diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/AlgebraicKernelForQuadrics.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/AlgebraicKernelForQuadrics.tex index 6186c7621c6..eec786ca03b 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/AlgebraicKernelForQuadrics.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/AlgebraicKernelForQuadrics.tex @@ -36,10 +36,10 @@ of degree up to~2.} \ccNestedType{Root_of_8_1}{A model of \ccc{RootOf_8_1}, for algebraic numbers -of degreee at most 8} +of degree at most 8} \ccGlue \ccNestedType{Root_of_8_3}{A model of -\ccc{AlgebraicKernelForQuadric::Root_of_8_3}, for +\ccc{AlgebraicKernelForQuadrics::Root_of_8_3}, for solutions of systems of three models of \ccc{AlgebraicKernelForQuadrics::Polynomial_2_3}.} diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_arc_3.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_arc_3.tex index 1fa929283ef..95b02963c9b 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_arc_3.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_arc_3.tex @@ -21,9 +21,6 @@ \ccMethod{QuadricalKernel_3::Curve_3 supporting_curve();}{} -%A circular arc is supposed to be oriented counterclockwise, from -%\ccc{source} to \ccc{target}. - \ccMethod{QuadricalKernel_3::Curve_point_3 source();}{Only valid if source is finite.} \ccGlue @@ -34,7 +31,7 @@ is finite.} \ccFunction{istream& operator>> (std::istream& is, Curve_arc_3 & ca);}{} \ccGlue -\ccFunction{ostream& operator<< (std::ostream& os, const Circular_arc_3 & ca);}{} +\ccFunction{ostream& operator<< (std::ostream& os, const Curve_arc_3 & ca);}{} \ccSeeAlso diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_point_8_3.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_point_8_3.tex index 16abdd97c79..67a94bf29ed 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_point_8_3.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Curve_point_8_3.tex @@ -4,7 +4,7 @@ \ccIsModel -\ccc{QuadricalKernal_3::CurvePoint_3} +\ccc{QuadricalKernel_3::CurvePoint_3} \ccCreation \ccCreationVariable{p} @@ -12,48 +12,48 @@ \ccThree{Curve_point_3}{spc.is_x_monotone()}{} \ccThreeToTwo -\ccConstructor{Curve_point_3(const QuadricalKernal_3::Point_3 &p)}{} +\ccConstructor{Curve_point_3(const QuadricalKernel_3::Point_3 &p)}{} -\ccConstructor{Curve_point_3(const QuadricalKernal_3::Root_of_3 &r)}{} +\ccConstructor{Curve_point_3(const QuadricalKernel_3::Root_of_3 &r)}{} \ccAccessFunctions \ccThree{CurvedKernel::Root_of_3}{ca.is_x_monotone()}{} \ccThreeToTwo -%\ccMethod{const QuadricalKernal_3::Root_of_1 & x();}{$x$-coordinate of the point.} +%\ccMethod{const QuadricalKernel_3::Root_of_1 & x();}{$x$-coordinate of the point.} %\ccGlue -%\ccMethod{const QuadricalKernal_3::Root_of_1 & y();}{$y$-coordinate of the point.} +%\ccMethod{const QuadricalKernel_3::Root_of_1 & y();}{$y$-coordinate of the point.} %\ccGlue -%\ccMethod{const QuadricalKernal_3::Root_of_1 & z();}{$z$-coordinate of the point.} +%\ccMethod{const QuadricalKernel_3::Root_of_1 & z();}{$z$-coordinate of the point.} \ccMethod{Bbox_3 bbox() const;} {Returns a bounding box around the point.} \ccOperations -\ccFunction{bool operator==(const Curve_point_3 &p, - const Curve_point_3 &q);} +\ccFunction{bool operator==(const Curve_point_3 &p, + const Curve_point_3 &q);} {Test for equality. Two points are equal, iff their coordinates are equal.} -\ccFunction{bool operator!=(const Curve_point_3 &p, - const Curve_point_3 &q);} -{Test for nonequality.} +\ccFunction{bool operator!=(const Curve_point_3 &p, + const Curve_point_3 &q);} +{Test for non-equality.