mirror of https://github.com/CGAL/cgal
replace \sa by \cgalHasModel and \cgalModels
This commit is contained in:
parent
b580ac783c
commit
c0bed6e759
|
|
@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
|
|||
splits \f$ \E^2\f$ into a bounded and an unbounded side. Note that the
|
||||
circle can be degenerated, i.e.\ the squared radius may be zero.
|
||||
|
||||
\sa `Kernel::Circle_2`
|
||||
\cgalModels `Kernel::Circle_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ An object `c` of type `Circle_3` is a circle in the
|
|||
three-dimensional Euclidean space \f$ \E^3\f$. Note that the
|
||||
circle can be degenerate, i.e.\ the squared radius may be zero.
|
||||
|
||||
\sa `Kernel::Circle_3`
|
||||
\cgalModels `Kernel::Circle_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ orthogonal to an oriented plane, or the direction of an oriented line.
|
|||
Further, they can be used to indicate angles. The slope of a direction
|
||||
is `dy()`/`dx()`.
|
||||
|
||||
\sa `Kernel::Direction_2`
|
||||
\cgalModels `Kernel::Direction_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ or the direction normal to parallel planes that have the same orientation.
|
|||
For example, you can ask for the direction
|
||||
orthogonal to an oriented plane, or the direction of an oriented line.
|
||||
|
||||
\sa `Kernel::Direction_3`
|
||||
\cgalModels `Kernel::Direction_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ difference however is that bounding boxes have always double coordinates,
|
|||
whereas the coordinate type of an iso-oriented cuboid is chosen by
|
||||
the user.
|
||||
|
||||
\sa `Kernel::IsoCuboid_3`
|
||||
\cgalModels `Kernel::IsoCuboid_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ difference however is that bounding boxes have always double coordinates,
|
|||
whereas the coordinate type of an iso-oriented rectangle is chosen by
|
||||
the user.
|
||||
|
||||
\sa `Kernel::IsoRectangle_2`
|
||||
\cgalModels `Kernel::IsoRectangle_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ To define a line `l` we write:
|
|||
Line_2< Cartesian<double> > l(p,q);
|
||||
\endcode
|
||||
|
||||
\sa `Kernel::Line_2`
|
||||
\cgalModels `Kernel::Line_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
|||
An object `l` of the data type `Line_3` is a directed
|
||||
straight line in the three-dimensional Euclidean space \f$ \E^3\f$.
|
||||
|
||||
\sa `Kernel::Line_3`
|
||||
\cgalModels `Kernel::Line_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ A point `p` with %Cartesian coordinates \f$ (px, py, pz)\f$ is on the
|
|||
positive side of `h`, iff \f$ a\, px +b\, py +c\, pz + d > 0\f$.
|
||||
It is on the negative side, iff \f$ a\, px +b\, py\, +c\, pz + d < 0\f$.
|
||||
|
||||
\sa `Kernel::Plane_3`
|
||||
\cgalModels `Kernel::Plane_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ p = q;
|
|||
std::cout << p.x() << " " << p.y() << std::endl;
|
||||
\endcode
|
||||
|
||||
\sa `Kernel::Point_2`
|
||||
\cgalModels `Kernel::Point_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ to `T`, and `Kernel::FT` is equal to
|
|||
|
||||
The following operations can be applied on points:
|
||||
|
||||
\sa `Kernel::Point_3`
|
||||
\cgalModels `Kernel::Point_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ An object `r` of the data type `Ray_2` is a directed
|
|||
straight ray in the two-dimensional Euclidean plane \f$ \E^2\f$. It starts
|
||||
in a point called the <I>source</I> of `r` and goes to infinity.
|
||||
|
||||
\sa `Kernel::Ray_2`
|
||||
\cgalModels `Kernel::Ray_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ An object `r` of the data type `Ray_3` is a directed
|
|||
straight ray in the three-dimensional Euclidean space \f$ \E^3\f$. It starts
|
||||
in a point called the <I>source</I> of `r` and it goes to infinity.
|
||||
|
||||
\sa `Kernel::Ray_3`
|
||||
\cgalModels `Kernel::Ray_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
|
|||
perform a square root operation which is not defined for all
|
||||
number types, which is expensive, and may not be exact.
|
||||
|
||||
\sa `Kernel::Segment_2`
|
||||
\cgalModels `Kernel::Segment_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
|
|||
perform a square root operation which is not defined for all
|
||||
number types, which is expensive, and may not be exact.
