Merge pull request #3295 from sloriot/Argt-Dual_with_history

Make Dual working with Argt_with_history
This commit is contained in:
Laurent Rineau 2018-09-24 15:27:25 +02:00
commit c6fe4b4e66
13 changed files with 1069 additions and 863 deletions

View File

@ -6,7 +6,7 @@
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/graph_traits_dual_arrangement_2.h>
#include <CGAL/Arr_face_index_map.h>
#include <climits>

View File

@ -0,0 +1,539 @@
// Copyright (c) 2005,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
// Sebastien Loriot <sebastien.loriot@cgal.org>
// Efi Fogel <efifogel@gmail.com>
// This file contains the follwoing three parts:
// 1. The common base class template of the specialized
// Dual<specialized-arrangement> class template.
//
// 2. The common base class template of the specialized
// boost::graph_traits<Dual<specialized-arrangement> > class template.
//
// 3. Macro definitions of free Function templates required by
// the various Boost Graph concepts. There is one macro per required function
// template. Each macro accepts the name of a template class, an instance of
// which represents an arrangement data structure, e.g., Arrangement_2. The
// definitios of the free functions templates for a given arrangement data
// strcture must be present when a dual of this data structure is defined.
#include <CGAL/license/Arrangement_on_surface_2.h>
#ifndef CGAL_GRAPH_TRAITS_DUAL_H
#define CGAL_GRAPH_TRAITS_DUAL_H
namespace CGAL {
// Forward declaration.
template <class Type> class Dual;
/*! \class
* Generic implementation of the common base class template of the specialized
* Dual<specialized-arrangement> class template.
*/
template <typename Arrangement_>
class Dual_arrangement_on_surface {
public:
typedef Arrangement_ Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
typedef typename Arrangement::Size Size;
typedef typename Arrangement::Face_handle Vertex_handle;
typedef typename Arrangement::Halfedge_handle Edge_handle;
typedef typename Arrangement::Face_iterator Vertex_iterator;
typedef typename Arrangement::Halfedge_iterator Edge_iterator;
protected:
typedef typename Arrangement::Face_handle Face_handle;
typedef typename Arrangement::Ccb_halfedge_circulator Ccb_halfedge_circulator;
typedef typename Arrangement::Outer_ccb_iterator Outer_ccb_iterator;
typedef typename Arrangement::Inner_ccb_iterator Inner_ccb_iterator;
/*! \class
* Iterator over the neighbors of a dual vertex (a face in the primal
* arrangement).
* These neighbors are the adjacent faces along the outer boundaries of the
* face and its inner boundaries.
*/
class Face_neighbor_iterator {
typedef Face_neighbor_iterator Self;
public:
typedef std::forward_iterator_tag iterator_category;
typedef Edge_handle value_type;
typedef value_type reference;
typedef value_type* pointer;
typedef int difference_type;
private:
Outer_ccb_iterator _outer_ccb_iter;
Inner_ccb_iterator _inner_ccb_iter;
Ccb_halfedge_circulator _ccb_curr;
Ccb_halfedge_circulator _ccb_first;
Face_handle _face;
bool _out;
Edge_handle _hh;
bool _end;
public:
/*! Default constructor. */
Face_neighbor_iterator() : _end (true) {}
/*! Constructor.
* \param face The face (dual vertex).
* \param out_edges Do we need the outgoing or the ingoing halfedges.
* \param start Should we start traversing the edges.
* If false, we construct a past-the-end iterator.
*/
Face_neighbor_iterator(Face_handle face, bool out_edges, bool start) :
_face(face),
_out(out_edges),
_end(! start)
{
CGAL_precondition(! face->is_fictitious());
if (start) {
_outer_ccb_iter = _face->outer_ccbs_begin();
_inner_ccb_iter = _face->inner_ccbs_begin();
if (_outer_ccb_iter != _face->outer_ccbs_end()) {
// Start from the first outer CCB, if one exists.
_ccb_curr = _ccb_first = *_outer_ccb_iter;
}
else if (_inner_ccb_iter != face->inner_ccbs_end()) {
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
}
else {
// In this case there are no CCBs to traverse:
_end = true;
return;
}
_hh = this->_dereference();
// In case the incident face of the twin halfedge is fictitious,
// skip it and proceed to the next edge.
if (_hh->is_fictitious()) ++(*this);
}
else { // end iterator.
_outer_ccb_iter = _face->outer_ccbs_end();
_inner_ccb_iter = _face->inner_ccbs_end();
}
}
/*! Equality operators. */
bool operator==(const Self& it) const { return (this->_equal(it)); }
bool operator!= (const Self& it) const { return (! this->_equal(it)); }
/*! Dereference operators. */
reference operator*() const { return (_hh); }
pointer operator->() const { return (&_hh); }
/* Increment operators. */
Self& operator++()
{
do {
this->_increment();
if (_end) return (*this);
_hh = this->_dereference();
} while (_hh->is_fictitious());
return (*this);
}
Self operator++(int )
{
Self tmp = *this;
do {
this->_increment();
if (_end) return (tmp);
_hh = this->_dereference();
} while (_hh->is_fictitious());
return (tmp);
}
private:
/*! Check two iterators for equality. */
bool _equal(const Self& it) const
{
return (_out == it._out && _face == it._face && ((_end && it._end) ||
(_outer_ccb_iter == it._outer_ccb_iter &&
_inner_ccb_iter == it._inner_ccb_iter &&
_ccb_curr == it._ccb_curr)));
}
/*! Derefernce the current circulator. */
Edge_handle _dereference() const
{
if (_out) return (_ccb_curr);
else return (_ccb_curr->twin());
}
// Increments of the iterator.
void _increment()
{
CGAL_assertion(! _end);
// If we have not traversed the entire CCB in full, move to the next
// halfedge along the current CCB.
++_ccb_curr;
if (_ccb_curr != _ccb_first) return;
// In this case we have completed the current CCB and we have to move
// to the next one.
if (_outer_ccb_iter != _face->outer_ccbs_end()) {
// Try to move to the next outer CCB.
++_outer_ccb_iter;
if (_outer_ccb_iter != _face->outer_ccbs_end()) {
_ccb_curr = _ccb_first = *_outer_ccb_iter;
return;
}
// In this case we start traversing the inner CCBs.
if (_inner_ccb_iter != _face->inner_ccbs_end()) {
CGAL_assertion (_inner_ccb_iter == _face->inner_ccbs_begin());
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
return;
}
}
else if (_inner_ccb_iter != _face->inner_ccbs_end()) {
// In this case we have already traversed all outer CCBs (and at least
// one inner CCB), so we try to move to the next inner CCB.
++_inner_ccb_iter;
if (_inner_ccb_iter != _face->inner_ccbs_end()) {
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
return;
}
}
// In this case we finished traversing all outer and inner CCBs:
_end = true;
return;
}
};
// Data members:
mutable Arrangement* p_arr; // The primal arrangement.
public:
typedef Face_neighbor_iterator Incident_edge_iterator;
/*! Default constructor. */
Dual_arrangement_on_surface() : p_arr(NULL) {}
/*! Constructor from an arrangement. */
Dual_arrangement_on_surface(const Arrangement& arr) :
p_arr(const_cast<Arrangement*>(&arr))
{}
/*! Obtain the primal arrangement (const version). */
const Arrangement* arrangement() const { return (p_arr); }
/*! Obtain the primal arrangement (non-const version). */
Arrangement* arrangement() { return (p_arr); }
/*! Obtain the number of vertices (face of the primal arrangement). */
Size number_of_vertices() const { return (p_arr->number_of_faces()); }
/*! Obtain the begin iterator of the vertices of the dual arrangement
* (faces of the primal arrangement).
*/
Vertex_iterator vertices_begin() const { return (p_arr->faces_begin()); }
/*! Obtain the pass-the-end iterator of the vertices of the dual arrangement
* (faces of the primal arrangement).
*/
Vertex_iterator vertices_end() const { return (p_arr->faces_end()); }
/*! Obtain the number of edges. */
Size number_of_edges () const { return (p_arr->number_of_halfedges()); }
/*! Obtain the begin iterator of the edges of the dual arrangement. */
Edge_iterator edges_begin() const { return (p_arr->halfedges_begin()); }
/*! Obtain the pass-the-end iterator of the edges of the dual arrangement. */
Edge_iterator edges_end() const { return (p_arr->halfedges_end()); }
/*! Obtain the dual vertex-degree (number of edges forming the face boundary).
*/
Size degree(Vertex_handle v) const
{
Incident_edge_iterator begin = Incident_edge_iterator(v, true, true);
Incident_edge_iterator end = Incident_edge_iterator(v, false, true);
Size deg = 0;
while (begin != end) {
deg++;
++begin;
}
return (deg);
}
/*! Traverse the outgoing edges of a given vertex. */
Incident_edge_iterator out_edges_begin(Vertex_handle v) const
{ return (Incident_edge_iterator (v, true, true)); }
Incident_edge_iterator out_edges_end(Vertex_handle v) const
{ return (Incident_edge_iterator (v, true, false)); }
/*! Traverse the ingoing edges of a given vertex. */
Incident_edge_iterator in_edges_begin(Vertex_handle v) const
