perl -p -i -e 's/\\f\$\s([a-w])\\f\$/`$1`/g' *.h
This commit is contained in:
Sébastien Loriot 2012-10-11 22:38:48 +00:00
parent 4905c23e75
commit c4e40f96c3
21 changed files with 112 additions and 112 deletions

View File

@ -94,14 +94,14 @@ introduces an identity transformation.
Aff_transformation_2(const Identity_transformation& );
/*!
introduces a translation by a vector \f$ v\f$.
introduces a translation by a vector `v`.
*/
Aff_transformation_2(const Translation,
const Vector_2<Kernel> &v);
/*!
approximates the rotation over the angle indicated by direction
\f$ d\f$, such that the differences between the sines and cosines
`d`, such that the differences between the sines and cosines
of the rotation given by d and the approximating rotation
are at most \f$ num/den\f$ each.
\pre \f$ num/den>0\f$ and \f$ d != 0\f$.

View File

@ -50,7 +50,7 @@ introduces an identity transformation.
Aff_transformation_3(const Identity_transformation& );
/*!
introduces a translation by a vector \f$ v\f$.
introduces a translation by a vector `v`.
*/
Aff_transformation_3(const Translation,
const Vector_3<Kernel> &v);

View File

@ -25,22 +25,22 @@ public:
/// @{
/*!
introduces the direction `d` of vector \f$ v\f$.
introduces the direction `d` of vector `v`.
*/
Direction_2(const Vector_2<Kernel> &v);
/*!
introduces the direction `d` of line \f$ l\f$.
introduces the direction `d` of line `l`.
*/
Direction_2(const Line_2<Kernel> &l);
/*!
introduces the direction `d` of ray \f$ r\f$.
introduces the direction `d` of ray `r`.
*/
Direction_2(const Ray_2<Kernel> &r);
/*!
introduces the direction `d` of segment \f$ s\f$.
introduces the direction `d` of segment `s`.
*/
Direction_2(const Segment_2<Kernel> &s);
@ -131,7 +131,7 @@ returns a vector that has the same direction as `d`.
Vector_2<Kernel> vector() const;
/*!
returns the direction obtained by applying \f$ t\f$ on `d`.
returns the direction obtained by applying `t` on `d`.
*/
Direction_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -25,22 +25,22 @@ public:
/*!
introduces a direction `d` initialized with the
direction of vector \f$ v\f$.
direction of vector `v`.
*/
Direction_3(const Vector_3<Kernel> &v);
/*!
introduces the direction `d` of line \f$ l\f$.
introduces the direction `d` of line `l`.
*/
Direction_3(const Line_3<Kernel> &l);
/*!
introduces the direction `d` of ray \f$ r\f$.
introduces the direction `d` of ray `r`.
*/
Direction_3(const Ray_3<Kernel> &r);
/*!
introduces the direction `d` of segment \f$ s\f$.
introduces the direction `d` of segment `s`.
*/
Direction_3(const Segment_3<Kernel> &s);
@ -97,7 +97,7 @@ returns a vector that has the same direction as `d`.
Vector_3<Kernel> vector() const;
/*!
returns the direction obtained by applying \f$ t\f$ on `d`.
returns the direction obtained by applying `t` on `d`.
*/
Direction_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -28,7 +28,7 @@ public:
/*!
introduces an iso-oriented cuboid `c` with diagonal
opposite vertices \f$ p\f$ and \f$ q\f$. Note that the object is
opposite vertices `p` and `q`. Note that the object is
brought in the canonical form.
*/
Iso_cuboid_3(const Point_3<Kernel> &p,
@ -36,7 +36,7 @@ const Point_3<Kernel> &q);
/*!
introduces an iso-oriented cuboid `c` with diagonal
opposite vertices \f$ p\f$ and \f$ q\f$. The `int` argument value
opposite vertices `p` and `q`. The `int` argument value
is only used to distinguish the two overloaded functions.
\pre \f$ p.x()<=q.x()\f$, \f$ p.y()<=q.y()\f$ and \f$ p.z()<=q.z()\f$.
*/
@ -146,14 +146,14 @@ returns largest %Cartesian
Kernel::FT zmax() const;
/*!
returns \f$ i\f$-th %Cartesian coordinate of
returns `i`-th %Cartesian coordinate of
the smallest vertex of `c`.
\pre \f$ 0 \leq i \leq2\f$.
*/
Kernel::FT min_coord(int i) const;
/*!
returns \f$ i\f$-th %Cartesian coordinate of
returns `i`-th %Cartesian coordinate of
the largest vertex of `c`.
\pre \f$ 0 \leq i \leq2\f$.
*/
@ -174,7 +174,7 @@ bool is_degenerate() const;
returns either \ref ON_UNBOUNDED_SIDE,
\ref ON_BOUNDED_SIDE, or the constant
\ref ON_BOUNDARY,
depending on where point \f$ p\f$ is.
depending on where point `p` is.
*/
Bounded_side bounded_side(const Point_3<Kernel> &p) const;
@ -209,7 +209,7 @@ returns a bounding box containing `c`.
Bbox_3 bbox() const;
/*!
returns the iso-oriented cuboid obtained by applying \f$ t\f$ on
returns the iso-oriented cuboid obtained by applying `t` on
the smallest and the largest of `c`.
\pre The angle at a rotation must be a multiple of \f$ \pi/2\f$, otherwise the resulting cuboid does not have the same size. Note that rotating about an arbitrary angle can even result in a degenerate iso-oriented cuboid.
*/

View File

@ -29,7 +29,7 @@ public:
/*!
introduces an iso-oriented rectangle `r` with diagonal
opposite vertices \f$ p\f$ and \f$ q\f$. Note that the object is
opposite vertices `p` and `q`. Note that the object is
brought in the canonical form.
*/
Iso_rectangle_2(const Point_2<Kernel> &p,
@ -37,7 +37,7 @@ const Point_2<Kernel> &q);
/*!
introduces an iso-oriented rectangle `r` with diagonal
opposite vertices \f$ p\f$ and \f$ q\f$. The `int` argument value
opposite vertices `p` and `q`. The `int` argument value
is only used to distinguish the two overloaded functions.
\pre \f$ p.x()<=q.x()\f$ and \f$ p.y()<=q.y()\f$.
*/
@ -125,14 +125,14 @@ returns the \f$ y\f$ coordinate of upper right vertex of `r`.
Kernel::FT ymax() const;
/*!
returns the \f$ i\f$'th %Cartesian coordinate of the
returns the `i`'th %Cartesian coordinate of the
lower left vertex of `r`.
\pre \f$ 0 \leq i \leq1\f$.
*/
Kernel::FT min_coord(int i) const;
/*!
returns the \f$ i\f$'th %Cartesian coordinate of the
returns the `i`'th %Cartesian coordinate of the
upper right vertex of `r`.
\pre \f$ 0 \leq i \leq1\f$.
*/
@ -153,7 +153,7 @@ bool is_degenerate() const;
returns either \ref ON_UNBOUNDED_SIDE,
\ref ON_BOUNDED_SIDE, or the constant
\ref ON_BOUNDARY,
depending on where point \f$ p\f$ is.
depending on where point `p` is.
*/
Bounded_side bounded_side(const Point_2<Kernel> &p) const;
@ -188,7 +188,7 @@ returns a bounding box containing `r`.
Bbox bbox() const;
/*!
returns the iso-oriented rectangle obtained by applying \f$ t\f$ on
returns the iso-oriented rectangle obtained by applying `t` on
the lower left and the upper right corner of `r`.
\pre The angle at a rotation must be a multiple of \f$ \pi/2\f$, otherwise the resulting rectangle does not have the same side length. Note that rotating about an arbitrary angle can even result in a degenerate iso-oriented rectangle.
*/

View File

@ -12,11 +12,11 @@ If this type does not exist, a specialization of `Kernel_traits` can be
used to provide the desired information.
This class is, for example, useful in the following context. Assume
you want to write a generic function that accepts two points \f$ p\f$ and
\f$ q\f$ as argument and constructs the line segment between \f$ p\f$ and \f$ q\f$.
you want to write a generic function that accepts two points `p` and
`q` as argument and constructs the line segment between `p` and `q`.
In order to specify the return type of this function, you need to know
what is the segment type corresponding to the Point type representing
\f$ p\f$ and \f$ q\f$. Using `Kernel_traits`, this can be done as follows.
`p` and `q`. Using `Kernel_traits`, this can be done as follows.
\code
template < class Point >

View File

@ -10,7 +10,7 @@ that satisfy the equation
\f[ l:\; a\, x +b\, y +c = 0. \f]
The line splits \f$ \E^2\f$ in a <I>positive</I> and a <I>negative</I>
side. A point \f$ p\f$ with %Cartesian coordinates
side. A point `p` with %Cartesian coordinates
\f$ (px, py)\f$ is on the positive side of `l`, iff
\f$ a\, px + b\, py +c > 0\f$, it is
on the negative side of `l`, iff
@ -28,7 +28,7 @@ the suffix `_2` and the representation type `Cartesian`.
Point_2< Cartesian<double> > p(1.0,1.0), q(4.0,7.0);
\endcode
To define a line \f$ l\f$ we write:
To define a line `l` we write:
\code
Line_2< Cartesian<double> > l(p,q);
@ -51,31 +51,31 @@ coordinates \f$ ax +by +c = 0\f$.
Line_2(const Kernel::RT &a, const Kernel::RT &b, const Kernel::RT &c);
/*!
introduces a line `l` passing through the points \f$ p\f$ and \f$ q\f$.
Line `l` is directed from \f$ p\f$ to \f$ q\f$.
introduces a line `l` passing through the points `p` and `q`.
Line `l` is directed from `p` to `q`.
*/
Line_2(const Point_2<Kernel> &p, const Point_2<Kernel> &q);
/*!
introduces a line `l` passing through point \f$ p\f$ with
direction \f$ d\f$.
introduces a line `l` passing through point `p` with
direction `d`.
*/
Line_2(const Point_2<Kernel> &p, const Direction_2<Kernel>&d);
/*!
introduces a line `l` passing through point \f$ p\f$ and
oriented by \f$ v\f$.
introduces a line `l` passing through point `p` and
oriented by `v`.
*/
Line_2(const Point_2<Kernel> &p, const Vector_2<Kernel>&v);
/*!
introduces a line `l` supporting the segment \f$ s\f$,
introduces a line `l` supporting the segment `s`,
oriented from source to target.
*/
Line_2(const Segment_2<Kernel> &s);
/*!
introduces a line `l` supporting the ray \f$ r\f$,
introduces a line `l` supporting the ray `r`,
with same orientation.
*/
Line_2(const Ray_2<Kernel> &r);
@ -97,17 +97,17 @@ Test for inequality.
bool operator!=(const Line_2<Kernel> &h) const;
/*!
returns the first coefficient of \f$ l\f$.
returns the first coefficient of `l`.
*/
Kernel::RT a() const;
/*!
returns the second coefficient of \f$ l\f$.
returns the second coefficient of `l`.
*/
Kernel::RT b() const;
/*!
returns the third coefficient of \f$ l\f$.
returns the third coefficient of `l`.
*/
Kernel::RT c() const;
@ -120,7 +120,7 @@ to `point(j)`, for all `i` \f$ <\f$ `j`.
Point_2<Kernel> point(int i) const;
/*!
returns the orthogonal projection of \f$ p\f$ onto `l`.
returns the orthogonal projection of `p` onto `l`.
*/
Point_2<Kernel> projection(const Point_2<Kernel> &p) const;
@ -163,7 +163,7 @@ bool is_vertical() const;
returns \ref ON_ORIENTED_BOUNDARY,
\ref ON_NEGATIVE_SIDE, or the constant
\ref ON_POSITIVE_SIDE,
depending on the position of \f$ p\f$ relative to the oriented line `l`.
depending on the position of `p` relative to the oriented line `l`.
*/
Oriented_side oriented_side(const Point_2<Kernel> &p) const;
@ -209,14 +209,14 @@ returns the line with opposite direction.
Line_2<Kernel> opposite() const;
/*!
returns the line perpendicular to `l` and passing through \f$ p\f$,
returns the line perpendicular to `l` and passing through `p`,
where the direction is the direction of `l` rotated
counterclockwise by 90 degrees.
*/
Line_2<Kernel> perpendicular(const Point_2<Kernel> &p) const;
/*!
returns the line obtained by applying \f$ t\f$ on a point on `l`
returns the line obtained by applying `t` on a point on `l`
and the direction of `l`.
*/
Line_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -17,31 +17,31 @@ public:
/// @{
/*!
introduces a line `l` passing through the points \f$ p\f$ and \f$ q\f$.
Line `l` is directed from \f$ p\f$ to \f$ q\f$.
introduces a line `l` passing through the points `p` and `q`.
Line `l` is directed from `p` to `q`.
*/
Line_3(const Point_3<Kernel> &p, const Point_3<Kernel> &q);
/*!
introduces a line `l` passing through point \f$ p\f$ with
direction \f$ d\f$.
introduces a line `l` passing through point `p` with
direction `d`.
*/
Line_3(const Point_3<Kernel> &p, const Direction_3<Kernel>&d);
/*!
introduces a line `l` passing through point \f$ p\f$ and
oriented by \f$ v\f$.
introduces a line `l` passing through point `p` and
oriented by `v`.
*/
Line_3(const Point_3<Kernel> &p, const Vector_3<Kernel>&v);
/*!
returns the line supporting the segment \f$ s\f$,
returns the line supporting the segment `s`,
oriented from source to target.
*/
Line_3(const Segment_3<Kernel> &s);
/*!
returns the line supporting the ray \f$ r\f$, with the
returns the line supporting the ray `r`, with the
same orientation.
*/
Line_3(const Ray_3<Kernel> &r);
@ -63,7 +63,7 @@ Test for inequality.
bool operator!=(const Line_3<Kernel> &h) const;
/*!
returns the orthogonal projection of \f$ p\f$ on `l`.
returns the orthogonal projection of `p` on `l`.
*/
Point_3<Kernel> projection(const Point_3<Kernel> &p) const;
@ -94,7 +94,7 @@ bool has_on(const Point_3<Kernel> &p) const;
/// @{
/*!
returns the plane perpendicular to `l` passing through \f$ p\f$.
returns the plane perpendicular to `l` passing through `p`.
*/
Plane_3<Kernel> perpendicular_plane(const Point_3<Kernel> &p) const;
@ -114,7 +114,7 @@ returns the direction of `l`.
Direction_3<Kernel> direction() const;
/*!
returns the line obtained by applying \f$ t\f$ on a point on `l`
returns the line obtained by applying `t` on a point on `l`
and the direction of `l`.
*/
Line_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -10,7 +10,7 @@ the plane equation
\f[h :\; a\, x +b\, y +c\, z + d = 0.\f]
The plane splits \f$ \E^3\f$ in a <I>positive</I> and a <I>negative side</I>.
A point \f$ p\f$ with %Cartesian coordinates \f$ (px, py, pz)\f$ is on the
A point `p` with %Cartesian coordinates \f$ (px, py, pz)\f$ is on the
positive side of `h`, iff \f$ a\, px +b\, py +c\, pz + d > 0\f$.
It is on the negative side, iff \f$ a\, px +b\, py\, +c\, pz + d < 0\f$.
@ -131,7 +131,7 @@ the negative to the positive side of `h`.
Line_3<Kernel> perpendicular_line(const Point_3<Kernel> &p) const;
/*!
returns the orthogonal projection of \f$ p\f$ on `h`.
returns the orthogonal projection of `p` on `h`.
*/
Point_3<Kernel> projection(const Point_3<Kernel> &p) const;
@ -187,7 +187,7 @@ under an affine transformation, which maps `h` onto the
Point_2<Kernel> to_2d(const Point_3<Kernel> &p) const;
/*!
returns a point \f$ q\f$, such that `to_2d( to_3d( p ))`
returns a point `q`, such that `to_2d( to_3d( p ))`
is equal to `p`.
*/
Point_3<Kernel> to_3d(const Point_2<Kernel> &p) const;
@ -201,7 +201,7 @@ Point_3<Kernel> to_3d(const Point_2<Kernel> &p) const;
returns either \ref ON_ORIENTED_BOUNDARY, or
the constant \ref ON_POSITIVE_SIDE, or the constant
\ref ON_NEGATIVE_SIDE,
determined by the position of \f$ p\f$ relative to the oriented plane `h`.
determined by the position of `p` relative to the oriented plane `h`.
*/
Oriented_side oriented_side(const Point_3<Kernel> &p) const;
@ -248,7 +248,7 @@ bool is_degenerate() const;
/// @{
/*!
returns the plane obtained by applying \f$ t\f$ on a point of `h`
returns the plane obtained by applying `t` on a point of `h`
and the orthogonal direction of `h`.
*/
Plane_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -185,7 +185,7 @@ are not parameterized with whatsoever.
Bbox_2 bbox() const;
/*!
returns the point obtained by applying \f$ t\f$ on `p`.
returns the point obtained by applying `t` on `p`.
*/
Point_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -175,7 +175,7 @@ returns a bounding box containing `p`.
Bbox_3 bbox() const;
/*!
returns the point obtained by applying \f$ t\f$ on `p`.
returns the point obtained by applying `t` on `p`.
*/
Point_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -19,25 +19,25 @@ public:
/*!
introduces a ray `r`
with source \f$ p\f$ and passing through point \f$ q\f$.
with source `p` and passing through point `q`.
*/
Ray_2(const Point_2<Kernel> &p, const Point_2<Kernel>&q);
/*!
introduces a ray `r` starting at source \f$ p\f$ with
direction \f$ d\f$.
introduces a ray `r` starting at source `p` with
direction `d`.
*/
Ray_2(const Point_2<Kernel> &p, const Direction_2<Kernel> &d);
/*!
introduces a ray `r` starting at source \f$ p\f$ with
the direction of \f$ v\f$.
introduces a ray `r` starting at source `p` with
the direction of `v`.
*/
Ray_2(const Point_2<Kernel> &p, const Vector_2<Kernel> &v);
/*!
introduces a ray `r` starting at source \f$ p\f$ with
the same direction as \f$ l\f$.
introduces a ray `r` starting at source `p` with
the same direction as `l`.
*/
Ray_2(const Point_2<Kernel> &p, const Line_2<Kernel> &l);
@ -117,10 +117,10 @@ of `r`, or if it is in the interior of `r`.
bool has_on(const Point_2<Kernel> &p) const;
/*!
checks if point \f$ p\f$ is on `r`. This function is faster
checks if point `p` is on `r`. This function is faster
than function `has_on()` if the precondition
checking is disabled.
\pre \f$ p\f$ is on the supporting line of `r`.
\pre `p` is on the supporting line of `r`.
*/
bool collinear_has_on(const Point_2<Kernel> &p) const;
@ -130,7 +130,7 @@ bool collinear_has_on(const Point_2<Kernel> &p) const;
/// @{
/*!
returns the ray obtained by applying \f$ t\f$ on the source
returns the ray obtained by applying `t` on the source
and on the direction of `r`.
*/
Ray_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -19,25 +19,25 @@ public:
/*!
introduces a ray `r`
with source \f$ p\f$ and passing through point \f$ q\f$.
with source `p` and passing through point `q`.
*/
Ray_3(const Point_3<Kernel> &p, const Point_3<Kernel> &q);
/*!
introduces a ray `r` with source \f$ p\f$ and with
direction \f$ d\f$.
introduces a ray `r` with source `p` and with
direction `d`.
*/
Ray_3(const Point_3<Kernel> &p, const Direction_3<Kernel> &d);
/*!
introduces a ray `r` with source \f$ p\f$ and with
a direction given by \f$ v\f$.
introduces a ray `r` with source `p` and with
a direction given by `v`.
*/
Ray_3(const Point_3<Kernel> &p, const Vector_3<Kernel> &v);
/*!
introduces a ray `r` starting at source \f$ p\f$ with
the same direction as \f$ l\f$.
introduces a ray `r` starting at source `p` with
the same direction as `l`.
*/
Ray_3(const Point_3<Kernel> &p, const Line_3<Kernel> &l);
@ -102,7 +102,7 @@ of `r`, or if it is in the interior of `r`.
bool has_on(const Point_3<Kernel> &p) const;
/*!
returns the ray obtained by applying \f$ t\f$ on the source
returns the ray obtained by applying `t` on the source
and on the direction of `r`.
*/
Ray_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -7,9 +7,9 @@ An object `s` of the data type `Segment_2` is a directed
straight line segment in the two-dimensional Euclidean plane \f$ \E^2\f$, i.e.\ a
straight line segment \f$ [p,q]\f$ connecting two points \f$ p,q \in \R^2\f$.
The segment is topologically closed, i.e.\ the end
points belong to it. Point \f$ p\f$ is called the <I>source</I> and \f$ q\f$
is called the <I>target</I> of \f$ s\f$. The length of \f$ s\f$ is the
Euclidean distance between \f$ p\f$ and \f$ q\f$. Note that there is only a function
points belong to it. Point `p` is called the <I>source</I> and `q`
is called the <I>target</I> of `s`. The length of `s` is the
Euclidean distance between `p` and `q`. Note that there is only a function
to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact.
@ -25,8 +25,8 @@ public:
/// @{
/*!
introduces a segment `s` with source \f$ p\f$
and target \f$ q\f$. The segment is directed from the source towards
introduces a segment `s` with source `p`
and target `q`. The segment is directed from the source towards
the target.
*/
Segment_2(const Point_2<Kernel> &p, const Point_2<Kernel> &q);
@ -106,7 +106,7 @@ returns a segment with source and target point interchanged.
Segment_2<Kernel> opposite() const;
/*!
returns the line \f$ l\f$ passing through `s`. Line \f$ l\f$ has the
returns the line `l` passing through `s`. Line `l` has the
same orientation as segment `s`.
*/
Line_2<Kernel> supporting_line() const;
@ -138,9 +138,9 @@ of `s`, or if it is in the interior of `s`.
bool has_on(const Point_2<Kernel> &p) const;
/*!
checks if point \f$ p\f$ is on segment `s`. This function is faster
checks if point `p` is on segment `s`. This function is faster
than function `has_on()`.
\pre \f$ p\f$ is on the supporting line of `s`.
\pre `p` is on the supporting line of `s`.
*/
bool collinear_has_on(const Point_2<Kernel> &p) const;
@ -155,7 +155,7 @@ returns a bounding box containing `s`.
Bbox_2 bbox() const;
/*!
returns the segment obtained by applying \f$ t\f$ on the source
returns the segment obtained by applying `t` on the source
and the target of `s`.
*/
Segment_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -3,13 +3,13 @@ namespace CGAL {
/*!
\ingroup kernel_classes3
An object \f$ s\f$ of the data type `Segment_3` is a directed
An object `s` of the data type `Segment_3` is a directed
straight line segment in the three-dimensional Euclidean space \f$ \E^3\f$,
that is a straight line segment \f$ [p,q]\f$ connecting two points \f$ p,q \in
\R^3\f$. The segment is topologically closed, i.e.\ the end
points belong to it. Point \f$ p\f$ is called the <I>source</I> and \f$ q\f$
is called the <I>target</I> of \f$ s\f$. The length of \f$ s\f$ is the
Euclidean distance between \f$ p\f$ and \f$ q\f$. Note that there is only a function
points belong to it. Point `p` is called the <I>source</I> and `q`
is called the <I>target</I> of `s`. The length of `s` is the
Euclidean distance between `p` and `q`. Note that there is only a function
to compute the square of the length, because otherwise we had to
perform a square root operation which is not defined for all
number types, which is expensive, and may not be exact.
@ -25,8 +25,8 @@ public:
/// @{
/*!
introduces a segment `s` with source \f$ p\f$
and target \f$ q\f$. It is directed from the source towards
introduces a segment `s` with source `p`
and target `q`. It is directed from the source towards
the target.
*/
Segment_3(const Point_3<Kernel> &p, const Point_3<Kernel> &q);
@ -106,7 +106,7 @@ returns a segment with source and target interchanged.
Segment_3<Kernel> opposite() const;
/*!
returns the line \f$ l\f$ passing through `s`. Line \f$ l\f$ has the
returns the line `l` passing through `s`. Line `l` has the
same orientation as segment `s`, that is
from the source to the target of `s`.
*/
@ -129,7 +129,7 @@ returns a bounding box containing `s`.
Bbox_3 bbox() const;
/*!
returns the segment obtained by applying \f$ t\f$ on the source
returns the segment obtained by applying `t` on the source
and the target of `s`.
*/
Segment_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup kernel_classes3
An object \f$ t\f$ of the class `Tetrahedron_3` is an oriented
An object `t` of the class `Tetrahedron_3` is an oriented
tetrahedron in the three-dimensional Euclidean space \f$ \E^3\f$.
It is defined by four vertices \f$ p_0\f$, \f$ p_1\f$, \f$ p_2\f$ and \f$ p_3\f$.

View File

@ -3,9 +3,9 @@ namespace CGAL {
/*!
\ingroup kernel_classes2
An object \f$ t\f$ of the class `Triangle_2` is a triangle
An object `t` of the class `Triangle_2` is a triangle
in the two-dimensional Euclidean plane \f$ \E^2\f$.
Triangle \f$ t\f$ is oriented, i.e., its boundary has
Triangle `t` is oriented, i.e., its boundary has
clockwise or counterclockwise orientation. We call the side to the left
of the boundary the positive side and the side to the right of the
boundary the negative side.
@ -24,7 +24,7 @@ public:
/// @{
/*!
introduces a triangle `t` with vertices \f$ p\f$, \f$ q\f$ and \f$ r\f$.
introduces a triangle `t` with vertices `p`, `q` and `r`.
*/
Triangle_2(const Point_2<Kernel> &p,
const Point_2<Kernel> &q,
@ -79,7 +79,7 @@ returns
`POSITIVE_SIDE`,
or the constant
`ON_NEGATIVE_SIDE`,
determined by the position of point \f$ p\f$.
determined by the position of point `p`.
\pre `t` is not degenerate.
*/
Oriented_side oriented_side(const Point_2<Kernel> &p) const;
@ -88,7 +88,7 @@ Oriented_side oriented_side(const Point_2<Kernel> &p) const;
returns the constant `ON_BOUNDARY`,
`ON_BOUNDED_SIDE`, or else
`ON_UNBOUNDED_SIDE`,
depending on where point \f$ p\f$ is.
depending on where point `p` is.
\pre `t` is not degenerate.
*/
Bounded_side bounded_side(const Point_2<Kernel> &p) const;

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup kernel_classes3
An object \f$ t\f$ of the class `Triangle_3` is a triangle in
An object `t` of the class `Triangle_3` is a triangle in
the three-dimensional Euclidean space \f$ \E^3\f$. As the triangle is not
a full-dimensional object there is only a test whether a point lies on
the triangle or not.
@ -19,7 +19,7 @@ public:
/// @{
/*!
introduces a triangle `t` with vertices \f$ p\f$, \f$ q\f$ and \f$ r\f$.
introduces a triangle `t` with vertices `p`, `q` and `r`.
*/
Triangle_3(const Point_3<Kernel> &p,
const Point_3<Kernel> &q,

View File

@ -44,12 +44,12 @@ introduces the vector \f$ s.target()-s.source()\f$.
Vector_2(const Segment_2<Kernel> &s);
/*!
introduces the vector having the same direction as \f$ r\f$.
introduces the vector having the same direction as `r`.
*/
Vector_2(const Ray_2<Kernel> &r);
/*!
introduces the vector having the same direction as \f$ l\f$.
introduces the vector having the same direction as `l`.
*/
Vector_2(const Line_2<Kernel> &l);
@ -182,7 +182,7 @@ returns the direction which passes through `v`.
Direction_2<Kernel> direction() const;
/*!
returns the vector obtained by applying \f$ t\f$ on `v`.
returns the vector obtained by applying `t` on `v`.
*/
Vector_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;

View File

@ -46,12 +46,12 @@ introduces the vector \f$ s.target()-s.source()\f$.
Vector_3(const Segment_3<Kernel> &s);
/*!
introduces a vector having the same direction as \f$ r\f$.
introduces a vector having the same direction as `r`.
*/
Vector_3(const Ray_3<Kernel> &r);
/*!
introduces a vector having the same direction as \f$ l\f$.
introduces a vector having the same direction as `l`.
*/
Vector_3(const Line_3<Kernel> &l);
@ -187,7 +187,7 @@ returns the dimension (the constant 3).
int dimension() const;
/*!
returns the vector obtained by applying \f$ t\f$ on `v`.
returns the vector obtained by applying `t` on `v`.
*/
Vector_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;