|
||||
|
||||
\sa `Kernel::Segment_3`
|
||||
\cgalModels `Kernel::Segment_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
|
|||
splits \f$ \E^3\f$ into a bounded and an unbounded side. Note that the
|
||||
sphere can be degenerated, i.e.\ the squared radius may be zero.
|
||||
|
||||
\sa `Kernel::Sphere_3`
|
||||
\cgalModels `Kernel::Sphere_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ a <I>negative</I> side.
|
|||
The boundary of a tetrahedron splits the space in two open regions, a
|
||||
bounded one and an unbounded one.
|
||||
|
||||
\sa `Kernel::Tetrahedron_3`
|
||||
\cgalModels `Kernel::Tetrahedron_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ boundary the negative side.
|
|||
The boundary of a triangle splits the plane in
|
||||
two open regions, a bounded one and an unbounded one.
|
||||
|
||||
\sa `Kernel::Triangle_2`
|
||||
\cgalModels `Kernel::Triangle_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ the three-dimensional Euclidean space \f$ \E^3\f$. As the triangle is not
|
|||
a full-dimensional object there is only a test whether a point lies on
|
||||
the triangle or not.
|
||||
|
||||
\sa `Kernel::Triangle_3`
|
||||
\cgalModels `Kernel::Triangle_3`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ from \f$ p_1\f$ to \f$ p_2\f$.
|
|||
will explicitly state where you can pass this constant as an argument
|
||||
instead of a vector initialized with zeros.
|
||||
|
||||
\sa `Kernel::Vector_2`
|
||||
\cgalModels `Kernel::Vector_2`
|
||||
|
||||
*/
|
||||
template< typename Kernel >
|
||||
|
|
|
|||
|
|
@ -12,7 +12,8 @@ from \f$ p_1\f$ to \f$ p_2\f$.
|
|||
will explicitly state where you can pass this constant as an argument
|
||||
instead of a vector initialized with zeros.
|
||||
|
||||
\sa `Kernel::Vector_3`
|
||||
\cgalModels `Kernel::Vector_3`
|
||||
|
||||
\sa `cross_product_grp`
|
||||
\sa `determinant_grp`
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,8 @@ namespace Kernel {
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Circle_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Circle_2<Kernel>`
|
||||
|
||||
\sa `Kernel::BoundedSide_2`
|
||||
\sa `Kernel::ComputeSquaredRadius_2`
|
||||
\sa `Kernel::ConstructCenter_2`
|
||||
|
|
@ -41,7 +42,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Circle_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Circle_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeApproximateArea_3`
|
||||
\sa `Kernel::ComputeApproximateSquaredLength_3`
|
||||
\sa `Kernel::ComputeAreaDividedByPi_3`
|
||||
|
|
@ -71,7 +73,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Direction_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Direction_2<Kernel>`
|
||||
|
||||
\sa `Kernel::CompareAngleWithXAxis_2`
|
||||
\sa `Kernel::ComputeDx_2`
|
||||
\sa `Kernel::ComputeDy_2`
|
||||
|
|
@ -96,7 +99,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Direction_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Direction_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ConstructDirection_3`
|
||||
\sa `Kernel::ConstructOppositeDirection_3`
|
||||
\sa `Kernel::Equal_2`
|
||||
|
|
@ -117,7 +121,8 @@ A type representing isocuboids in three dimensions.