{ return (Incident_edge_iterator (v, false, true)); }
Incident_edge_iterator in_edges_end(Vertex_handle v) const
{ return (Incident_edge_iterator (v, false, false)); }
};
} //namespace CGAL
#include <boost/graph/graph_concepts.hpp>
#include <CGAL/boost/iterator/counting_iterator.hpp>
namespace CGAL {
/*! \class
* The common base class template of the specialized
* boost::graph_traits<Dual<specialized-arrangement> > class template.
* The latter serves as a dual adapter for the specialied arrangment, where the
* valid arrangement faces correspond to graph verices, and two graph vertices
* are connected if the two corrsponding faces are adjacent.
* We consider the graph as directed. We also allow parallel edges, as two
* faces may have more than one common edges.
*/
template <typename Arrangement_>
class Graph_traits_dual_arr_on_surface_impl {
public:
typedef Arrangement_ Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
typedef Dual_arrangement_on_surface<Arrangement> Dual_arr_2;
private:
typedef typename Dual_arr_2::Vertex_iterator Vertex_iterator;
typedef typename Dual_arr_2::Edge_iterator Edge_iterator;
typedef typename Dual_arr_2::Incident_edge_iterator Incident_edge_iterator;
/*! \struct
* Define the arrangement traversal category, which indicates the arrangement
* models the BidirectionalGraph concept and the VertexListGraph and
* EdgeListGraph concepts.
*/
struct Dual_arr_traversal_category :
public virtual boost::bidirectional_graph_tag, // This tag refines the
// incidence_graph_tag.
public virtual boost::vertex_list_graph_tag, // Can iterate over vertices.
public virtual boost::edge_list_graph_tag // Can iterate over edges.
{};
public:
// Types required of the Graph concept:
typedef typename Dual_arr_2::Vertex_handle vertex_descriptor;
typedef boost::directed_tag directed_category;
typedef boost::allow_parallel_edge_tag edge_parallel_category;
typedef Dual_arr_traversal_category traversal_category;
// Types required by the IncidenceGraph concept:
typedef typename Dual_arr_2::Edge_handle edge_descriptor;
typedef Incident_edge_iterator out_edge_iterator;
typedef typename Dual_arr_2::Size degree_size_type;
// Types required by the BidirectionalGraph concept:
typedef Incident_edge_iterator in_edge_iterator;
// Types required by the VertexListGraph concept:
typedef boost::counting_iterator<Vertex_iterator> vertex_iterator;
typedef typename Dual_arr_2::Size vertices_size_type;
// Types required by the EdgeListGraph concept:
typedef boost::counting_iterator<Edge_iterator> edge_iterator;
typedef typename Dual_arr_2::Size edges_size_type;
// Types not required by any of these concepts:
typedef void adjacency_iterator;
};
}
// Macro definitions of free Function templates required by the various Boost
// Graph concepts. Each macro provides the required free function template with
// the specific interface and its implementation.
// We use macros (and not base functions similar to
// Graph_traits_dual_arr_on_surface_impl) for simplicity. The implementation
// is typically a one-liner. However, the interface is typically several lines
// of code. The alternative implementation (with base common functions) while
// being more safe (provided tight type checking) would consume many repeated
// lines of code.
// Functions required by the IncidenceGraph concept:
// -------------------------------------------------
/*! Obtain the out-degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of halfedges around the boundary of the primal face.
*/
#define CGAL_DUAL_ARRANGEMENT_2_OUT_DEGREE(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::degree_size_type \
out_degree(typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor v,\
const Dual<T<T1, T2> >& darr) \
{ return darr.degree(v); }
/*! Return a range of the out-edges of a vertex given by its descriptor and the
* dual arrangement it belongs to.
* \param v The vertex.
* \param darr The dual arrangement.
* \return A pair of out-edges iterators.
*/
#define CGAL_DUAL_ARRANGEMENT_2_OUT_EDGES(T) \
template <typename T1, typename T2> \
std::pair<typename boost::graph_traits<Dual<T<T1, T2> > >::out_edge_iterator, \
typename boost::graph_traits<Dual<T<T1, T2> > >::out_edge_iterator> \
out_edges(typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor v,\
const Dual<T<T1, T2> >& darr) \
{ return std::make_pair(darr.out_edges_begin(v), darr.out_edges_end(v)); } \
/*! Obtain the source vertex of a dual arrangement edge.
* \param e The edge.
* \param darr The dual arrangement.
* \return The incident face of e in the primal arrangement.
*/
#define CGAL_DUAL_ARRANGEMENT_2_SOURCE(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor \
source(typename boost::graph_traits<Dual<T<T1, T2> > >::edge_descriptor e, \
const Dual<T<T1, T2> >& /* darr */) \
{ return e->face(); }
/*! Obtain the target vertex of a dual arrangement edge.
* \param e The edge.
* \param darr The dual arrangement.
* \return The incident face of the twin of e in the primal arrangement.
*/
#define CGAL_DUAL_ARRANGEMENT_2_TARGET(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor \
target(typename boost::graph_traits<Dual<T<T1, T2> > >::edge_descriptor e, \
const Dual<T<T1, T2> >& /* darr */) \
{ return e->twin()->face(); }
// Functions required by the BidirectionalGraph concept:
// -----------------------------------------------------
/*! Obtain the in-degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of halfedges around the boundary of the primal face.
*/
#define CGAL_DUAL_ARRANGEMENT_2_IN_DEGREE(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::degree_size_type \
in_degree(typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor v,\
const Dual<T<T1, T2> >& darr) \
{ return darr.degree(v); }
/*! Return a range of the in-edges of a vertex given by its descriptor and the
* dual arrangement it belongs to.
* \param v The vertex.
* \param darr The dual arrangement.
* \return A pair of in-edges iterators.
*/
#define CGAL_DUAL_ARRANGEMENT_2_IN_EDGES(T) \
template <typename T1, typename T2> \
std::pair<typename boost::graph_traits<Dual<T<T1, T2> > >::in_edge_iterator, \
typename boost::graph_traits<Dual<T<T1, T2> > >::in_edge_iterator> \
in_edges(typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor v,\
const Dual<T<T1, T2> >& darr) \
{ return std::make_pair(darr.in_edges_begin(v), darr.in_edges_end(v)); }
/*! Obtain the degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of ingoing and outgoing halfedges incident to v.
*/
#define CGAL_DUAL_ARRANGEMENT_2_DEGREE(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::degree_size_type \
degree(typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_descriptor v, \
const Dual<T<T1, T2> >& darr) \
{ return (2 * darr.degree(v)); }
// Functions required by the VertexListGraph concept:
// --------------------------------------------------
/*! Obtain the number of vertices in the given dual arrangement.
* \param darr The dual arrangement.
* \return Number of faces in the primal arrangement.
*/
#define CGAL_DUAL_ARRANGEMENT_2_NUM_VERTICES(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::vertices_size_type \
num_vertices(const Dual<T<T1, T2> >& darr) \
{ return darr.number_of_vertices(); }
/*! Obtain the range of vertices of the given dual arrangement.
* \param darr The dual arrangement.
* \return A pair of vertex iterators.
*/
#define CGAL_DUAL_ARRANGEMENT_2_VERTICES(T) \
template <typename T1, typename T2> \
std::pair<typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_iterator, \
typename boost::graph_traits<Dual<T<T1, T2> > >::vertex_iterator> \
vertices(const Dual<T<T1, T2> >& darr) \
{ return std::make_pair(darr.vertices_begin(), darr.vertices_end()); }
// Functions required by the EdgeListGraph concept:
// ------------------------------------------------
/*! Obtain the number of edges in the given dual arrangement.
* \param darr The dual arrangement.
* \return Number of halfedges in the primal arrangement.
*/
#define CGAL_DUAL_ARRANGEMENT_2_NUM_EDGES(T) \
template <typename T1, typename T2> \
typename boost::graph_traits<Dual<T<T1, T2> > >::edges_size_type \
num_edges(const Dual<T<T1, T2> >& darr) \
{ return darr.number_of_edges(); }
/*! Obtain the range of edges of the given dual arrangement.
* \param darr The dual arrangement.
* \return A pair of edge iterators.
*/
#define CGAL_DUAL_ARRANGEMENT_2_EDGES(T) \
template <typename T1, typename T2> \
std::pair<typename boost::graph_traits<Dual<T<T1, T2> > >::edge_iterator, \
typename boost::graph_traits<Dual<T<T1, T2> > >::edge_iterator> \
edges(const Dual<T<T1, T2> >& darr) \
{ return std::make_pair(darr.edges_begin(), darr.edges_end()); }
#endif

View File

@ -23,6 +23,6 @@
#ifndef CGAL_BOOST_GRAPH_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H
#define CGAL_BOOST_GRAPH_GRAPH_TRAITS_ARRANGEMENT_2_H
#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/graph_traits_dual_arrangement_2.h>
#endif //CGAL_BOOST_GRAPH_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H

View File

@ -1,755 +0,0 @@
// Copyright (c) 2005,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
#ifndef CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H
#define CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
#include <CGAL/disable_warnings.h>
/*! \file
* Definition of the specialized Dual<Arrangement_2> class,
* and the specialized boost::graph_traits<Dual<Arrangement_2> >class.
*/
// include this to avoid a VC15 warning
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/Arrangement_on_surface_2.h>
#include <CGAL/Arrangement_2.h>
namespace CGAL {
// Forward declaration.
template <class Type> class Dual;
/*! \class
* Specilaization of the Dual<> template for Arrangement_on_surface_2.
*/
template <class GeomTraits_, class TopTraits_>
class Dual<Arrangement_on_surface_2<GeomTraits_,TopTraits_> >
{
public:
typedef GeomTraits_ Geometry_traits_2;
typedef TopTraits_ Topology_traits;
typedef CGAL::Arrangement_on_surface_2<Geometry_traits_2, Topology_traits>
Arrangement_on_surface_2;
typedef typename Arrangement_on_surface_2::Size Size;
typedef typename Arrangement_on_surface_2::Face_handle Vertex_handle;
typedef typename Arrangement_on_surface_2::Halfedge_handle Edge_handle;
typedef typename Arrangement_on_surface_2::Face_iterator Vertex_iterator;
typedef typename Arrangement_on_surface_2::Halfedge_iterator Edge_iterator;
protected:
typedef typename Arrangement_on_surface_2::Face_handle Face_handle;
typedef typename Arrangement_on_surface_2::Ccb_halfedge_circulator
Ccb_halfedge_circulator;
typedef typename Arrangement_on_surface_2::Outer_ccb_iterator
Outer_ccb_iterator;
typedef typename Arrangement_on_surface_2::Inner_ccb_iterator
Inner_ccb_iterator;
/*! \class
* Iterator over the neighbors of a dual vertex (a face in the primal
* arrangement).
* These neighbors are the adjacent faces along the outer boundaries of the
* face and its inner boundaries.
*/
class Face_neighbor_iterator
{
typedef Face_neighbor_iterator Self;
public:
typedef std::forward_iterator_tag iterator_category;
typedef Edge_handle value_type;
typedef value_type reference;
typedef value_type* pointer;
typedef int difference_type;
private:
Outer_ccb_iterator _outer_ccb_iter;
Inner_ccb_iterator _inner_ccb_iter;
Ccb_halfedge_circulator _ccb_curr;
Ccb_halfedge_circulator _ccb_first;
Face_handle _face;
bool _out;
Edge_handle _hh;
bool _end;
public:
/*! Default constructor. */
Face_neighbor_iterator () :
_end (true)
{}
/*!
* Constructor.
* \param face The face (dual vertex).
* \param out_edges Do we need the outgoing or the ingoing halfedges.
* \param start Should we start traversing the edges.
* If false, we construct a past-the-end iterator.
*/
Face_neighbor_iterator (Face_handle face,
bool out_edges,
bool start) :
_face (face),
_out (out_edges),
_end (! start)
{
CGAL_precondition (! face->is_fictitious());
if (start)
{
_outer_ccb_iter = _face->outer_ccbs_begin();
_inner_ccb_iter = _face->inner_ccbs_begin();
if (_outer_ccb_iter != _face->outer_ccbs_end())
{
// Start from the first outer CCB, if one exists.
_ccb_curr = _ccb_first = *_outer_ccb_iter;
}
else if (_inner_ccb_iter != face->inner_ccbs_end())
{
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
}
else
{
// In this case there are no CCBs to traverse:
_end = true;
return;
}
_hh = this->_dereference();
// In case the incident face of the twin halfedge is fictitious,
// skip it and proceed to the next edge.
if (_hh->is_fictitious())
++(*this);
}
else // end iterator.
{
_outer_ccb_iter = _face->outer_ccbs_end();
_inner_ccb_iter = _face->inner_ccbs_end();
}
}
/*! Equality operators. */
bool operator== (const Self& it) const
{
return (this->_equal(it));
}
bool operator!= (const Self& it) const
{
return (! this->_equal(it));
}
/*! Dereference operators. */
reference operator* () const
{
return (_hh);
}
pointer operator-> () const
{
return (&_hh);
}
/* Increment operators. */
Self& operator++ ()
{
do
{
this->_increment();
if (_end)
return (*this);
_hh = this->_dereference();
} while (_hh->is_fictitious());
return (*this);
}
Self operator++ (int )
{
Self tmp = *this;
do
{
this->_increment();
if (_end)
return (tmp);
_hh = this->_dereference();
} while (_hh->is_fictitious());
return (tmp);
}
private:
/*! Check two iterators for equality. */
bool _equal (const Self& it) const
{
return (_out == it._out && _face == it._face &&
((_end && it._end) ||
(_outer_ccb_iter == it._outer_ccb_iter &&
_inner_ccb_iter == it._inner_ccb_iter &&
_ccb_curr == it._ccb_curr)));
}
/*! Derefernce the current circulator. */
Edge_handle _dereference () const
{
if (_out)
return (_ccb_curr);
else
return (_ccb_curr->twin());
}
// Increments of the iterator.
void _increment ()
{
CGAL_assertion (! _end);
// If we have not traversed the entire CCB in full, move to the next
// halfedge along the current CCB.
++_ccb_curr;
if (_ccb_curr != _ccb_first)
return;
// In this case we have completed the current CCB and we have to move
// to the next one.
if (_outer_ccb_iter != _face->outer_ccbs_end())
{
// Try to move to the next outer CCB.
++_outer_ccb_iter;
if (_outer_ccb_iter != _face->outer_ccbs_end())
{
_ccb_curr = _ccb_first = *_outer_ccb_iter;
return;
}
// In this case we start traversing the inner CCBs.
if (_inner_ccb_iter != _face->inner_ccbs_end())
{
CGAL_assertion (_inner_ccb_iter == _face->inner_ccbs_begin());
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
return;
}
}
else if (_inner_ccb_iter != _face->inner_ccbs_end())
{
// In this case we have already traversed all outer CCBs (and at least
// one inner CCB), so we try to move to the next inner CCB.
++_inner_ccb_iter;
if (_inner_ccb_iter != _face->inner_ccbs_end())
{
// Otherwise, start from the first inner CCB.
_ccb_curr = _ccb_first = *_inner_ccb_iter;
return;
}
}
// In this case we finished traversing all outer and inner CCBs:
_end = true;
return;
}
};
// Data members:
mutable Arrangement_on_surface_2 *p_arr; // The primal arrangement.
public:
typedef Face_neighbor_iterator Incident_edge_iterator;
/*! Default constructor. */
Dual () :
p_arr (NULL)
{}
/*! Constructor from an arrangement. */
Dual (const Arrangement_on_surface_2& arr) :
p_arr (const_cast<Arrangement_on_surface_2 *> (&arr))
{}
/*! Get the primal arrangement (const version). */
const Arrangement_on_surface_2* arrangement () const
{
return (p_arr);
}
/*! Get the primal arrangement (non-const version). */
Arrangement_on_surface_2* arrangement ()
{
return (p_arr);
}
/*! Get the number of vertices (face of the primal arrangement). */
Size number_of_vertices () const
{
return (p_arr->number_of_faces());
}
/*! Traverse the vertices (faces of the primal arrangement). */
Vertex_iterator vertices_begin () const
{
return (p_arr->faces_begin());
}
Vertex_iterator vertices_end () const
{
return (p_arr->faces_end());
}
/*! Get the number of edges. */
Size number_of_edges () const
{
return (p_arr->number_of_halfedges());
}
/*! Traverse the edges. */
Edge_iterator edges_begin () const
{
return (p_arr->halfedges_begin());
}
Edge_iterator edges_end () const
{
return (p_arr->halfedges_end());
}
/*!
* Get the dual vertex-degree (number of edges forming the face boundary).
*/
Size degree (Vertex_handle v) const
{
Incident_edge_iterator begin = Incident_edge_iterator (v, true, true);
Incident_edge_iterator end = Incident_edge_iterator (v, false, true);
Size deg = 0;
while (begin != end)
{
deg++;
++begin;
}
return (deg);
}
/*! Traverse the outgoing edges of a given vertex. */
Incident_edge_iterator out_edges_begin (Vertex_handle v) const
{
return (Incident_edge_iterator (v, true, true));
}
Incident_edge_iterator out_edges_end (Vertex_handle v) const
{
return (Incident_edge_iterator (v, true, false));
}
/*! Traverse the ingoing edges of a given vertex. */
Incident_edge_iterator in_edges_begin (Vertex_handle v) const
{
return (Incident_edge_iterator (v, false, true));
}
Incident_edge_iterator in_edges_end (Vertex_handle v) const
{
return (Incident_edge_iterator (v, false, false));
}
};
/*! \class
* Specilaization of the Dual<> template for Arrangement_2.
*/
template <class Traits_, class Dcel_>
class Dual<Arrangement_2<Traits_, Dcel_> > :
public Dual<Arrangement_on_surface_2<
typename CGAL::Arrangement_2<Traits_, Dcel_>::Geometry_traits_2,
typename CGAL::Arrangement_2<Traits_, Dcel_>::Topology_traits> >
{
typedef Traits_ Traits_2;
typedef Dcel_ Dcel;
typedef Dual<CGAL::Arrangement_on_surface_2<
typename CGAL::Arrangement_2<Traits_2, Dcel>::Geometry_traits_2,
typename CGAL::Arrangement_2<Traits_2, Dcel>::Topology_traits> > Base;
public:
/*! Default constructor. */
Dual () :
Base()
{}
/*! Constructor from an arrangement. */
Dual (const CGAL::Arrangement_2<Traits_2, Dcel>& arr) :
Base (arr)
{}
};
} //namespace CGAL
#include <boost/graph/graph_concepts.hpp>
#include <CGAL/boost/iterator/counting_iterator.hpp>
namespace boost {
/*! \class
* Specialization of the BGL graph-traits template, which serve as a dual
* adapter for Arrangment_on_surface_2, where the valid arrangement faces
* correspond to graph verices, and two graph vertices are connected if the
* two corrsponding faces are adjacent.
* We consider the graph as directed. We also allow parallel edges, as two
* faces may have more than one common edges.
*/
template <class GeomTraits_, class TopTraits_>
class graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_2<GeomTraits_,
TopTraits_> > >
{
public:
typedef GeomTraits_ Geometry_traits_2;
typedef TopTraits_ Topology_traits;
typedef CGAL::Arrangement_on_surface_2<Geometry_traits_2, Topology_traits>
Arrangement_on_surface_2;
typedef CGAL::Dual<Arrangement_on_surface_2> Dual_arr_2;
private:
typedef typename Dual_arr_2::Vertex_iterator Vertex_iterator;
typedef typename Dual_arr_2::Edge_iterator Edge_iterator;
typedef typename Dual_arr_2::Incident_edge_iterator Incident_edge_iterator;
/*! \struct
* Define the arrangement traversal category, which indicates the arrangement
* models the BidirectionalGraph concept and the VertexListGraph and
* EdgeListGraph concepts.
*/
struct Dual_arr_traversal_category :
public virtual boost::bidirectional_graph_tag, // This tag refines the
// incidence_graph_tag.
public virtual boost::vertex_list_graph_tag, // Can iterate over vertices.
public virtual boost::edge_list_graph_tag // Can iterate over edges.
{};
public:
// Types required of the Graph concept:
typedef typename Dual_arr_2::Vertex_handle vertex_descriptor;
typedef boost::directed_tag directed_category;
typedef boost::allow_parallel_edge_tag edge_parallel_category;
typedef Dual_arr_traversal_category traversal_category;
// Types required by the IncidenceGraph concept:
typedef typename Dual_arr_2::Edge_handle edge_descriptor;
typedef Incident_edge_iterator out_edge_iterator;
typedef typename Dual_arr_2::Size degree_size_type;
// Types required by the BidirectionalGraph concept:
typedef Incident_edge_iterator in_edge_iterator;
// Types required by the VertexListGraph concept:
typedef boost::counting_iterator<Vertex_iterator> vertex_iterator;
typedef typename Dual_arr_2::Size vertices_size_type;
// Types required by the EdgeListGraph concept:
typedef boost::counting_iterator<Edge_iterator> edge_iterator;
typedef typename Dual_arr_2::Size edges_size_type;
// Types not required by any of these concepts:
typedef void adjacency_iterator;
};
/*! \class
* Specialization of the BGL graph-traits template, which serve as a dual
* adapter for Arrangment_2.
*/
template <class Traits_, class Dcel_>
class graph_traits<CGAL::Dual<CGAL::Arrangement_2<Traits_, Dcel_> > > :
public graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_2<
typename CGAL::Arrangement_2<Traits_, Dcel_>::Geometry_traits_2,
typename CGAL::Arrangement_2<Traits_, Dcel_>::Topology_traits> > >
{};
} // namespace boost
namespace CGAL {
// Functions required by the IncidenceGraph concept:
// -------------------------------------------------
/*!
* Get the out-degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of halfedges around the boundary of the primal face.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::degree_size_type
out_degree(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_descriptor v,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return darr.degree (v);
}
/*!
* Return a range of the out-edges of a vertex given by its descriptor and the
* dual arrangement it belongs to.
* \param v The vertex.
* \param darr The dual arrangement.
* \return A pair of out-edges iterators.
*/
template <class GeomTraits_, class TopTraits_>
std::pair<typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
out_edge_iterator,
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
out_edge_iterator>
out_edges(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_descriptor v,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return std::make_pair (darr.out_edges_begin (v), darr.out_edges_end (v));
}
/*!
* Get the source vertex of a dual arrangement edge.
* \param e The edge.
* \param darr The dual arrangement.
* \return The incident face of e in the primal arrangement.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::vertex_descriptor
source(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
edge_descriptor e,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& /* darr */)
{
return e->face();
}
/*!
* Get the target vertex of a dual arrangement edge.
* \param e The edge.
* \param darr The dual arrangement.
* \return The incident face of e's twin in the primal arrangement.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::vertex_descriptor
target(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
edge_descriptor e,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& /* darr */)
{
return e->twin()->face();
}
// Functions required by the BidirectionalGraph concept:
// -----------------------------------------------------
/*!
* Get the in-degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of halfedges around the boundary of the primal face.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::degree_size_type
in_degree(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_descriptor v,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return darr.degree (v);
}
/*!
* Return a range of the in-edges of a vertex given by its descriptor and the
* dual arrangement it belongs to.
* \param v The vertex.
* \param darr The dual arrangement.
* \return A pair of in-edges iterators.
*/
template <class GeomTraits_, class TopTraits_>
std::pair<typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
in_edge_iterator,
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
in_edge_iterator>
in_edges(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_descriptor v,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return std::make_pair (darr.in_edges_begin (v), darr.in_edges_end (v));
}
/*!
* Get the degree of a vertex in a given dual arrangement.
* \param v The vertex.
* \param darr The dual arrangement.
* \param Number of ingoing and outgoing halfedges incident to v.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::degree_size_type
degree(typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_descriptor v,
const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return (2 * darr.degree (v));
}
// Functions required by the VertexListGraph concept:
// --------------------------------------------------
/*!
* Get the number of vertices in the given dual arrangement.
* \param darr The dual arrangement.
* \return Number of faces in the primal arrangement.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::vertices_size_type
num_vertices(const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return darr.number_of_vertices();
}
/*!
* Get the range of vertices of the given dual arrangement.
* \param darr The dual arrangement.
* \return A pair of vertex iterators.
*/
template <class GeomTraits_, class TopTraits_>
std::pair<typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_iterator,
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
vertex_iterator>
vertices (const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return std::make_pair (darr.vertices_begin(), darr.vertices_end());
}
// Functions required by the EdgeListGraph concept:
// ------------------------------------------------
/*!
* Get the number of edges in the given dual arrangement.
* \param darr The dual arrangement.
* \return Number of halfedges in the primal arrangement.
*/
template <class GeomTraits_, class TopTraits_>
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::edges_size_type
num_edges(const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return darr.number_of_edges();
}
/*!
* Get the range of edges of the given dual arrangement.
* \param darr The dual arrangement.
* \return A pair of edge iterators.
*/
template <class GeomTraits_, class TopTraits_>
std::pair<typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
edge_iterator,
typename
boost::graph_traits<CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> > >::
edge_iterator>
edges (const CGAL::Dual<CGAL::
Arrangement_on_surface_2<GeomTraits_, TopTraits_> >& darr)
{
return std::make_pair (darr.edges_begin(), darr.edges_end());
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif

View File

@ -0,0 +1,97 @@
// Copyright (c) 2019 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
// Sebastien Loriot <sebastien.loriot@cgal.org>
// Efi Fogel <efifogel@gmail.com>
#ifndef CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H
#define CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
/*! \file
* Definition of:
* 1. the specialized Dual<Arrangement_2> class,
* 2. the specialized boost::graph_traits<Dual<Arrangement_2> >class,
* 3. The free functions required by the various graph concepts.
*/
// include this to avoid a VC15 warning
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arrangement_2/graph_traits_dual.h>
#include <CGAL/disable_warnings.h>
namespace CGAL {
// The specialized Dual<Arrangement_2... class template.
template <typename GeomTraits_2, typename Dcel>
class Dual<Arrangement_2<GeomTraits_2, Dcel> > :
public Dual_arrangement_on_surface<Arrangement_2<GeomTraits_2, Dcel> >
{
public:
typedef Arrangement_2<GeomTraits_2, Dcel> Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
private:
typedef Dual_arrangement_on_surface<Arrangement> Base;
public:
/*! Default constructor. */
Dual() : Base() {}
/*! Constructor from an arrangement. */
Dual(const Arrangement& arr) : Base(arr) {}
};
}
namespace boost {
// The specialized graph_traits<CGAL::Dual<CGAL::Arrangement_2... class template.
template <typename GeomTraits_2, typename Dcel>
class graph_traits<CGAL::Dual<CGAL::Arrangement_2<GeomTraits_2, Dcel> > > :
public CGAL::Graph_traits_dual_arr_on_surface_impl<CGAL::Arrangement_2
<GeomTraits_2, Dcel> >
{};
}
namespace CGAL {
// Templates of free functions that handle
// graph_traits<CGAL::Dual<CGAL::Arrangement_2... class template.
CGAL_DUAL_ARRANGEMENT_2_OUT_DEGREE(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_OUT_EDGES(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_SOURCE(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_TARGET(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_IN_DEGREE(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_IN_EDGES(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_DEGREE(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_VERTICES(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_VERTICES(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_EDGES(Arrangement_2)
CGAL_DUAL_ARRANGEMENT_2_EDGES(Arrangement_2)
}
#endif

View File

@ -0,0 +1,100 @@
// Copyright (c) 2018 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
// Sebastien Loriot <sebastien.loriot@cgal.org>
// Efi Fogel <efifogel@gmail.com>
#ifndef CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_ON_SURFACE_2_H
#define CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_ON_SURFACE_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
/*! \file
* Definition of:
* 1. the specialized Dual<Arrangement_on_surface_2> class,
* 2. the specialized boost::graph_traits<Dual<Arrangement_on_surface_2> > class,
* 3. The free functions required by the various graph concepts.
*/
// include this to avoid a VC15 warning
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/Arrangement_on_surface_2.h>
#include <CGAL/Arrangement_2/graph_traits_dual.h>
#include <CGAL/disable_warnings.h>
namespace CGAL {
// The specialized Dual<Arrangement_on_surface_2... class template.
template <typename GeomTraits_2, typename TopolTraits>
class Dual<Arrangement_on_surface_2<GeomTraits_2, TopolTraits> > :
public Dual_arrangement_on_surface<Arrangement_on_surface_2
<GeomTraits_2, TopolTraits> >
{
public:
typedef Arrangement_on_surface_2<GeomTraits_2, TopolTraits> Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
private:
typedef Dual_arrangement_on_surface<Arrangement> Base;
public:
/*! Default constructor. */
Dual() : Base() {}
/*! Constructor from an arrangement. */
Dual(const Arrangement& arr) : Base(arr) {}
};
}
namespace boost {
// The specialized graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_2...
// class template.
template <typename GeomTraits_2, typename TopolTraits>
class graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_2
<GeomTraits_2, TopolTraits> > > :
public CGAL::Graph_traits_dual_arr_on_surface_impl
<CGAL::Arrangement_on_surface_2<GeomTraits_2, TopolTraits> >
{};
}
namespace CGAL {
// Templates of free functions that handle
// graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_2... class template.
CGAL_DUAL_ARRANGEMENT_2_OUT_DEGREE(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_OUT_EDGES(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_SOURCE(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_TARGET(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_IN_DEGREE(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_IN_EDGES(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_DEGREE(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_VERTICES(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_VERTICES(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_EDGES(Arrangement_on_surface_2)
CGAL_DUAL_ARRANGEMENT_2_EDGES(Arrangement_on_surface_2)
}
#endif

View File

@ -0,0 +1,104 @@
// Copyright (c) 2018 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
// Sebastien Loriot <sebastien.loriot@cgal.org>
// Efi Fogel <efifogel@gmail.com>
#ifndef CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_ON_SURFACE_WITH_HISTORY_2_H
#define CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_ON_SURFACE_WITH_HISTORY_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
/*! \file
* Definition of:
* 1. the specialized Dual<Arrangement_on_surface_with_history_2> class,
* 2. the specialized
* boost::graph_traits<Dual<Arrangement_on_surface_with_history_2> >class,
* 3. The free functions required by the various graph concepts.
*/
// include this to avoid a VC15 warning
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/Arrangement_on_surface_with_history_2.h>
#include <CGAL/Arrangement_2/graph_traits_dual.h>
#include <CGAL/disable_warnings.h>
namespace CGAL {
// The specialized Dual<Arrangement_on_surface_with_history_2... class template.
template <typename GeomTraits_2, typename TopolTraits>
class Dual<Arrangement_on_surface_with_history_2<GeomTraits_2, TopolTraits> > :
public Dual_arrangement_on_surface<Arrangement_on_surface_with_history_2
<GeomTraits_2, TopolTraits> >
{
public:
typedef Arrangement_on_surface_with_history_2<GeomTraits_2, TopolTraits> Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
private:
typedef Dual_arrangement_on_surface<Arrangement> Base;
public:
/*! Default constructor. */
Dual() : Base() {}
/*! Constructor from an arrangement. */
Dual(const Arrangement& arr) : Base(arr) {}
};
}
namespace boost {
// The specialized
// graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_with_history_2... class
// template.
template <typename GeomTraits_2, typename TopolTraits>
class graph_traits<CGAL::Dual<CGAL::Arrangement_on_surface_with_history_2
<GeomTraits_2, TopolTraits> > > :
public CGAL::Graph_traits_dual_arr_on_surface_impl
<CGAL::Arrangement_on_surface_with_history_2<GeomTraits_2,
TopolTraits> >
{};
}
namespace CGAL {
// Templates of free functions that handle
// graph_traits<Dual<Arrangement_on_surface_with_history_2...
// class template.
CGAL_DUAL_ARRANGEMENT_2_OUT_DEGREE(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_OUT_EDGES(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_SOURCE(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_TARGET(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_IN_DEGREE(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_IN_EDGES(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_DEGREE(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_VERTICES(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_VERTICES(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_EDGES(Arrangement_on_surface_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_EDGES(Arrangement_on_surface_with_history_2)
}
#endif

View File

@ -0,0 +1,101 @@
// Copyright (c) 2018 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Ophir Setter <ophirset@post.tau.ac.il>
// Sebastien Loriot <sebastien.loriot@cgal.org>
// Efi Fogel <efifogel@gmail.com>
#ifndef CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_WITH_HISTORY_2_H
#define CGAL_GRAPH_TRAITS_DUAL_ARRANGEMENT_WITH_HISTORY_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
/*! \file
* Definition of:
* 1. the specialized Dual<Arrangement_on_surface_with_history_2> class,
* 2. the specialized
* boost::graph_traits<Dual<Arrangement_on_surface_with_history_2> >class,
* 3. The free functions required by the various graph concepts.
*/
// include this to avoid a VC15 warning
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/Arrangement_with_history_2.h>
#include <CGAL/Arrangement_2/graph_traits_dual.h>
#include <CGAL/disable_warnings.h>
namespace CGAL {
// The specialized Dual<Arrangement_with_history_2... class template.
template <typename GeomTraits_2, typename Dcel>
class Dual<Arrangement_with_history_2<GeomTraits_2,Dcel> > :
public Dual_arrangement_on_surface<Arrangement_with_history_2
<GeomTraits_2, Dcel> >
{
public:
typedef Arrangement_with_history_2<GeomTraits_2, Dcel> Arrangement;
typedef typename Arrangement::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement::Topology_traits Topology_traits;
private:
typedef Dual_arrangement_on_surface<Arrangement> Base;
public:
/*! Default constructor. */
Dual() : Base() {}
/*! Constructor from an arrangement. */
Dual(const Arrangement& arr) : Base(arr) {}
};
}
namespace boost {
// The specialized graph_traits<CGAL::Dual<CGAL::Arrangement_with_history_2...
// class template.
template <typename GeomTraits_2, typename Dcel>
class graph_traits<CGAL::Dual<CGAL::Arrangement_with_history_2
<GeomTraits_2, Dcel> > > :
public CGAL::Graph_traits_dual_arr_on_surface_impl
<CGAL::Arrangement_with_history_2<GeomTraits_2, Dcel> >
{};
}
namespace CGAL {
// Templates of free functions that handle
// graph_traits<Dual<Arrangement_with_history_2... class template.
CGAL_DUAL_ARRANGEMENT_2_OUT_DEGREE(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_OUT_EDGES(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_SOURCE(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_TARGET(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_IN_DEGREE(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_IN_EDGES(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_DEGREE(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_VERTICES(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_VERTICES(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_NUM_EDGES(Arrangement_with_history_2)
CGAL_DUAL_ARRANGEMENT_2_EDGES(Arrangement_with_history_2)
}
#endif

View File

@ -7,7 +7,7 @@
#include <CGAL/boost/graph/dijkstra_shortest_paths.h>
#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/graph_traits_dual_arrangement_2.h>
// leda_rational, or Gmpq, or Quotient<MP_float>
typedef CGAL::Exact_rational Number_type;

View File

@ -6,7 +6,7 @@
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/graph_traits_dual_arrangement_2.h>
#include <CGAL/Arr_face_index_map.h>
#include <climits>

View File

@ -28,6 +28,8 @@
#include <CGAL/Classification/Image.h>
#include <CGAL/assertions.h>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/cstdint.hpp>

View File

@ -46,7 +46,7 @@
#ifdef CGAL_ENVELOPE_USE_BFS_FACE_ORDER
#include <CGAL/Arr_face_index_map.h>
#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/graph_traits_dual_arrangement_on_surface_2.h>
#include <CGAL/boost/graph/dijkstra_shortest_paths.h>
#endif
@ -92,7 +92,8 @@ namespace CGAL {
// the envelope between 2 surfaces over a feature
// of the arrangement
// 4. Overlay_2 - overlay of 2 MinimizationDiagram_2
template <class EnvelopeTraits_3,
template <class EnvelopeTraits_3,
class MinimizationDiagram_2,
class EnvelopeResolver_3 =
Envelope_element_visitor_3<EnvelopeTraits_3, MinimizationDiagram_2>,
@ -138,9 +139,9 @@ protected:
Ccb_halfedge_circulator;
typedef typename Minimization_diagram_2::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Minimization_diagram_2::Outer_ccb_iterator
typedef typename Minimization_diagram_2::Outer_ccb_iterator
Outer_ccb_iterator;
typedef typename Minimization_diagram_2::Inner_ccb_iterator
typedef typename Minimization_diagram_2::Inner_ccb_iterator
Inner_ccb_iterator;
typedef Arr_observer<Minimization_diagram_2> Md_observer;
@ -155,7 +156,7 @@ protected:
public:
// c'tor
Envelope_divide_and_conquer_3(Envelope_type type = ENVELOPE_LOWER)
{
{
// Allocate the traits.
m_geom_traits = new Traits;
m_own_traits = true;
@ -178,7 +179,7 @@ public:
m_is_lower = ((type == ENVELOPE_LOWER) ? true : false);
}
// virtual destructor.
virtual ~Envelope_divide_and_conquer_3()
{
@ -199,11 +200,11 @@ public:
Envelope_3::Arbitrary_dividor dividor;
construct_lu_envelope(begin, end, result, dividor);
}
// compute the envelope of surfaces in 3D using the given set dividor
template <class SurfaceIterator, class SetDividor>
void construct_lu_envelope(SurfaceIterator begin, SurfaceIterator end,
void construct_lu_envelope(SurfaceIterator begin, SurfaceIterator end,
Minimization_diagram_2& result,
SetDividor& dividor)
{
@ -211,7 +212,7 @@ public:
{
return; // result is empty
}
// make the general surfaces xy-monotone
std::list<Xy_monotone_surface_3> xy_monotones;
for (; begin != end; ++begin)
@ -220,10 +221,10 @@ public:
std::back_inserter(xy_monotones));
// recursively construct the envelope of the xy-monotone parts
construct_lu_envelope_xy_monotones(xy_monotones.begin(),
construct_lu_envelope_xy_monotones(xy_monotones.begin(),
xy_monotones.end(), result, dividor);
CGAL_assertion(is_envelope_valid(result));
CGAL_assertion(is_envelope_valid(result));
}
// compute the envelope of xy-monotone surfaces in 3D,
@ -266,7 +267,7 @@ public:
protected:
// compute the envelope of xy-monotone surfaces in 3D
// compute the envelope of xy-monotone surfaces in 3D
template <class SurfaceIterator, class SetDividor>
void construct_lu_envelope_xy_monotones(SurfaceIterator begin,
SurfaceIterator end,
@ -284,25 +285,25 @@ protected:
{
// only one surface is in the collection. insert it the result
Xy_monotone_surface_3& surf = *first;
deal_with_one_surface(surf, result);
return;
return;
}
// divide the surfaces into 2 groups (insert surface to each group
// alternately)
// Efi: this copy is redundant. It is sufficient to determine the range
std::list<Xy_monotone_surface_3> group1, group2;
dividor(first, end,
std::back_inserter(group1), std::back_inserter(group2));
// recursively calculate the LU_envelope of the 2 groups
Minimization_diagram_2 result1(m_geom_traits), result2(m_geom_traits);
construct_lu_envelope_xy_monotones(group1.begin(), group1.end(),
result1, dividor);
construct_lu_envelope_xy_monotones(group2.begin(), group2.end(),
result2, dividor);
// merge the results:
merge_envelopes(result1, result2, result);
@ -323,7 +324,7 @@ protected:
m_geom_traits->
construct_projected_boundary_2_object()(surf,
std::back_inserter(boundary));
if (boundary.empty())
{
//one infinite surface
@ -344,13 +345,13 @@ protected:
Oriented_side side = boundary_cv.second;
Halfedge_handle he =
insert_non_intersecting_curve(result, boundary_cv.first);
if (side == ON_ORIENTED_BOUNDARY)
{
// vertical xy-surface
he->face()->set_no_data();
he->twin()->face()->set_no_data();
continue;
}
@ -374,41 +375,41 @@ protected:
he->twin()->face()->set_no_data();
}
// init auxiliary data for f and its boundarys.
// init auxiliary data for f and its boundarys.
for(Outer_ccb_iterator ocit = f->outer_ccbs_begin();
ocit != f->outer_ccbs_end(); ocit++){
Ccb_halfedge_circulator face_hec = *ocit;
Ccb_halfedge_circulator face_hec_begin = face_hec;
do
do
{
face_hec->set_is_equal_data_in_face(true);
face_hec->set_has_equal_data_in_face(true);
face_hec->set_has_equal_data_in_target_and_face(true);
face_hec->twin()->set_is_equal_data_in_face(false);
face_hec->twin()->set_has_equal_data_in_face(false);
face_hec->twin()->set_has_equal_data_in_target_and_face(false);
++face_hec;
}
}
while(face_hec != face_hec_begin);
}
for(Outer_ccb_iterator icit = f->inner_ccbs_begin();
icit != f->inner_ccbs_end(); icit++){
Ccb_halfedge_circulator face_hec = *icit;
Ccb_halfedge_circulator face_hec_begin = face_hec;
do
do
{
face_hec->set_is_equal_data_in_face(true);
face_hec->set_has_equal_data_in_face(true);
face_hec->set_has_equal_data_in_target_and_face(true);
face_hec->twin()->set_is_equal_data_in_face(false);
face_hec->twin()->set_has_equal_data_in_face(false);
face_hec->twin()->set_has_equal_data_in_target_and_face(false);
++face_hec;
}
}
while(face_hec != face_hec_begin);
}
}
@ -449,7 +450,7 @@ protected:
}
}
}
public:
void merge_envelopes(Minimization_diagram_2& result1,
@ -457,20 +458,20 @@ public:
Minimization_diagram_2& result)
{
// overlay the 2 arrangements
Overlay_2 overlay;
overlay(result1, result2, result);
CGAL_expensive_assertion_msg(is_valid(result),
"after overlay result is not valid");
// make sure the aux flags are correctly set by the overlay
//CGAL_assertion(verify_aux_flags(result));
// for each face, edge and vertex in the result, should calculate
// which surfaces are on the envelope
// a face can be cut, or faces can be merged.
// now the minimization diagram might change - we need to keep data in the
// edges, when they're split
Keep_edge_data_observer edge_observer(result, this);
@ -523,13 +524,13 @@ public:
for (li = edges_to_resolve.begin(); li != edges_to_resolve.end(); ++li)
{
resolver->resolve(*li, result);
}
edges_to_resolve.clear();
// decompose the result, to have faces without holes
/* decompose(result);
CGAL_expensive_assertion_msg(result.is_valid(),
CGAL_expensive_assertion_msg(result.is_valid(),
"after decomposition result is not valid");*/
// compute the surface on the envelope for each face,
@ -559,7 +560,7 @@ public:
visitor(bfs_visitor));
index_map.detach();
#else
// traverse the faces in arbitrary order
// traverse the faces in arbitrary order
Face_iterator fi = result.faces_begin();
for (; fi != result.faces_end(); ++fi)
{
@ -600,7 +601,7 @@ public:
// resolver->resolve(hi, result);
// }
// #endif
// detach the edge_observer from result, since no need for it anymore
edge_observer.detach();
@ -627,7 +628,7 @@ public:
continue;
}
resolver->resolve(vh);
}
CGAL_expensive_assertion_msg(result.is_valid(),
@ -636,21 +637,21 @@ public:
// make sure that aux_source and decision are set at all features
// after all resolvings
CGAL_assertion(check_resolve_was_ok(result));
// make sure the aux flags are correctly after all resolvings
//CGAL_assertion(verify_aux_flags(result));
// finally, remove unneccessary edges, between faces with the same surface
// (and which are not degenerate)
remove_unneccessary_edges(result);
CGAL_expensive_assertion_msg(result.is_valid(),
CGAL_expensive_assertion_msg(result.is_valid(),
"after remove edges result is not valid");
// also remove unneccessary vertices (that were created in the process of
// vertical decomposition but the vertical edge was removed)
remove_unneccessary_vertices(result);
CGAL_expensive_assertion_msg(result.is_valid(),
CGAL_expensive_assertion_msg(result.is_valid(),
"after remove vertices result is not valid");
// update is_equal_data and has_equal_data of halfedge->face and
@ -661,7 +662,7 @@ public:
// update the envelope surfaces according to the decision and the aux
// surfaces in aux source
update_envelope_surfaces_by_decision(result);
// make sure that all the flags are correctly set on the envelope result
//CGAL_assertion(verify_flags(result));
CGAL_expensive_assertion_msg(is_valid(result),
@ -670,7 +671,7 @@ public:
protected:
void deal_with_faces_to_split(std::list<Face_handle>& faces_to_split,
Minimization_diagram_2& result)
{
@ -741,7 +742,7 @@ protected:
if (can_remove_edge(hh))
edges.push_back(hh);
}
for (typename std::list<Halfedge_handle>::iterator ci = edges.begin();
ci != edges.end(); ++ci)
{
@ -847,7 +848,7 @@ protected:
end = v->end_data();
}
}
// check if we can remove the edge from the envelope
// this can be done if the envelope surfaces on the edge are the same as
// the envelope surfaces on both sides of the edge
@ -855,7 +856,7 @@ protected:
bool can_remove_edge(Halfedge_handle hh)
{
Face_handle f1 = hh->face(), f2 = hh->twin()->face();
// we check if the decision done on the edge is equal to the decision
// done on the faces. if not, then the envelope surfaces must differ
CGAL_assertion(hh->is_decision_set() && f1->is_decision_set() &&
@ -875,10 +876,10 @@ protected:
if (decision == DAC_DECISION_FIRST)
return equal_first;
if (decision == DAC_DECISION_SECOND)
return equal_second;
return (equal_first && equal_second);
}
@ -895,7 +896,7 @@ protected:
When I tried to use the following code I got a Segmentation Fault when
trying to compute power diagram:
if ((v->parameter_space_in_x() != ARR_INTERIOR) ||
(v->parameter_space_in_y() != ARR_INTERIOR))
return false;
@ -908,7 +909,7 @@ protected:
/*if (v->get_is_fake() && !v->is_decision_set())
return true;
if (h->get_is_fake() && !h->is_decision_set())
{
@ -931,13 +932,13 @@ protected:
if (decision == DAC_DECISION_FIRST)
return equal_first;
if (decision == DAC_DECISION_SECOND)
return equal_second;
return (equal_first && equal_second);
}
// check if we can remove an isolated vertex from the envelope
// this can be done if the envelope surfaces on the vertex are the same as
// the envelope surfaces on its incident face
@ -958,10 +959,10 @@ protected:
if (decision == DAC_DECISION_FIRST)
return equal_first;
if (decision == DAC_DECISION_SECOND)
return equal_second;
return (equal_first && equal_second);
}
@ -977,13 +978,13 @@ protected:
Halfedge_handle he1 = hec1, he2 = hec2;
CGAL_assertion(he1 != he2);
CGAL_assertion(he1->is_decision_set() && he2->is_decision_set());
/* if (vh->get_is_fake()) {
* CGAL_assertion(he1->get_decision() == he2->get_decision());
* return true;
* }
*/
CGAL_assertion(vh->is_decision_set());
// if the decision done on the vertex and its incident halfedges are
// different, the envelope differs too.
@ -1001,14 +1002,14 @@ protected:
if (decision == DAC_DECISION_FIRST)
return equal_first;
if (decision == DAC_DECISION_SECOND)
return equal_second;
return (equal_first && equal_second);
}
// Remove unneccessary vertices, which have degree 2, and the 2 curves
// Remove unneccessary vertices, which have degree 2, and the 2 curves
// can be merged
// (and which are not degenerate)
void remove_unneccessary_vertices(Minimization_diagram_2& result)
@ -1016,14 +1017,14 @@ protected:
// we have 2 types of unneccessary vertices: those with degree 2 (that
// satisfy all the conditions below), and isolated vertices that have the
// same envelope information as the face they're contained in.
// all the vertices that don't have their data set, are those vertices
// on vertical edges, created in the decomposition process,
// and are not neccessary
// also those vertices with degree 2, that can merge their 2 edges and
// also those vertices with degree 2, that can merge their 2 edges and
// with same data as both these edges, can be removed
// collect all vertices candidate to remove in this list,
// and remove the correct ones at the end
// (thus, not destroying the iterator)
@ -1041,28 +1042,28 @@ protected:
}
typename Traits::Merge_2 curves_merge = m_geom_traits->merge_2_object();
typename Traits::Are_mergeable_2 curves_can_merge =
typename Traits::Are_mergeable_2 curves_can_merge =
m_geom_traits->are_mergeable_2_object();
// check the candidates and remove if necessary
typename std::list<Vertex_handle>::iterator ci;
for (ci = candidates_to_remove.begin();
for (ci = candidates_to_remove.begin();
ci != candidates_to_remove.end(); ++ci)
{
Vertex_handle vh = *ci;
CGAL_assertion(vh->degree() == 2);
// we can remove this vertex only if the data on its halfedges is the
// we can remove this vertex only if the data on its halfedges is the
// same
if (!combinatorically_can_remove_vertex(vh))
continue;
// merge the edges, if geometrically possible (if data on vertex is not
// set, then it must be geometrically possible)
Halfedge_around_vertex_circulator hec1 = vh->incident_halfedges();
Halfedge_around_vertex_circulator hec2 = hec1++;
Halfedge_handle he1 = hec1, he2 = hec2;
const X_monotone_curve_2& a = he1->curve(), b = he2->curve();
CGAL_assertion(vh->is_decision_set() || curves_can_merge(a,b));
@ -1072,7 +1073,7 @@ protected:
X_monotone_curve_2 c;
curves_merge(a,b,c);
// the decisions on he1 and he2 were the same, so the decision on
// the decisions on he1 and he2 were the same, so the decision on
// the edge that will be left after the merge will be ok
// but we need to take care of the bool flags of the target relation
// of the edge that will be left
@ -1115,7 +1116,7 @@ protected:
result.merge_edge(he1, he2 ,c);
CGAL_assertion(new_edge->is_decision_set());
CGAL_expensive_assertion_msg(result.is_valid(),
CGAL_expensive_assertion_msg(result.is_valid(),
"after remove vertex result is not valid");
}
@ -1157,7 +1158,7 @@ protected:
fh->set_data(begin, end);
else
fh->add_data(begin, end);
}
}
}
// foreach feature of result, update the envelope surfaces, according
@ -1168,12 +1169,12 @@ protected:
Vertex_iterator vi = result.vertices_begin();
for (; vi != result.vertices_end(); ++vi)
update_envelope_surfaces_by_decision(vi);
// edges
Halfedge_iterator hi = result.halfedges_begin();
for (; hi != result.halfedges_end(); ++hi)
update_envelope_surfaces_by_decision(hi);
// faces
Face_iterator fi = result.faces_begin();
for (; fi != result.faces_end(); ++fi)
@ -1218,7 +1219,7 @@ protected:
has_equal &= has_equal_first;
else if (decision == DAC_DECISION_SECOND)
has_equal &= has_equal_second;
else
else
has_equal &= (has_equal_first & has_equal_second);
}
@ -1264,7 +1265,7 @@ protected:
else if (decision == DAC_DECISION_SECOND)
has_equal &= has_equal_second;
else
else
has_equal &= (has_equal_first & has_equal_second);
}
h->set_is_equal_data_in_target(is_equal);
@ -1297,7 +1298,7 @@ protected:
else if (decision == DAC_DECISION_SECOND)
has_equal &= has_equal_second;
else
else
has_equal &= (has_equal_first & has_equal_second);
}
h->set_has_equal_data_in_target_and_face(has_equal);
@ -1340,7 +1341,7 @@ protected:
has_equal &= has_equal_first;
else if (decision == DAC_DECISION_SECOND)
has_equal &= has_equal_second;
else
else
has_equal &= (has_equal_first & has_equal_second);
}
v->set_is_equal_data_in_face(is_equal);
@ -1348,7 +1349,7 @@ protected:
}
void update_flags(Minimization_diagram_2& result)
{
{
// edges
Halfedge_iterator hi = result.halfedges_begin();
for (; hi != result.halfedges_end(); ++hi)
@ -1371,7 +1372,7 @@ protected:
{
return fh->get_aux_is_set(id);
}
template <class FeatureHandle>
bool aux_has_no_data(FeatureHandle fh, unsigned int id)
{
@ -1379,7 +1380,7 @@ protected:
Halfedge_handle h;
Vertex_handle v;
Face_handle f;
// aux source of a face must be a face!
// aux source of a halfedge can be face or halfedge
// aux source of a vertex can be face, halfedge or vertex
@ -1497,9 +1498,9 @@ protected:
}
}
}
// confirm that aux source and decision are set over all minimization
// confirm that aux source and decision are set over all minimization
// diagram features
bool check_resolve_was_ok(Minimization_diagram_2& result)
{
@ -1559,12 +1560,12 @@ protected:
for (; vi != result.vertices_end(); ++vi)
{
Vertex_handle vh = vi;
all_ok &= (vh->get_is_set());
CGAL_assertion_msg(all_ok, "data not set over vertex");
all_ok &= (!vh->has_no_data());
CGAL_assertion_msg(all_ok, "data empty over vertex");
CGAL_assertion_msg(all_ok, "data empty over vertex");
/* all_ok &= (!vh->get_is_fake());*/
CGAL_assertion_msg(all_ok, "fake vertex in envelope");
}
@ -1572,7 +1573,7 @@ protected:
for (; hi != result.halfedges_end(); ++hi)
{
Halfedge_handle hh = hi;
all_ok &= (hh->get_is_set());
if (!all_ok)
std::cerr << "edge: " << hh->curve() << std::endl;
@ -1594,14 +1595,14 @@ protected:
}
return all_ok;
}
// observer for the minimization diagram
// keeps the relevant data in the new faces
class Keep_face_data_observer : public Md_observer
{
public:
typedef typename Minimization_diagram_2::Face_handle Face_handle;
Keep_face_data_observer(Minimization_diagram_2& arr) :
Md_observer(arr)
{}
@ -1619,7 +1620,7 @@ protected:
new_f->set_decision(org_f->get_decision());
}
};
// observer for the minimization diagram
// keeps the relevant data in the new edges & vertices
@ -1628,12 +1629,12 @@ protected:
public:
typedef typename Minimization_diagram_2::Halfedge_handle Halfedge_handle;
typedef typename Minimization_diagram_2::Vertex_handle Vertex_handle;
typedef typename Minimization_diagram_2::X_monotone_curve_2
typedef typename Minimization_diagram_2::X_monotone_curve_2
X_monotone_curve_2;
typedef typename Envelope_divide_and_conquer_3<Traits,
typedef typename Envelope_divide_and_conquer_3<Traits,
Minimization_diagram_2,
EnvelopeResolver_3,
EnvelopeResolver_3,
Overlay_2>::Self Self;
Keep_edge_data_observer(Minimization_diagram_2& arr,
Self* b) :
@ -1651,7 +1652,7 @@ protected:
virtual void after_split_edge(Halfedge_handle he1, Halfedge_handle he2)
{
// update data of the new vertex, which is the common vertex of he1 and
// update data of the new vertex, which is the common vertex of he1 and
// he2, and of the new edge according to the data in the original edge
CGAL_assertion(he2->source() == he1->target());
@ -1669,19 +1670,19 @@ protected:
// find the halfedge with the additional information, to be copied into
// the second halfedge
Halfedge_handle org_he = he1, new_he = he2;
if (org_he->is_decision_set())
{
new_he->set_decision(org_he->get_decision());
new_he->twin()->set_decision(org_he->get_decision());
new_vertex->set_decision(org_he->get_decision());
}
}
if (org_he->get_aux_is_set(0))
{
new_vertex->set_aux_source(0, org_he->get_aux_source(0));
new_he->set_aux_source(0, org_he->get_aux_source(0));
new_he->twin()->set_aux_source(0, org_he->twin()->get_aux_source(0));
}
}
if (org_he->get_aux_is_set(1))
{
new_vertex->set_aux_source(1, org_he->get_aux_source(1));
@ -1812,11 +1813,11 @@ protected:
}
};
#endif
protected:
Envelope_resolver* resolver;
const Traits* m_geom_traits;
bool m_own_traits;
bool m_own_traits;
bool m_is_lower;
};

View File

@ -178,7 +178,7 @@ g
`CGAL::wlop_simplify_and_regularize_point_set()`.
### Classification
### Classification
- Added data structures to handle classification of Surface Meshes
and of Clusters.
@ -233,7 +233,7 @@ g
- The function `copy_face_graph()` now uses named parameters, some
allowing it to use property maps instead of output iterators.
- Addition of the following named parameters :
- Addition of the following named parameters :
- vertex_to_vertex_output_iterator
- halfedge_to_halfedge_output_iterator
- face_to_face_output_iterator
@ -252,6 +252,23 @@ g
- Added a read-write property map to convert on-the-fly geometric
objects from Cartesian kernels.
### 2D Arrangements
- Refracted and fixed the `graph_traits` for the dual of an arrangement of the
following types:
`Arrangement_on_surface_2`,
`Arrangement_2`,
`Arrangement_on_surface_with_history_2`, and
`Arrangement_with_history_2`.
- **Breaking change**: The old `<CGAL/graph_traits_Dual_Arrangement_2.h>`
header file has been replaced by the four header files below; each defines
the `graph_traits` for dual of the corresponding arrangement type.
`<CGAL/graph_traits_dual_arrangement_on_surface_2.h>`,
`<CGAL/graph_traits_dual_arrangement_2.h>`,
`<CGAL/graph_traits_dual_arrangement_on_surface_with_history_2.h>`, and
`<CGAL/graph_traits_dual_arrangement_with_history_2.h`.
Release 4.12
------------
@ -265,7 +282,7 @@ Release date: April 2018
introduced by CMake 2.8.12 and CMake 3.0: instead of setting CMake
variables, the script now defines imported targets and uses link
interfaces.
That is mostly backward-compatible with existing usages of CGAL CMake
scripts. The only non-compatible effect is that the `CMAKE_BUILD_TYPE`
and compilation flags are no longer copied from the `CGAL_DIR` to the