mirror of https://github.com/CGAL/cgal
polish
This commit is contained in:
parent
8520242b53
commit
c1fc46f57c
|
|
@ -47,7 +47,7 @@ the class
|
||||||
\ccOperations
|
\ccOperations
|
||||||
% +------------------------------------------------------------------
|
% +------------------------------------------------------------------
|
||||||
Only constructors (from 3 scalars and copy constructors) and access
|
Only constructors (from 3 scalars and copy constructors) and access
|
||||||
methods to coordinates x(), y(), z() are needed.
|
methods to coordinates \ccc{x()}, \ccc{y()}, \ccc{z()} are needed.
|
||||||
|
|
||||||
\ccHasModels
|
\ccHasModels
|
||||||
% +------------------------------------------------------------------
|
% +------------------------------------------------------------------
|
||||||
|
|
|
||||||
|
|
@ -73,7 +73,7 @@ The scalar type \ccc{LocalKernel::FT} must be a field type with a
|
||||||
square root.
|
square root.
|
||||||
|
|
||||||
Only constructors (from 3 scalars and copy constructors) and access
|
Only constructors (from 3 scalars and copy constructors) and access
|
||||||
methods to coordinates x(), y(), z() are needed for the point and
|
methods to coordinates \ccc{x()}, \ccc{y()}, \ccc{z()} are needed for the point and
|
||||||
vector types.
|
vector types.
|
||||||
|
|
||||||
%\ccMethod{void foo();}{some member functions}
|
%\ccMethod{void foo();}{some member functions}
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
The class \ccRefName\ stores the Monge representation, i.e. the Monge
|
The class \ccRefName\ stores the Monge representation, i.e., the Monge
|
||||||
coordinate system and the coefficients of the Monge form in this
|
coordinate system and the coefficients of the Monge form in this
|
||||||
system.
|
system.
|
||||||
|
|
||||||
|
|
@ -48,7 +48,7 @@ system.
|
||||||
\ccMemberFunction{Point_3 origin();}{Point on the fitted surface where
|
\ccMemberFunction{Point_3 origin();}{Point on the fitted surface where
|
||||||
differential quantities are computed.}
|
differential quantities are computed.}
|
||||||
|
|
||||||
The Monge basis is given by :
|
The Monge basis is given by:
|
||||||
|
|
||||||
\ccMemberFunction{Vector_3 maximal_principal_direction();}{}
|
\ccMemberFunction{Vector_3 maximal_principal_direction();}{}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
|
|
@ -56,7 +56,7 @@ The Monge basis is given by :
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMemberFunction{Vector_3 normal_direction(); }{}
|
\ccMemberFunction{Vector_3 normal_direction(); }{}
|
||||||
|
|
||||||
The Monge coefficients are given by :
|
The Monge coefficients are given by:
|
||||||
|
|
||||||
\ccMemberFunction{FT principal_curvatures(size_t i);}
|
\ccMemberFunction{FT principal_curvatures(size_t i);}
|
||||||
{$i=0$ for the maximum and $i=1$ for the minimum.}
|
{$i=0$ for the maximum and $i=1$ for the minimum.}
|
||||||
|
|
@ -73,7 +73,7 @@ The Monge coefficients are given by :
|
||||||
\ccMemberFunction{void comply_wrt_given_normal(const Vector_3 given_normal);}
|
\ccMemberFunction{void comply_wrt_given_normal(const Vector_3 given_normal);}
|
||||||
{ change principal basis and Monge coefficients so that the
|
{ change principal basis and Monge coefficients so that the
|
||||||
given\_normal and the Monge normal make an acute angle.\\ If
|
given\_normal and the Monge normal make an acute angle.\\ If
|
||||||
given\_normal.monge\_normal $< 0$ then change the orientation~: if
|
given\_normal.monge\_normal $< 0$ then change the orientation: if
|
||||||
$z=g(x,y)$ in the basis (d1,d2,n) then in the basis (d2,d1,-n)
|
$z=g(x,y)$ in the basis (d1,d2,n) then in the basis (d2,d1,-n)
|
||||||
$z=h(x,y)=-g(y,x)$. }
|
$z=h(x,y)=-g(y,x)$. }
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -69,7 +69,7 @@ algebra algorithm required by the fitting method.
|
||||||
\ccc{Data_kernel::Point_3}, \ccc{d} is the degree of the fitted
|
\ccc{Data_kernel::Point_3}, \ccc{d} is the degree of the fitted
|
||||||
polynomial, \ccc{d'} is the degree of the expected Monge
|
polynomial, \ccc{d'} is the degree of the expected Monge
|
||||||
coefficients. \ccPrecond $N \geq N_{d}:=(d+1)(d+2)/2$, $1 \leq d'
|
coefficients. \ccPrecond $N \geq N_{d}:=(d+1)(d+2)/2$, $1 \leq d'
|
||||||
\leq \min(d,4) $ }
|
\leq \min(d,4) $. }
|
||||||
|
|
||||||
|
|
||||||
\ccMethod{FT condition_number();}{condition number of the linear fitting system.}
|
\ccMethod{FT condition_number();}{condition number of the linear fitting system.}
|
||||||
|
|
|
||||||
|
|
@ -35,9 +35,9 @@ the \ccc{LocalKernel} concept~: \ccc{LocalKernel::FT}.