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Iso_cuboid_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Iso_cuboid_3<Kernel>`
|
||||
|
||||
\sa `Kernel::BoundedSide_3`
|
||||
\sa `Kernel::ComputeVolume_3`
|
||||
\sa `Kernel::ConstructIsoCuboid_3`
|
||||
|
|
@ -143,7 +148,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Iso_rectangle_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Iso_rectangle_2<Kernel>`
|
||||
|
||||
\sa `Kernel::ConstructIsoRectangle_2`
|
||||
\sa `Kernel::ComputeXmin_2`
|
||||
\sa `Kernel::ComputeXmax_2`
|
||||
|
|
@ -176,7 +182,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Line_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Line_2<Kernel>`
|
||||
|
||||
\sa `Kernel::CompareXAtY_2`
|
||||
\sa `Kernel::ComputeSquaredDistance_2`
|
||||
\sa `Kernel::CompareYAtX_2`
|
||||
|
|
@ -213,7 +220,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Line_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Line_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeSquaredDistance_3`
|
||||
\sa `Kernel::ConstructDirection_3`
|
||||
\sa `Kernel::ConstructLine_3`
|
||||
|
|
@ -245,7 +253,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Object`
|
||||
\cgalHasModel `CGAL::Object`
|
||||
|
||||
\sa `Kernel::Assign_2`
|
||||
\sa `Kernel::ConstructObject_2`
|
||||
\sa `Kernel::Intersect_2`
|
||||
|
|
@ -267,7 +276,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Object`
|
||||
\cgalHasModel `CGAL::Object`
|
||||
|
||||
\sa `Kernel::Assign_3`
|
||||
\sa `Kernel::ConstructObject_3`
|
||||
\sa `Kernel::Intersect_3`
|
||||
|
|
@ -287,7 +297,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Plane_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Plane_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeSquaredDistance_3`
|
||||
\sa `Kernel::ConstructBaseVector_3`
|
||||
\sa `Kernel::ConstructBisector_3`
|
||||
|
|
@ -325,6 +336,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\cgalHasModel `CGAL::Point_2<Kernel>`
|
||||
|
||||
\sa `Kernel::Angle_2`
|
||||
\sa `Kernel::AreOrderedAlongLine_2`
|
||||
\sa `Kernel::AreStrictlyOrderedAlongLine_2`
|
||||
|
|
@ -384,6 +397,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\cgalHasModel `CGAL::Point_3<Kernel>`
|
||||
|
||||
\sa `Kernel::Angle_3`
|
||||
\sa `Kernel::AreOrderedAlongLine_3`
|
||||
\sa `Kernel::AreStrictlyOrderedAlongLine_3`
|
||||
|
|
@ -444,7 +459,8 @@ A type representing rays in two dimensions.
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Ray_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Ray_2<Kernel>`
|
||||
|
||||
\sa `Kernel::CollinearHasOn_2`
|
||||
\sa `Kernel::ComputeSquaredDistance_2`
|
||||
\sa `Kernel::ConstructDirection_2`
|
||||
|
|
@ -477,7 +493,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Ray_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Ray_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeSquaredDistance_3`
|
||||
\sa `Kernel::ConstructDirection_3`
|
||||
\sa `Kernel::ConstructLine_3`
|
||||
|
|
@ -506,7 +523,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Segment_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Segment_2<Kernel>`
|
||||
|
||||
\sa `Kernel::CollinearHasOn_2`
|
||||
\sa `Kernel::ComputeSquaredDistance_2`
|
||||
\sa `Kernel::ComputeSquaredLength_2`
|
||||
|
|
@ -541,7 +559,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Segment_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Segment_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeSquaredDistance_3`
|
||||
\sa `Kernel::ComputeSquaredLength_3`
|
||||
\sa `Kernel::ConstructDirection_3`
|
||||
|
|
@ -572,7 +591,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Sphere_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Sphere_3<Kernel>`
|
||||
|
||||
\sa `Kernel::BoundedSide_3`
|
||||
\sa `Kernel::ComputeSquaredRadius_3`
|
||||
\sa `Kernel::ConstructCenter_3`
|
||||
|
|
@ -603,7 +623,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Tetrahedron_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Tetrahedron_3<Kernel>`
|
||||
|
||||
\sa `Kernel::BoundedSide_3`
|
||||
\sa `Kernel::ComputeVolume_3`
|
||||
\sa `Kernel::ConstructCentroid_3`
|
||||
|
|
@ -635,7 +656,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Triangle_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Triangle_2<Kernel>`
|
||||
|
||||
\sa `Kernel::BoundedSide_2`
|
||||
\sa `Kernel::ComputeArea_2`
|
||||
\sa `Kernel::ComputeSquaredDistance_2`
|
||||
|
|
@ -669,7 +691,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Triangle_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Triangle_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeSquaredArea_3`
|
||||
\sa `Kernel::ConstructCentroid_3`
|
||||
\sa `Kernel::ConstructSupportingPlane_3`
|
||||
|
|
@ -695,7 +718,8 @@ public:
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Vector_2<Kernel>`
|
||||
\cgalHasModel `CGAL::Vector_2<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeDeterminant_2`
|
||||
\sa `Kernel::ComputeX_2`
|
||||
\sa `Kernel::ComputeY_2`
|
||||
|
|
@ -727,7 +751,8 @@ A type representing vectors in three dimensions.
|
|||
\cgalRefines Assignable
|
||||
\cgalRefines DefaultConstructible
|
||||
|
||||
\sa `CGAL::Vector_3<Kernel>`
|
||||
\cgalHasModel `CGAL::Vector_3<Kernel>`
|
||||
|
||||
\sa `Kernel::ComputeDeterminant_3`
|
||||
\sa `Kernel::ComputeX_3`
|
||||
\sa `Kernel::ComputeY_3`
|
||||
|
|
|
|||
Loading…
Reference in New Issue