replace \sa by \cgalHasModel and \cgalModels

This commit is contained in:
Sébastien Loriot 2016-10-03 08:50:41 +02:00
parent b580ac783c
commit c0bed6e759
22 changed files with 68 additions and 42 deletions

View File

@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
splits \f$ \E^2\f$ into a bounded and an unbounded side. Note that the
circle can be degenerated, i.e.\ the squared radius may be zero.
\sa `Kernel::Circle_2`
\cgalModels `Kernel::Circle_2`
*/
template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `c` of type `Circle_3` is a circle in the
three-dimensional Euclidean space \f$ \E^3\f$. Note that the
circle can be degenerate, i.e.\ the squared radius may be zero.
\sa `Kernel::Circle_3`
\cgalModels `Kernel::Circle_3`
*/
template< typename Kernel >

View File

@ -14,7 +14,7 @@ orthogonal to an oriented plane, or the direction of an oriented line.
Further, they can be used to indicate angles. The slope of a direction
is `dy()`/`dx()`.
\sa `Kernel::Direction_2`
\cgalModels `Kernel::Direction_2`
*/
template< typename Kernel >

View File

@ -13,7 +13,7 @@ or the direction normal to parallel planes that have the same orientation.
For example, you can ask for the direction
orthogonal to an oriented plane, or the direction of an oriented line.
\sa `Kernel::Direction_3`
\cgalModels `Kernel::Direction_3`
*/
template< typename Kernel >

View File

@ -16,7 +16,7 @@ difference however is that bounding boxes have always double coordinates,
whereas the coordinate type of an iso-oriented cuboid is chosen by
the user.
\sa `Kernel::IsoCuboid_3`
\cgalModels `Kernel::IsoCuboid_3`
*/
template< typename Kernel >

View File

@ -17,7 +17,7 @@ difference however is that bounding boxes have always double coordinates,
whereas the coordinate type of an iso-oriented rectangle is chosen by
the user.
\sa `Kernel::IsoRectangle_2`
\cgalModels `Kernel::IsoRectangle_2`
*/
template< typename Kernel >

View File

@ -34,7 +34,7 @@ To define a line `l` we write:
Line_2< Cartesian<double> > l(p,q);
\endcode
\sa `Kernel::Line_2`
\cgalModels `Kernel::Line_2`
*/
template< typename Kernel >

View File

@ -6,7 +6,7 @@ namespace CGAL {
An object `l` of the data type `Line_3` is a directed
straight line in the three-dimensional Euclidean space \f$ \E^3\f$.
\sa `Kernel::Line_3`
\cgalModels `Kernel::Line_3`
*/
template< typename Kernel >

View File

@ -14,7 +14,7 @@ A point `p` with %Cartesian coordinates \f$ (px, py, pz)\f$ is on the
positive side of `h`, iff \f$ a\, px +b\, py +c\, pz + d > 0\f$.
It is on the negative side, iff \f$ a\, px +b\, py\, +c\, pz + d < 0\f$.
\sa `Kernel::Plane_3`
\cgalModels `Kernel::Plane_3`
*/
template< typename Kernel >

View File

@ -35,7 +35,7 @@ p = q;
std::cout << p.x() << " " << p.y() << std::endl;
\endcode
\sa `Kernel::Point_2`
\cgalModels `Kernel::Point_2`
*/
template< typename Kernel >

View File

@ -17,7 +17,7 @@ to `T`, and `Kernel::FT` is equal to
The following operations can be applied on points:
\sa `Kernel::Point_3`
\cgalModels `Kernel::Point_3`
*/
template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `r` of the data type `Ray_2` is a directed
straight ray in the two-dimensional Euclidean plane \f$ \E^2\f$. It starts
in a point called the <I>source</I> of `r` and goes to infinity.
\sa `Kernel::Ray_2`
\cgalModels `Kernel::Ray_2`
*/
template< typename Kernel >

View File

@ -7,7 +7,7 @@ An object `r` of the data type `Ray_3` is a directed
straight ray in the three-dimensional Euclidean space \f$ \E^3\f$. It starts
in a point called the <I>source</I> of `r` and it goes to infinity.
\sa `Kernel::Ray_3`
\cgalModels `Kernel::Ray_3`
*/
template< typename Kernel >

View File

@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact.
\sa `Kernel::Segment_2`
\cgalModels `Kernel::Segment_2`
*/
template< typename Kernel >

View File

@ -14,7 +14,7 @@ to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact.
\sa `Kernel::Segment_3`
\cgalModels `Kernel::Segment_3`
*/
template< typename Kernel >

View File

@ -11,7 +11,7 @@ positive side is to the left of the boundary. The boundary also
splits \f$ \E^3\f$ into a bounded and an unbounded side. Note that the
sphere can be degenerated, i.e.\ the squared radius may be zero.
\sa `Kernel::Sphere_3`
\cgalModels `Kernel::Sphere_3`
*/
template< typename Kernel >

View File

@ -17,7 +17,7 @@ a <I>negative</I> side.
The boundary of a tetrahedron splits the space in two open regions, a
bounded one and an unbounded one.
\sa `Kernel::Tetrahedron_3`
\cgalModels `Kernel::Tetrahedron_3`
*/
template< typename Kernel >

View File

@ -13,7 +13,7 @@ boundary the negative side.
The boundary of a triangle splits the plane in
two open regions, a bounded one and an unbounded one.
\sa `Kernel::Triangle_2`
\cgalModels `Kernel::Triangle_2`
*/
template< typename Kernel >

View File

@ -8,7 +8,7 @@ the three-dimensional Euclidean space \f$ \E^3\f$. As the triangle is not
a full-dimensional object there is only a test whether a point lies on
the triangle or not.
\sa `Kernel::Triangle_3`
\cgalModels `Kernel::Triangle_3`
*/
template< typename Kernel >

View File

@ -12,7 +12,7 @@ from \f$ p_1\f$ to \f$ p_2\f$.
will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros.
\sa `Kernel::Vector_2`
\cgalModels `Kernel::Vector_2`
*/
template< typename Kernel >

View File

@ -12,7 +12,8 @@ from \f$ p_1\f$ to \f$ p_2\f$.
will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros.
\sa `Kernel::Vector_3`
\cgalModels `Kernel::Vector_3`
\sa `cross_product_grp`
\sa `determinant_grp`

View File

@ -10,7 +10,8 @@ namespace Kernel {
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Circle_2<Kernel>`
\cgalHasModel `CGAL::Circle_2<Kernel>`
\sa `Kernel::BoundedSide_2`
\sa `Kernel::ComputeSquaredRadius_2`
\sa `Kernel::ConstructCenter_2`
@ -41,7 +42,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Circle_3<Kernel>`
\cgalHasModel `CGAL::Circle_3<Kernel>`
\sa `Kernel::ComputeApproximateArea_3`
\sa `Kernel::ComputeApproximateSquaredLength_3`
\sa `Kernel::ComputeAreaDividedByPi_3`
@ -71,7 +73,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Direction_2<Kernel>`
\cgalHasModel `CGAL::Direction_2<Kernel>`
\sa `Kernel::CompareAngleWithXAxis_2`
\sa `Kernel::ComputeDx_2`
\sa `Kernel::ComputeDy_2`
@ -96,7 +99,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Direction_3<Kernel>`
\cgalHasModel `CGAL::Direction_3<Kernel>`
\sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructOppositeDirection_3`
\sa `Kernel::Equal_2`
@ -117,7 +121,8 @@ A type representing isocuboids in three dimensions.
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Iso_cuboid_3<Kernel>`
\cgalHasModel `CGAL::Iso_cuboid_3<Kernel>`
\sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeVolume_3`
\sa `Kernel::ConstructIsoCuboid_3`
@ -143,7 +148,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Iso_rectangle_2<Kernel>`
\cgalHasModel `CGAL::Iso_rectangle_2<Kernel>`
\sa `Kernel::ConstructIsoRectangle_2`
\sa `Kernel::ComputeXmin_2`
\sa `Kernel::ComputeXmax_2`
@ -176,7 +182,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Line_2<Kernel>`
\cgalHasModel `CGAL::Line_2<Kernel>`
\sa `Kernel::CompareXAtY_2`
\sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::CompareYAtX_2`
@ -213,7 +220,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Line_3<Kernel>`
\cgalHasModel `CGAL::Line_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructLine_3`
@ -245,7 +253,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Object`
\cgalHasModel `CGAL::Object`
\sa `Kernel::Assign_2`
\sa `Kernel::ConstructObject_2`
\sa `Kernel::Intersect_2`
@ -267,7 +276,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Object`
\cgalHasModel `CGAL::Object`
\sa `Kernel::Assign_3`
\sa `Kernel::ConstructObject_3`
\sa `Kernel::Intersect_3`
@ -287,7 +297,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Plane_3<Kernel>`
\cgalHasModel `CGAL::Plane_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructBaseVector_3`
\sa `Kernel::ConstructBisector_3`
@ -325,6 +336,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\cgalHasModel `CGAL::Point_2<Kernel>`
\sa `Kernel::Angle_2`
\sa `Kernel::AreOrderedAlongLine_2`
\sa `Kernel::AreStrictlyOrderedAlongLine_2`
@ -384,6 +397,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\cgalHasModel `CGAL::Point_3<Kernel>`
\sa `Kernel::Angle_3`
\sa `Kernel::AreOrderedAlongLine_3`
\sa `Kernel::AreStrictlyOrderedAlongLine_3`
@ -444,7 +459,8 @@ A type representing rays in two dimensions.
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Ray_2<Kernel>`
\cgalHasModel `CGAL::Ray_2<Kernel>`
\sa `Kernel::CollinearHasOn_2`
\sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::ConstructDirection_2`
@ -477,7 +493,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Ray_3<Kernel>`
\cgalHasModel `CGAL::Ray_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ConstructDirection_3`
\sa `Kernel::ConstructLine_3`
@ -506,7 +523,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Segment_2<Kernel>`
\cgalHasModel `CGAL::Segment_2<Kernel>`
\sa `Kernel::CollinearHasOn_2`
\sa `Kernel::ComputeSquaredDistance_2`
\sa `Kernel::ComputeSquaredLength_2`
@ -541,7 +559,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Segment_3<Kernel>`
\cgalHasModel `CGAL::Segment_3<Kernel>`
\sa `Kernel::ComputeSquaredDistance_3`
\sa `Kernel::ComputeSquaredLength_3`
\sa `Kernel::ConstructDirection_3`
@ -572,7 +591,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Sphere_3<Kernel>`
\cgalHasModel `CGAL::Sphere_3<Kernel>`
\sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeSquaredRadius_3`
\sa `Kernel::ConstructCenter_3`
@ -603,7 +623,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Tetrahedron_3<Kernel>`
\cgalHasModel `CGAL::Tetrahedron_3<Kernel>`
\sa `Kernel::BoundedSide_3`
\sa `Kernel::ComputeVolume_3`
\sa `Kernel::ConstructCentroid_3`
@ -635,7 +656,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Triangle_2<Kernel>`
\cgalHasModel `CGAL::Triangle_2<Kernel>`
\sa `Kernel::BoundedSide_2`
\sa `Kernel::ComputeArea_2`
\sa `Kernel::ComputeSquaredDistance_2`
@ -669,7 +691,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Triangle_3<Kernel>`
\cgalHasModel `CGAL::Triangle_3<Kernel>`
\sa `Kernel::ComputeSquaredArea_3`
\sa `Kernel::ConstructCentroid_3`
\sa `Kernel::ConstructSupportingPlane_3`
@ -695,7 +718,8 @@ public:
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Vector_2<Kernel>`
\cgalHasModel `CGAL::Vector_2<Kernel>`
\sa `Kernel::ComputeDeterminant_2`
\sa `Kernel::ComputeX_2`
\sa `Kernel::ComputeY_2`
@ -727,7 +751,8 @@ A type representing vectors in three dimensions.
\cgalRefines Assignable
\cgalRefines DefaultConstructible
\sa `CGAL::Vector_3<Kernel>`
\cgalHasModel `CGAL::Vector_3<Kernel>`
\sa `Kernel::ComputeDeterminant_3`
\sa `Kernel::ComputeX_3`
\sa `Kernel::ComputeY_3`