|
||||||
% +------------------------------------------------------------------
|
% +------------------------------------------------------------------
|
||||||
\ccNestedType{FT}{The scalar type.}
|
\ccNestedType{FT}{The scalar type.}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccNestedType{Vector }{The Vector type.}
|
\ccNestedType{Vector }{The vector type.}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccNestedType{Matrix }{The Matrix type.}
|
\ccNestedType{Matrix }{The matrix type.}
|
||||||
|
|
||||||
%\ccCreation
|
%\ccCreation
|
||||||
%\ccCreationVariable{a} %% choose variable name
|
%\ccCreationVariable{a} %% choose variable name
|
||||||
|
|
@ -47,15 +47,15 @@ the \ccc{LocalKernel} concept~: \ccc{LocalKernel::FT}.
|
||||||
\ccCreationVariable{vector} %choose variable name
|
\ccCreationVariable{vector} %choose variable name
|
||||||
|
|
||||||
\ccConstructor{Vector(size_t n);} { initialize all the elements of the vector to zero.}
|
\ccConstructor{Vector(size_t n);} { initialize all the elements of the vector to zero.}
|
||||||
The Vector has the access methods
|
The type \ccc{Vector} has the access methods
|
||||||
|
|
||||||
\ccMethod{size_t size();}{}
|
\ccMethod{size_t size();}{}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{FT operator()(size_t i); }{return the $i^{th}$ entry, $i$ from 0 to $size()-1$}
|
\ccMethod{FT operator()(size_t i); }{return the $i^{th}$ entry, $i$ from $0$ to $size()-1$.}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void set(size_t i, const FT value);}{set the $i^{th}$ entry to $value$}
|
\ccMethod{void set(size_t i, const FT value);}{set the $i^{th}$ entry to $value$.}
|
||||||
|
|
||||||
The Matrix has the access methods
|
The type \ccc{Matrix} has the access methods
|
||||||
|
|
||||||
\ccCreationVariable{matrix} %choose variable name
|
\ccCreationVariable{matrix} %choose variable name
|
||||||
\ccConstructor{Matrix(size_t n1, size_t n2);} { initialize all the entries of the matrix to zero.}
|
\ccConstructor{Matrix(size_t n1, size_t n2);} { initialize all the entries of the matrix to zero.}
|
||||||
|
|
@ -64,20 +64,20 @@ The Matrix has the access methods
|
||||||
\ccMethod{size_t number_of_columns();}{}
|
\ccMethod{size_t number_of_columns();}{}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{FT operator()(size_t i, size_t j); }
|
\ccMethod{FT operator()(size_t i, size_t j); }
|
||||||
{return the entry at row $i$ and column $j$, $i$ from 0 to \ccc{number_of_rows - 1},
|
{return the entry at row $i$ and column $j$, $i$ from $0$ to \ccc{number_of_rows - 1},
|
||||||
$j$ from 0 to \ccc{number_of_columns - 1}}
|
$j$ from $0$ to \ccc{number_of_columns - 1}.}
|
||||||
\ccGlue
|
\ccGlue
|
||||||
\ccMethod{void set(size_t i, size_t j, const FT value); }
|
\ccMethod{void set(size_t i, size_t j, const FT value); }
|
||||||
{set the entry at row $i$ and column $j$ to $value$}
|
{set the entry at row $i$ and column $j$ to $value$.}
|
||||||
|
|
||||||
The SvdTraits has a linear solver using a singular value decomposition
|
The concept \ccc{SvdTraits} has a linear solver using a singular value decomposition
|
||||||
algorithm.
|
algorithm.
|
||||||
\ccCreationVariable{traits} %choose variable name
|
\ccCreationVariable{traits} %choose variable name
|
||||||
|
|
||||||
\ccMethod{FT solve(Matrix& M, Vector& B);}
|
\ccMethod{FT solve(Matrix& M, Vector& B);}
|
||||||
{ Solves the system MX=B (in the least square sense if M is not
|
{ Solves the system $MX=B$ (in the least square sense if $M$ is not
|
||||||
square) using a Singular Value Decomposition and returns the condition
|
square) using a singular value decomposition and returns the condition
|
||||||
number of M. The solution is stored in B.}
|
number of $M$. The solution is stored in $B$.}
|
||||||
|
|
||||||
\ccHasModels
|
\ccHasModels
|
||||||
% +------------------------------------------------------------------
|
% +------------------------------------------------------------------
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue