mirror of https://github.com/CGAL/cgal
parent
dec76cf6d3
commit
c7e5588944
|
|
@ -15,6 +15,7 @@ This is similar to graph traits in \ref PkgBGL.
|
|||
|
||||
\cgalHasModelsBegin
|
||||
\cgalHasModels{`CGAL::Isosurfacing::Cartesian_grid_3`}
|
||||
\cgalHasModels{`CGAL::Octree`}
|
||||
\cgalHasModelsEnd
|
||||
*/
|
||||
class IsosurfacingPartition_3
|
||||
|
|
|
|||
|
|
@ -277,6 +277,12 @@ Results of the %Dual Contouring algorithm: untriangulated (left column) or trian
|
|||
unconstrained vertex location (top row) or constrained vertex location (bottom row).
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
\subsection SubSecDCOctreeExample Dual Contouring using Octree
|
||||
|
||||
The following example shows the use of an octree for dual contouring or marching cubes.
|
||||
|
||||
\cgalExample{Isosurfacing_3/dual_contouring_octree.cpp}
|
||||
|
||||
\subsection SubSecImplicitDataExample Implicit Data
|
||||
|
||||
The following example shows the usage of Marching Cubes and %Dual Contouring algorithms to extract
|
||||
|
|
|
|||
|
|
@ -8,3 +8,4 @@ Stream_support
|
|||
AABB_tree
|
||||
Polygon_mesh_processing
|
||||
Mesh_3
|
||||
Orthtree
|
||||
|
|
|
|||
|
|
@ -5,5 +5,6 @@
|
|||
\example Isosurfacing_3/contouring_mesh_offset.cpp
|
||||
\example Isosurfacing_3/contouring_vtk_image.cpp
|
||||
\example Isosurfacing_3/dual_contouring.cpp
|
||||
\example Isosurfacing_3/dual_contouring_octree.cpp
|
||||
\example Isosurfacing_3/marching_cubes.cpp
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -0,0 +1,140 @@
|
|||
#include <CGAL/Simple_cartesian.h>
|
||||
|
||||
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
|
||||
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
|
||||
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
|
||||
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
|
||||
#include <CGAL/Isosurfacing_3/Value_function_3.h>
|
||||
#include <CGAL/Isosurfacing_3/Gradient_function_3.h>
|
||||
#include <CGAL/Isosurfacing_3/Octree_partition.h>
|
||||
|
||||
#include <CGAL/IO/polygon_soup_io.h>
|
||||
#include <CGAL/Real_timer.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using Kernel = CGAL::Simple_cartesian<double>;
|
||||
using FT = typename Kernel::FT;
|
||||
using Vector = typename Kernel::Vector_3;
|
||||
using Point = typename Kernel::Point_3;
|
||||
|
||||
using Point_range = std::vector<Point>;
|
||||
using Polygon_range = std::vector<std::vector<std::size_t> >;
|
||||
|
||||
using Octree = CGAL::Octree<Kernel, std::vector<typename Kernel::Point_3> >;
|
||||
using Values = CGAL::Isosurfacing::Value_function_3<Octree>;
|
||||
using Gradients = CGAL::Isosurfacing::Gradient_function_3<Octree>;
|
||||
using MC_Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Octree, Values>;
|
||||
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Octree, Values, Gradients>;
|
||||
|
||||
// Refine one of the octant
|
||||
struct Refine_one_eighth
|
||||
{
|
||||
std::size_t min_depth_;
|
||||
std::size_t max_depth_;
|
||||
|
||||
std::size_t octree_dim_;
|
||||
|
||||
Refine_one_eighth(std::size_t min_depth,
|
||||
std::size_t max_depth)
|
||||
: min_depth_(min_depth),
|
||||
max_depth_(max_depth)
|
||||
{
|
||||
octree_dim_ = std::size_t(1) << max_depth_;
|
||||
}
|
||||
|
||||
Octree::Global_coordinates uniform_coordinates(const Octree::Node_index& node_index, const Octree& octree) const
|
||||
{
|
||||
auto coords = octree.global_coordinates(node_index);
|
||||
const std::size_t depth_factor = std::size_t(1) << (max_depth_ - octree.depth(node_index));
|
||||
for(int i=0; i < 3; ++i)
|
||||
coords[i] *= uint32_t(depth_factor);
|
||||
|
||||
return coords;
|
||||
}
|
||||
|
||||
bool operator()(const Octree::Node_index& ni, const Octree& octree) const
|
||||
{
|
||||
if(octree.depth(ni) < min_depth_)
|
||||
return true;
|
||||
|
||||
if(octree.depth(ni) == max_depth_)
|
||||
return false;
|
||||
|
||||
auto leaf_coords = uniform_coordinates(ni, octree);
|
||||
|
||||
if(leaf_coords[0] >= octree_dim_ / 2)
|
||||
return false;
|
||||
|
||||
if(leaf_coords[1] >= octree_dim_ / 2)
|
||||
return false;
|
||||
|
||||
if(leaf_coords[2] >= octree_dim_ / 2)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
auto sphere_function = [](const Point& p) -> FT
|
||||
{
|
||||
return std::sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
|
||||
};
|
||||
|
||||
auto sphere_gradient = [](const Point& p) -> Vector
|
||||
{
|
||||
const Vector g = p - CGAL::ORIGIN;
|
||||
return g / std::sqrt(g.squared_length());
|
||||
};
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.8;
|
||||
|
||||
const CGAL::Bbox_3 bbox{-1., -1., -1., 1., 1., 1.};
|
||||
std::vector<Kernel::Point_3> bbox_points { {bbox.xmin(), bbox.ymin(), bbox.zmin()},
|
||||
{ bbox.xmax(), bbox.ymax(), bbox.zmax() } };
|
||||
|
||||
CGAL::Real_timer timer;
|
||||
timer.start();
|
||||
|
||||
Octree octree(bbox_points);
|
||||
Refine_one_eighth split_predicate(3, 5);
|
||||
octree.refine(split_predicate);
|
||||
|
||||
std::ofstream oo("octree2.polylines.txt");
|
||||
oo.precision(17);
|
||||
octree.dump_to_polylines(oo);
|
||||
|
||||
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
|
||||
|
||||
// fill up values and gradients
|
||||
Values values { sphere_function, octree };
|
||||
Gradients gradients { sphere_gradient, octree };
|
||||
Domain domain { octree, values, gradients };
|
||||
|
||||
// output containers
|
||||
Point_range points;
|
||||
Polygon_range triangles;
|
||||
|
||||
// run Dual Contouring
|
||||
CGAL::Isosurfacing::dual_contouring<CGAL::Parallel_if_available_tag>(domain, isovalue, points, triangles, CGAL::parameters::do_not_triangulate_faces(true));
|
||||
|
||||
// run Marching Cubes
|
||||
// ToDo: Does not yet work with topologically correct marching cubes
|
||||
// MC_Domain mcdomain{ octree, values };
|
||||
// CGAL::Isosurfacing::marching_cubes<CGAL::Parallel_if_available_tag>(mcdomain, isovalue, points, triangles);
|
||||
|
||||
timer.stop();
|
||||
|
||||
std::cout << "Output #vertices (DC): " << points.size() << std::endl;
|
||||
std::cout << "Output #triangles (DC): " << triangles.size() << std::endl;
|
||||
std::cout << "Elapsed time: " << timer.time() << " seconds" << std::endl;
|
||||
CGAL::IO::write_polygon_soup("dual_contouring_octree.off", points, triangles);
|
||||
|
||||
std::cout << "Done" << std::endl;
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
Loading…
Reference in New Issue