} -\ccFunction{bool operator<(const Curve_point_3 &p, - const Curve_point_3 &q);} +\ccFunction{bool operator<(const Curve_point_3 &p, + const Curve_point_3 &q);} {Returns true iff $p$ is lexicographically smaller than $q$. First compare $x$-coordinates, if equal compare $y$-coordinates, if equal compare $z$-coordinates.} -\ccFunction{bool operator>(const Curve_point_3 &p, - const Curve_point_3 &q);} +\ccFunction{bool operator>(const Curve_point_3 &p, + const Curve_point_3 &q);} {Returns true iff $p$ is lexicographically greater than $q$.} -\ccFunction{bool operator<=(const Curve_point_3 &p, - const Curve_point_3 &q);} +\ccFunction{bool operator<=(const Curve_point_3 &p, + const Curve_point_3 &q);} {Returns true iff $p$ is lexicographically smaller than or equal to $q$.} -\ccFunction{bool operator>=(const Curve_point_3 &p, - const Curve_point_3 &q);} +\ccFunction{bool operator>=(const Curve_point_3 &p, + const Curve_point_3 &q);} {Returns true iff $p$ is lexicographically greater than or equal to $q$.} \ccHeading{I/O} diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Intersect.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Intersect.tex index 37eb57d8050..a37da0042dd 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Intersect.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Intersect.tex @@ -43,7 +43,7 @@ and depending on the types \ccc{Type_1} and \ccc{Type_2}, the computed where the unsigned integer is the multiplicity of the corresponding intersection point between \ccc{obj_1} and \ccc{obj_2}, \item {} \ccc{Type_1}, when \ccc{Type_1} and \ccc{Type_2} are equal, and -if the two objets \ccc{obj1} and \ccc{obj2} are equal, +if the two objects \ccc{obj1} and \ccc{obj2} are equal, \item {} \ccc{QuadricalKernel_3::Curve_arc_3} in case of an overlap of two arcs \end{itemize} @@ -57,7 +57,7 @@ where the unsigned integer is the multiplicity of the corresponding intersection point, \item {} \ccc{QuadricalKernel_3::Curve_3} or \item {} \ccc{Type_1}, when \ccc{Type_1}, \ccc{Type_2} and \ccc{Type_3} -are equal, and if the three objets \ccc{obj1} and \ccc{obj2} and \ccc{obj3} +are equal, and if the three objects \ccc{obj1} and \ccc{obj2} and \ccc{obj3} are equal. \end{itemize} diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Quadric_3.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Quadric_3.tex index 5ceb6297edd..3f18b586e3b 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Quadric_3.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/Quadric_3.tex @@ -25,6 +25,6 @@ \ccMethod{QuadricalKernel_3Kernel::Bbox_3 bbox();}{} \ccFunction{bool operator==(const Quadric_3 &p, - const Qaudric_3 &q);}{} + const Quadric_3 &q);}{} \end{ccRefClass} diff --git a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/QuadricalKernel_3.tex b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/QuadricalKernel_3.tex index a13945c6e6b..4ed89568ed7 100644 --- a/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/QuadricalKernel_3.tex +++ b/Quadrical_kernel_3/doc_tex/Quadrical_kernel_3_ref/QuadricalKernel_3.tex @@ -39,8 +39,8 @@ It seems that a triangular patch consisting of three instances of But it is not possible to define an instance of \ccc{Quadric_3} that passes through two given instances of \ccc{Curve_point_3}. This implies that there is no way to find a third arc that can form together with two -given arcs a triangular patch. In other words, onbe could say, that -it is not possible to do iteratative constructions. +given arcs a triangular patch. In other words, one could say, that +it is not possible to do iterative constructions. A model of \ccc{QuadricalKernel_3} must also provide predicates, constructions and other functionalities.