diff --git a/Documentation/biblio/cgal_manual.bib b/Documentation/biblio/cgal_manual.bib index 2285b00840a..299002020d8 100644 --- a/Documentation/biblio/cgal_manual.bib +++ b/Documentation/biblio/cgal_manual.bib @@ -2335,6 +2335,15 @@ ADDRESS = "Saarbr{\"u}cken, Germany" series = {Texts and Monographs in Symbolic Computation} } +@conference {cgal:bl-frmsurc-11 + ,address = {San Francisco, CA} + ,author = {Evan Behar and Jyh-Ming Lien} + ,booktitle = {Proc. {IEEE} Int. Conf. Intel. Rob. Syst. ({IROS})} + ,month = {Sep.} + ,title = {Fast and Robust 2D Minkowski Sum Using Reduced Convolution} + ,year = {2011} +} + % ---------------------------------------------------------------------------- % END OF BIBFILE % ---------------------------------------------------------------------------- diff --git a/Minkowski_sum_2/doc/Minkowski_sum_2/CGAL/minkowski_sum_2.h b/Minkowski_sum_2/doc/Minkowski_sum_2/CGAL/minkowski_sum_2.h index 79d4e18fb3e..c0a992e0402 100644 --- a/Minkowski_sum_2/doc/Minkowski_sum_2/CGAL/minkowski_sum_2.h +++ b/Minkowski_sum_2/doc/Minkowski_sum_2/CGAL/minkowski_sum_2.h @@ -22,11 +22,13 @@ const Polygon_2& Q); /*! \ingroup PkgMinkowskiSum2 -Computes the Minkowski sum \f$ P \oplus Q\f$ of the two given polygons. -The function computes the reduced convolution of the two polygons and -extracts those loops of the convolution which are part of the Minkowsi -sum. This method works very efficiently, regardless of whether `P` and -`Q` are convex or non-convex. +Computes the Minkowski sum \f$ P \oplus Q\f$ of the two given polygons. The +function computes the reduced convolution \cgalCite{cgal:bl-frmsurc-11} of +the two polygons and extracts those loops of the convolution which are part of +the Minkowsi sum. This method works very efficiently, regardless of whether `P` +and `Q` are convex or non-convex. It is usually faster than the full +convolution method, except in degenerate cases where the output polygon has +many holes. Note that as the input polygons may not be convex, their Minkowski sum may not be a simple polygon. The result is therefore represented as a polygon with holes.