diff --git a/Nef_S2/include/CGAL/Nef_S2/Sphere_circle.h b/Nef_S2/include/CGAL/Nef_S2/Sphere_circle.h index 16991cb3f26..f96ede4fef6 100644 --- a/Nef_S2/include/CGAL/Nef_S2/Sphere_circle.h +++ b/Nef_S2/include/CGAL/Nef_S2/Sphere_circle.h @@ -63,7 +63,7 @@ $q$ are not antipodal on $S_2$, then this circle is unique and oriented such that a walk along |\Mvar| meets $p$ just before the shorter segment between $p$ and $q$. If $p$ and $q$ are antipodal of each other then we create any great circle that contains $p$ and $q$.}*/ -{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + ((Base*) this)->orthogonal_vector(); +{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + Base::orthogonal_vector(); if ( p != q.antipode() ) { if (R_().orientation_3_object()(p1,Point_3(p), Point_3(q), p4) != CGAL::POSITIVE ) @@ -123,12 +123,12 @@ Plane_3 plane() const { return Base(*this); } Plane_3 plane_through(const Point_3& p) const /*{\Mop returns the plane parallel to |\Mvar| that contains point |p|.}*/ -{ return Plane_3(p,((Base*) this)->orthogonal_vector()); } +{ return Plane_3(p,Base::orthogonal_vector()); } Sphere_point orthogonal_pole() const /*{\Mop returns the point that is the pole of the hemisphere left of |\Mvar|.}*/ -{ return CGAL::ORIGIN+((Base*) this)->orthogonal_vector(); } +{ return CGAL::ORIGIN+Base::orthogonal_vector(); } Sphere_segment_pair split_at(const Sphere_point& p) const; /*{\Mop returns the pair of circle segments that is the result