mirror of https://github.com/CGAL/cgal
remove useless sentence
This commit is contained in:
parent
d554dc1144
commit
c2df643a83
|
|
@ -18,7 +18,7 @@ Computes a number of type
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type}{}
|
%\ccThree{result_type}{fo(first_argument_type}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ Compares \ccc{AlgebraicKernel_d_1::Algebraic_real_1} values.
|
||||||
%%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
%%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{result_type operator()(AlgebraicKernel_d_1::Algebraic_real_1 a, AlgebraicKernel_d_1::Algebraic_real_1 b);}
|
\ccMethod{result_type operator()(AlgebraicKernel_d_1::Algebraic_real_1 a, AlgebraicKernel_d_1::Algebraic_real_1 b);}
|
||||||
|
|
|
||||||
|
|
@ -15,7 +15,7 @@ Constructs \ccc{AlgebraicKernel_d_1::Algebraic_real_1}.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccThree{+++++++++}{+++++++++}{}
|
\ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
|
|
||||||
\ccMethod{result_type operator()(int a);}
|
\ccMethod{result_type operator()(int a);}
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ Determines whether a given pair of univariate polynomials $p_1, p_2$ is coprime,
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type
|
\ccMethod{result_type
|
||||||
operator()(const first_argument_type & p1,
|
operator()(const first_argument_type & p1,
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ is zero at a given \ccc{AlgebraicKernel_d_1::Algebraic_real_1}.
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
|
||||||
|
|
@ -23,7 +23,7 @@ It returns true if $p_1$ and $p_2$ are already coprime.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type
|
\ccMethod{result_type
|
||||||
operator()(const AlgebraicKernel_d_1::Polynomial_1 & p1,
|
operator()(const AlgebraicKernel_d_1::Polynomial_1 & p1,
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ Returns a square free part of a univariate polynomial.
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type operator()(argument_type p);}
|
\ccMethod{result_type operator()(argument_type p);}
|
||||||
{Returns a square free part of $p$}
|
{Returns a square free part of $p$}
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ Computes the sign of a univariate polynomial
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ Computes a number of type
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
@ -57,7 +57,7 @@ Computes a number of type
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ Compares the first coordinates of \ccc{AlgebraicKernel_d_2::Algebraic_real_2}s.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{result_type
|
\ccMethod{result_type
|
||||||
|
|
@ -58,7 +58,7 @@ Compares the second coordinated of \ccc{AlgebraicKernel_d_2::Algebraic_real_2}s.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{result_type operator()(const first_argument_type & a, const second_argument_type & b);}
|
\ccMethod{result_type operator()(const first_argument_type & a, const second_argument_type & b);}
|
||||||
|
|
@ -98,7 +98,7 @@ Compares \ccc{AlgebraicKernel_d_2::Algebraic_real_2}s lexicographically.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{result_type operator()(const first_argument_type & a, const second_argument_type & b);}
|
\ccMethod{result_type operator()(const first_argument_type & a, const second_argument_type & b);}
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ Constructs an \ccc{AlgebraicKernel_d_2::Algebraic_real_2}.
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo()AlgebraicKernel_d_2}{}
|
%\ccThree{result_type}{fo()AlgebraicKernel_d_2}{}
|
||||||
\ccMethod{result_type operator()(int x, int y);}
|
\ccMethod{result_type operator()(int x, int y);}
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ Computes whether a given pair of bivariate polynomials is coprime.
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
result_type
|
result_type
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ Computes whether the given bivariate polynomial is square free.
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type operator()(const argument_type& p);}{
|
\ccMethod{result_type operator()(const argument_type& p);}{
|
||||||
Computes whether $p$ is square free. }
|
Computes whether $p$ is square free. }
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,7 @@ is zero at a given \ccc{AlgebraicKernel_d_2::Algebraic_real_2}.
|
||||||
|
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{
|
\ccMethod{
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ such that $q_1$ and $q_2$ are coprime.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type
|
\ccMethod{result_type
|
||||||
operator()(const AlgebraicKernel_d_2::Polynomial_2 & p1,
|
operator()(const AlgebraicKernel_d_2::Polynomial_2 & p1,
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ Returns a square free part of a bivariate polynomial.
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
%\ccThree{xxxxxxxxxxx}{xxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
\ccMethod{result_type operator()(const argument_type& p);}{
|
\ccMethod{result_type operator()(const argument_type& p);}{
|
||||||
Returns a square free part of $p$.}
|
Returns a square free part of $p$.}
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ Computes the sign of a bivariate polynomial
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{result_type
|
\ccMethod{result_type
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ given output iterator. The constant factor $c$ is not computed.
|
||||||
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
\ccOperations \ccThree{+++++++++}{+++++++++}{}
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
||||||
A model \ccVar\ of this type must provide:
|
|
||||||
|
|
||||||
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
%\ccThree{result_type}{fo(first_argument_type,++}{}
|
||||||
\ccMethod{template < class OutputIterator >
|
\ccMethod{template < class OutputIterator >
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue