mirror of https://github.com/CGAL/cgal
Updated documentation
This commit is contained in:
parent
5f829c9e3a
commit
c4ae5ea265
|
|
@ -40,7 +40,7 @@ specifying the type of manifold of the objects.
|
|||
\ccFunction{template < typename InputIterator, typename Tag >
|
||||
K::Point_3
|
||||
centroid(InputIterator first, InputIterator beyond, const Tag& t);}
|
||||
{ computes the centroid of a non-empty set of 3D points having a manifold described by t.
|
||||
{ computes the centroid of a non-empty set of 3D objects having a manifold described by t.
|
||||
\ccc{K} is \ccc{Kernel_traits<std::iterator_traits<InputIterator>::value_type>::Kernel}.
|
||||
The value type must be \ccc{K::Point_3}.
|
||||
\ccPrecond{first != beyond.} }
|
||||
|
|
@ -48,7 +48,7 @@ specifying the type of manifold of the objects.
|
|||
\ccFunction{template < typename InputIterator, typename K, typename Tag >
|
||||
K::Point_3
|
||||
centroid(InputIterator first, InputIterator beyond, const K & k, const Tag& t);}
|
||||
{ computes the centroid of a non-empty set of 3D points having a manifold described by t.
|
||||
{ computes the centroid of a non-empty set of 3D objects having a manifold described by t.
|
||||
The value type must be \ccc{K::Point_3}.
|
||||
\ccPrecond{first != beyond.} }
|
||||
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
\ccRefChapter{Principal Component Analysis\label{ref_chapter_pca}}
|
||||
|
||||
\ccChapterAuthor{Pierre Alliez and Sylvain Pion and Ankit Gupta}
|
||||
\ccChapterAuthor{Pierre Alliez, Sylvain Pion and Ankit Gupta}
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ sub-space.
|
|||
typename K::Point_3 & centroid,
|
||||
const K & k,
|
||||
const Tag& t);}
|
||||
{ computes the best fitting 3D line of a 3D point set or triangle set in the range
|
||||
{ computes the best fitting 3D line of a 3D object set in the range
|
||||
[\ccc{first},\ccc{beyond}). The value returned is a fitting quality
|
||||
between $0$ and $1$, where $0$ means that the variance is the same
|
||||
along any line (a horizontal line going through the centroid is output
|
||||
|
|
@ -60,7 +60,7 @@ The tag \ccc{t} identifies the type of manifold of the objects in the object set
|
|||
typename K::Point_3 & centroid,
|
||||
const K & k,
|
||||
const Tag& t);}
|
||||
{ computes the best fitting 3D plane of a 3D point set or triangle set in the range
|
||||
{ computes the best fitting 3D plane of a 3D object set in the range
|
||||
[\ccc{first},\ccc{beyond}). The value returned is a fitting quality
|
||||
between $0$ and $1$, where $0$ means that the variance is the same
|
||||
along any plane (a horizontal plane going through the centroid is output
|
||||
|
|
|
|||
Loading…
Reference in New Issue