This commit is contained in:
Andreas Fabri 2007-03-13 09:45:47 +00:00
parent 8520242b53
commit c1fc46f57c
5 changed files with 20 additions and 20 deletions

View File

@ -47,7 +47,7 @@ the class
\ccOperations
% +------------------------------------------------------------------
Only constructors (from 3 scalars and copy constructors) and access
methods to coordinates x(), y(), z() are needed.
methods to coordinates \ccc{x()}, \ccc{y()}, \ccc{z()} are needed.
\ccHasModels
% +------------------------------------------------------------------

View File

@ -73,7 +73,7 @@ The scalar type \ccc{LocalKernel::FT} must be a field type with a
square root.
Only constructors (from 3 scalars and copy constructors) and access
methods to coordinates x(), y(), z() are needed for the point and
methods to coordinates \ccc{x()}, \ccc{y()}, \ccc{z()} are needed for the point and
vector types.
%\ccMethod{void foo();}{some member functions}

View File

@ -18,7 +18,7 @@
\ccDefinition
The class \ccRefName\ stores the Monge representation, i.e. the Monge
The class \ccRefName\ stores the Monge representation, i.e., the Monge
coordinate system and the coefficients of the Monge form in this
system.
@ -48,7 +48,7 @@ system.
\ccMemberFunction{Point_3 origin();}{Point on the fitted surface where
differential quantities are computed.}
The Monge basis is given by :
The Monge basis is given by:
\ccMemberFunction{Vector_3 maximal_principal_direction();}{}
\ccGlue
@ -56,7 +56,7 @@ The Monge basis is given by :
\ccGlue
\ccMemberFunction{Vector_3 normal_direction(); }{}
The Monge coefficients are given by :
The Monge coefficients are given by:
\ccMemberFunction{FT principal_curvatures(size_t i);}
{$i=0$ for the maximum and $i=1$ for the minimum.}
@ -73,7 +73,7 @@ The Monge coefficients are given by :
\ccMemberFunction{void comply_wrt_given_normal(const Vector_3 given_normal);}
{ change principal basis and Monge coefficients so that the
given\_normal and the Monge normal make an acute angle.\\ If
given\_normal.monge\_normal $< 0$ then change the orientation~: if
given\_normal.monge\_normal $< 0$ then change the orientation: if
$z=g(x,y)$ in the basis (d1,d2,n) then in the basis (d2,d1,-n)
$z=h(x,y)=-g(y,x)$. }

View File

@ -69,7 +69,7 @@ algebra algorithm required by the fitting method.
\ccc{Data_kernel::Point_3}, \ccc{d} is the degree of the fitted
polynomial, \ccc{d'} is the degree of the expected Monge
coefficients. \ccPrecond $N \geq N_{d}:=(d+1)(d+2)/2$, $1 \leq d'
\leq \min(d,4) $ }
\leq \min(d,4) $. }
\ccMethod{FT condition_number();}{condition number of the linear fitting system.}

View File

@ -35,9 +35,9 @@ the \ccc{LocalKernel} concept~: \ccc{LocalKernel::FT}.
% +------------------------------------------------------------------
\ccNestedType{FT}{The scalar type.}
\ccGlue
\ccNestedType{Vector }{The Vector type.}
\ccNestedType{Vector }{The vector type.}
\ccGlue
\ccNestedType{Matrix }{The Matrix type.}
\ccNestedType{Matrix }{The matrix type.}
%\ccCreation
%\ccCreationVariable{a} %% choose variable name
@ -47,15 +47,15 @@ the \ccc{LocalKernel} concept~: \ccc{LocalKernel::FT}.
\ccCreationVariable{vector} %choose variable name
\ccConstructor{Vector(size_t n);} { initialize all the elements of the vector to zero.}
The Vector has the access methods
The type \ccc{Vector} has the access methods
\ccMethod{size_t size();}{}
\ccGlue
\ccMethod{FT operator()(size_t i); }{return the $i^{th}$ entry, $i$ from 0 to $size()-1$}
\ccMethod{FT operator()(size_t i); }{return the $i^{th}$ entry, $i$ from $0$ to $size()-1$.}
\ccGlue
\ccMethod{void set(size_t i, const FT value);}{set the $i^{th}$ entry to $value$}
\ccMethod{void set(size_t i, const FT value);}{set the $i^{th}$ entry to $value$.}
The Matrix has the access methods
The type \ccc{Matrix} has the access methods
\ccCreationVariable{matrix} %choose variable name
\ccConstructor{Matrix(size_t n1, size_t n2);} { initialize all the entries of the matrix to zero.}
@ -64,20 +64,20 @@ The Matrix has the access methods
\ccMethod{size_t number_of_columns();}{}
\ccGlue
\ccMethod{FT operator()(size_t i, size_t j); }
{return the entry at row $i$ and column $j$, $i$ from 0 to \ccc{number_of_rows - 1},
$j$ from 0 to \ccc{number_of_columns - 1}}
{return the entry at row $i$ and column $j$, $i$ from $0$ to \ccc{number_of_rows - 1},
$j$ from $0$ to \ccc{number_of_columns - 1}.}
\ccGlue
\ccMethod{void set(size_t i, size_t j, const FT value); }
{set the entry at row $i$ and column $j$ to $value$}
{set the entry at row $i$ and column $j$ to $value$.}
The SvdTraits has a linear solver using a singular value decomposition
The concept \ccc{SvdTraits} has a linear solver using a singular value decomposition
algorithm.
\ccCreationVariable{traits} %choose variable name
\ccMethod{FT solve(Matrix& M, Vector& B);}
{ Solves the system MX=B (in the least square sense if M is not
square) using a Singular Value Decomposition and returns the condition
number of M. The solution is stored in B.}
{ Solves the system $MX=B$ (in the least square sense if $M$ is not
square) using a singular value decomposition and returns the condition
number of $M$. The solution is stored in $B$.}
\ccHasModels
% +------------------------------------------------------------------