kernel::Intersect_3`
@ -287,7 +297,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Plane_3<Kernel>` \cgalHasModel `CGAL::Plane_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3` \sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructBaseVector_3` \sa `Kernel::ConstructBaseVector_3`
\sa `Kernel::ConstructBisector_3` \sa `Kernel::ConstructBisector_3`
@ -325,6 +336,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\cgalHasModel `CGAL::Point_2<Kernel>`
\sa `Kernel::Angle_2` \sa `Kernel::Angle_2`
\sa `Kernel::AreOrderedAlongLine_2` \sa `Kernel::AreOrderedAlongLine_2`
\sa `Kernel::AreStrictlyOrderedAlongLine_2` \sa `Kernel::AreStrictlyOrderedAlongLine_2`
@ -384,6 +397,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\cgalHasModel `CGAL::Point_3<Kernel>`
\sa `Kernel::Angle_3` \sa `Kernel::Angle_3`
\sa `Kernel::AreOrderedAlongLine_3` \sa `Kernel::AreOrderedAlongLine_3`
\sa `Kernel::AreStrictlyOrderedAlongLine_3` \sa `Kernel::AreStrictlyOrderedAlongLine_3`
@ -444,7 +459,8 @@ A type representing rays in two dimensions.
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Ray_2<Kernel>` \cgalHasModel `CGAL::Ray_2<Kernel>`
\sa `Kernel::CollinearHasOn_2` \sa `Kernel::CollinearHasOn_2`
\sa `Kernel::ComputeSquaredDistance_2` \sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::ConstructDirection_2` \sa `Kernel::ConstructDirection_2`
@ -477,7 +493,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Ray_3<Kernel>` \cgalHasModel `CGAL::Ray_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3` \sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructDirection_3` \sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructLine_3` \sa `Kernel::ConstructLine_3`
@ -506,7 +523,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Segment_2<Kernel>` \cgalHasModel `CGAL::Segment_2<Kernel>`
\sa `Kernel::CollinearHasOn_2` \sa `Kernel::CollinearHasOn_2`
\sa `Kernel::ComputeSquaredDistance_2` \sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::ComputeSquaredLength_2` \sa `Kernel::ComputeSquaredLength_2`
@ -541,7 +559,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Segment_3<Kernel>` \cgalHasModel `CGAL::Segment_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3` \sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ComputeSquaredLength_3` \sa `Kernel::ComputeSquaredLength_3`
\sa `Kernel::ConstructDirection_3` \sa `Kernel::ConstructDirection_3`
@ -572,7 +591,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Sphere_3<Kernel>` \cgalHasModel `CGAL::Sphere_3<Kernel>`
\sa `Kernel::BoundedSide_3` \sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeSquaredRadius_3` \sa `Kernel::ComputeSquaredRadius_3`
\sa `Kernel::ConstructCenter_3` \sa `Kernel::ConstructCenter_3`
@ -603,7 +623,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Tetrahedron_3<Kernel>` \cgalHasModel `CGAL::Tetrahedron_3<Kernel>`
\sa `Kernel::BoundedSide_3` \sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeVolume_3` \sa `Kernel::ComputeVolume_3`
\sa `Kernel::ConstructCentroid_3` \sa `Kernel::ConstructCentroid_3`
@ -635,7 +656,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Triangle_2<Kernel>` \cgalHasModel `CGAL::Triangle_2<Kernel>`
\sa `Kernel::BoundedSide_2` \sa `Kernel::BoundedSide_2`
\sa `Kernel::ComputeArea_2` \sa `Kernel::ComputeArea_2`
\sa `Kernel::ComputeSquaredDistance_2` \sa `Kernel::ComputeSquaredDistance_2`
@ -669,7 +691,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Triangle_3<Kernel>` \cgalHasModel `CGAL::Triangle_3<Kernel>`
\sa `Kernel::ComputeSquaredArea_3` \sa `Kernel::ComputeSquaredArea_3`
\sa `Kernel::ConstructCentroid_3` \sa `Kernel::ConstructCentroid_3`
\sa `Kernel::ConstructSupportingPlane_3` \sa `Kernel::ConstructSupportingPlane_3`
@ -695,7 +718,8 @@ public:
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Vector_2<Kernel>` \cgalHasModel `CGAL::Vector_2<Kernel>`
\sa `Kernel::ComputeDeterminant_2` \sa `Kernel::ComputeDeterminant_2`
\sa `Kernel::ComputeX_2` \sa `Kernel::ComputeX_2`
\sa `Kernel::ComputeY_2` \sa `Kernel::ComputeY_2`
@ -727,7 +751,8 @@ A type representing vectors in three dimensions.
\cgalRefines Assignable \cgalRefines Assignable
\cgalRefines DefaultConstructible \cgalRefines DefaultConstructible
\sa `CGAL::Vector_3<Kernel>` \cgalHasModel `CGAL::Vector_3<Kernel>`
\sa `Kernel::ComputeDeterminant_3` \sa `Kernel::ComputeDeterminant_3`
\sa `Kernel::ComputeX_3` \sa `Kernel::ComputeX_3`
\sa `Kernel::ComputeY_3` \sa `Kernel::ComputeY_3`